The present application relates to technically inventive, non-routine solutions that are necessarily rooted in computer technology and that produce concrete technical improvements.
The use of headphones for listening to music, hands-free phone calls, interacting with virtual assistants, etc, is widespread. Comfortable wireless headphones and smart-wearable technology accelerate the use of hearable devices for a wide variety of purposes.
As recognized herein, to improve listening fidelity, headphones may employ noise canceling/isolating features which cancel/block ambient sound. As also recognized herein, such noise reduction carries with it the risk of accident as people use the headphones in a variety of situations, such as close to traffic, in which traffic sound is reduced by the headphones. Moreover, people using noise-canceling headphones are more likely to miss other audible cues such as someone calling their name. The same concern applies when a user is using headphones with volume so loud that the user cannot hear ambient sound.
With the above problems in mind, present principles detect ambient contexts that require user attention, and notify the user of such using haptic feedback without disrupting use of the headphones.
Accordingly, in one aspect a storage that is not a transitory signal includes instructions executable by a processor to sense ambient sound using at least one microphone on a head-wearable speaker assembly. The instructions are executable to determine at least one parameter of the ambient sound, and based at least in part on the parameter, activate at least one haptic generator on the head-wearable speaker assembly.
The parameter may include a type of sound and/or a direction of sound and/or a location of sound origination and/or an amplitude of sound and/or speech in the ambient sound.
In example embodiments, the instructions may be executable to, based at least in part on the parameter, establish a location of haptic feedback on the head-wearable speaker assembly. In some examples, the instructions are executable to, based at least in part on the parameter, establish an intensity of haptic feedback on the head-wearable speaker assembly. In non-limiting example implementations, the instructions can be executable to, based at least in part on a speaker volume of the head-wearable speaker assembly, establish an intensity of haptic feedback on the head-wearable speaker assembly. Different haptic intensity may help users notify ambient situations (the higher volume the headphones are in, the stronger vibration feedback to get user attention).
In another aspect, a method includes determining a context of ambient sound impinging on a wearable listening device, and based at least in part on the context, activating at least one haptic generator to provide feedback of the ambient sound.
In another aspect, an apparatus includes at least one head-wearable mount, at least one speaker on the head-wearable mount, and at least one microphone on the head-wearable mount. At least one haptic generator is on the head-wearable mount. The apparatus is adapted to activate the haptic generator responsive to ambient sound sensed by the microphone.
The details of present principles, both as to their structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
With respect to any computer systems discussed herein, a system may include server and client components, connected over a network such that data may be exchanged between the client and server components. The client components may include one or more computing devices including televisions (e.g., smart TVs, Internet-enabled TVs), computers such as desktops, laptops and tablet computers, so-called convertible devices (e.g., having a tablet configuration and laptop configuration), and other mobile devices including smart phones. These client devices may employ, as non-limiting examples, operating systems from Apple Inc. of Cupertino Calif., Google Inc. of Mountain View, Calif., or Microsoft Corp. of Redmond, Wash. A Unix® or similar such as Linux® operating system may be used. These operating systems can execute one or more browsers such as a browser made by Microsoft or Google or Mozilla or another browser program that can access web pages and applications hosted by Internet servers over a network such as the Internet, a local intranet, or a virtual private network.
As used herein, instructions refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware, or combinations thereof and include any type of programmed step undertaken by components of the system; hence, illustrative components, blocks, modules, circuits, and steps are sometimes set forth in terms of their functionality.
A processor may be any conventional general-purpose single- or multi-chip processor that can execute logic by means of various lines such as address lines, data lines, and control lines and registers and shift registers. Moreover, any logical blocks, modules, and circuits described herein can be implemented or performed with a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA) or other programmable logic device such as an application specific integrated circuit (ASIC), discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor can be implemented by a controller or state machine or a combination of computing devices.
Software modules and/or applications described by way of flow charts and/or user interfaces herein can include various sub-routines, procedures, etc. Without limiting the disclosure, logic stated to be executed by a particular module can be redistributed to other software modules and/or combined together in a single module and/or made available in a shareable library.
Logic when implemented in software, can be written in an appropriate language such as but not limited to C# or C++, and can be stored on or transmitted through a computer-readable storage medium (e.g., that is not a transitory signal) such as a random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), compact disk read-only memory (CD-ROM) or other optical disk storage such as digital versatile disc (DVD), magnetic disk storage or other magnetic storage devices including removable thumb drives, etc.
In an example, a processor can access information over its input lines from data storage, such as the computer readable storage medium, and/or the processor can access information wirelessly from an Internet server by activating a wireless transceiver to send and receive data. Data typically is converted from analog signals to digital by circuitry between the antenna and the registers of the processor when being received and from digital to analog when being transmitted. The processor then processes the data through its shift registers to output calculated data on output lines, for presentation of the calculated data on the device.
Components included in one embodiment can be used in other embodiments in any appropriate combination. For example, any of the various components described herein and/or depicted in the Figures may be combined, interchanged or excluded from other embodiments.
“A system having at least one of A, B, and C” (likewise “a system having at least one of A, B, or C” and “a system having at least one of A, B, C”) includes systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.
The term “circuit” or “circuitry” may be used in the summary, description, and/or claims. As is well known in the art, the term “circuitry” includes all levels of available integration, e.g., from discrete logic circuits to the highest level of circuit integration such as VLSI and includes programmable logic components programmed to perform the functions of an embodiment as well as general-purpose or special-purpose processors programmed with instructions to perform those functions.
Now specifically in reference to
As shown in
In the example of
The core and memory control group 120 include one or more processors 122 (e.g., single core or multi-core, etc.) and a memory controller hub 126 that exchange information via a front side bus (FSB) 124. As described herein, various components of the core and memory control group 120 may be integrated onto a single processor die, for example, to make a chip that supplants the conventional “northbridge” style architecture.
The memory controller hub 126 interfaces with memory 140. For example, the memory controller hub 126 may provide support for DDR SDRAM memory (e.g., DDR, DDR2, DDR3, etc.). In general, the memory 140 is a type of random-access memory (RAM). It is often referred to as “system memory.”
The memory controller hub 126 can further include a low-voltage differential signaling interface (LVDS) 132. The LVDS 132 may be a so-called LVDS Display Interface (LDI) for support of a display device 192 (e.g., a CRT, a flat panel, a projector, a touch-enabled display, etc.). A block 138 includes some examples of technologies that may be supported via the LVDS interface 132 (e.g., serial digital video, HDMI/DVI, display port). The memory controller hub 126 also includes one or more PCI-express interfaces (PCI-E) 134, for example, for support of discrete graphics 136. Discrete graphics using a PC-E interface has become an alternative approach to an accelerated graphics port (AGP). For example, the memory controller hub 126 may include a 16-lane (×16) PCI-E port for an external PCI-E-based graphics card (including, e.g., one of more GPUs). An example system may include AGP or PCI-E for support of graphics.
In examples in which it is used, the I/O hub controller 150 can include a variety of interfaces. The example of
The interfaces of the I/O hub controller 150 may provide for communication with various devices, networks, etc. For example, where used, the SATA interface 151 provides for reading, writing or reading and writing information on one or more drives 180 such as HDDs, SDDs or a combination thereof, but in any case, the drives 180 are understood to be, e.g., tangible computer readable storage mediums that are not transitory signals. The 1/O hub controller 150 may also include an advanced host controller interface (AHCI) to support one or more drives 180. The PCI-E interface 152 allows for wireless connections 182 to devices, networks, etc. The USB interface 153 provides for input devices 184 such as keyboards (KB), mice and various other devices (e.g., cameras, phones, storage, media players, etc.).
In the example of
The system 100, upon power on, may be configured to execute boot code 190 for the BIOS 168, as stored within the SPI Flash 166, and thereafter processes data under the control of one or more operating systems and application software (e.g., stored in system memory 140). An operating system may be stored in any of a variety of locations and accessed, for example, according to instructions of the BIOS 168.
The system 100 may also include one or more sensors 191 from which input may be received for the system 100. For example, the sensor 191 may be an audio receiver/microphone that provides input from the microphone to the processor 122 based on audio that is detected, such as via a user providing audible input to the microphone, so that the user may be identified based on voice identification. As another example, the sensor 191 may be a camera that gathers one or more images and provides input related thereto to the processor 122 so that the user may be identified based on facial recognition or other biometric recognition. The camera may be a thermal imaging camera, a digital camera such as a webcam, a three-dimensional (3D) camera, and/or a camera otherwise integrated into the system 100 and controllable by the processor 122 to gather pictures/images and/or video. The sensor 191 may also be, for instance, another kind of biometric sensor for use for such purposes, such as a fingerprint reader, a pulse monitor, a heat sensor, etc.
The sensor 191 may even be a motion sensor such as a gyroscope that senses and/or measures the orientation of the system 100 and provides input related thereto to the processor 122, and/or an accelerometer that senses acceleration and/or movement of the system 100 and provides input related thereto to the processor 122. Thus, unique and/or particular motion or motion patterns may be identified to identify a user as being associated with the motions/patterns in accordance with present principles.
Additionally, the system 100 may include a location sensor such as but not limited to a global positioning satellite (GPS) transceiver 193 that is configured to receive geographic position information from at least one satellite and provide the information to the processor 122. However, it is to be understood that another suitable position receiver other than a GPS receiver may be used in accordance with present principles to determine the location of the system 100. In some embodiments, the GPS transceiver 193 may even establish a sensor for use in accordance with present principles to identify a particular user based on the user being associated with a particular location (e.g., a particular building, a particular location within a room of a personal residence, etc.)
It is to be understood that an example client device or other machine/computer may include fewer or more features than shown on the system 100) of
Turning now to
At least one and if desired both mounts 302, 304 include one more haptic generators 308. In the example shown, each speaker mount includes four haptic generators, one near the top of the mount (relative to when the mount is worn), one near the bottom, and two near each side intermediate the top and bottom of the mount.
Furthermore, at least and if desired both mounts may support one or more microphones 310, which can include ultrasonic microphones. In the example shown, both mounts include two microphones that are laterally spaced from each other as shown. It is to be understood that in some embodiments one mount may have two microphones laterally spaced from each and the other mount may have two microphones vertically spaced from each other for purposes of three-dimensional triangulation. Also, one or both mounts may support one or more network interfaces 312 such as but not limited to Bluetooth transceivers, Wi-Fi transceivers, and wireless telephony transceivers. A processor and a storage medium with instructions executable by the processor may be incorporated into the head-wearable speaker assembly 300. In addition, or alternatively, signals from the microphone and activation signals to the haptic generators may be exchanged through the interface 312 with a nearby mobile device processor or even a cloud processor to execute logic herein.
Commencing at block 400, ambient sound is sensed by the microphones 310. By “ambient” sound or noise is meant sound or noise outside the assembly 300 that is not generated by the speakers 305.
Moving to block 402, the context of the ambient sound is identified. The context may include the direction of the ambient sound relative to the assembly 300. In one example embodiment, the direction is determined by triangulation using differences in times of arrival of the same sound at the different microphones 310, with the differences being converted to distances and the distances used to triangulate the direction of sound. The triangulation can also indicate the location of the source of the ambient sound as being the convergence of the triangulated lines of bearing derived from the different times of arrival of the sound at the various microphones 310.
For sound localization, the logic may employ several cues, including time differences between sound arrivals at microphones and ambient level differences (or intensity differences) between multiple microphones, which may be implemented as arrays. Other cues may include spectral information, timing analysis, correlation analysis, and pattern matching. Localization can be described in terms of three-dimensional position: the azimuth or horizontal angle, the elevation or vertical angle, and the distance (for static sounds) or velocity (for moving sounds). The localization can be implemented in various ways by using different techniques.
Thus, if desired, the context of the sound can also include amplitude, which may be determined at block 404. The amplitude may be used to infer distance of the source of the sound using, e.g., a lookup table correlating amplitudes with distance, with distance having a squared relationship with amplitude, in non-limiting examples.
The context of the ambient sound can also include a type of sound, which may be determined at block 406. In one example, the type of sound may be determined using pattern recognition. It may first be determined using voice recognition whether the sound is a spoken word or phrase and if so, the spoken word or phrase is identified. For example, to detect human voice and speech, noise reduction may first be applied to sound detected by one or more microphones 310. This may include spectral subtraction. Then, one or more features or quantities of the detected sound may be calculated from a section of the input signal and a classification rule is applied to classify the section as speech or non-speech.
For non-spoken sound, a digital fingerprint of the sound may be used as entering argument to a library of fingerprints and a match returned, with the library correlating the matching fingerprint with a sound type, e.g., horn honking, tires screeching, engine running, etc. Note that the sound may include a Doppler shift, with an up-shift indicating that the source of sound is approaching and a down-shift indicating that the source of sound is receding.
Additional details regarding determining a type of sound can include determining different importances for types of ambient sound depend on context. For example, ambient sound classified as noise from an approaching vehicle approaching can be accorded a high importance (and thus a first type haptic feedback as described below) responsive to identifying, using, for example, location information from a GPS sensor such as that shown in
Types of sound of interest include a human voice (audible cues such as someone calling), alert-type noises (such as sirens, honks, etc.), machine noises (such as vehicle engine sounds, braking noises, etc.)
Once the context of the ambient sound has been identified, the logic may proceed to block 408 to correlate the sound to haptic feedback. In a simple implementation, once any ambient sound is sensed with an amplitude above a threshold, a haptic generator may be activated. More complex implementations are envisioned. For example, a data structure correlating different ambient sound contexts to different haptic feedback types may be accessed.
In the non-limiting example shown, when the logic of blocks 402-406 identifies a loud (from amplitude) vehicle (from digital fingerprint) is approaching (from Doppler shift or triangulation), some but not all of the haptic generators 308 are activated, at, for instance, a relatively high amplitude of haptic generation in a pulsed fashion for short period. The haptic generators 308 closest to the direction of the approaching vehicle as identified from triangulation described above may be activated to give an indication of the direction of the vehicle, and other haptic generators can remain inactive.
Other non-limiting examples of ambient context-haptic feedback shown in
Still in reference to haptic feedback, directional information of the ambient sound can be presented by operating different motors embedded in different position on the earphone units. Distance and importance of the sound can be represented by using different intensity of the vibration along with the different number of motors to operate. As an example, the closer and the more important the sound is, the stronger haptic vibration is generated. Different types of haptic feedbacks can be generated using one or combinations of variations of 1) different frequency of vibration, 2) different intensity of the vibration (generated by different torque), 3) different number of motors that are generating the haptic feedback.
In an illustrated example, let different types of haptic feedback be denoted as follows:
Then, different types of sound can be represented with the combinations of the haptic patterns. For example, responsive to identifying that someone is calling a user: ‘.’ (weak & short vibration) may be generated. Responsive to identifying that someone is calling a user urgently: ‘*’ (a strong & short vibration) can be generated. On the other hand, responsive to identifying that a car is approaching, multiple weak and short vibrations separated by short rest periods may be used (‘ . . . ’)
Continuing this illustration responsive to identifying that a car is approaching very closely, multiple strong and short vibrations separated by short rest periods may be used (‘* * *’). Responsive to identifying that there is an alarm sound that requires user attention, multiple strong and long vibrations may be used: ‘=*=’
As mentioned above, based on the direction of the sound, one or more motors on different positions vibrate.
Returning to
Haptic feedback with directional information can be implemented by using multiple vibration motors built in different spots on the earbuds or headphones unit.
Before concluding, it is to be understood that although a software application for undertaking present principles may be vended with a device such as the system 100, present principles apply in instances where such an application is downloaded from a server to a device over a network such as the Internet. Furthermore, present principles apply in instances where such an application is included on a computer readable storage medium that is being vended and/or provided, where the computer readable storage medium is not a transitory signal and/or a signal per se.
It is to be understood that whilst present principals have been described with reference to some example embodiments, these are not intended to be limiting, and that various alternative arrangements may be used to implement the subject matter claimed herein. Components included in one embodiment can be used in other embodiments in any appropriate combination. For example, any of the various components described herein and/or depicted in the Figures may be combined, interchanged or excluded from other embodiments.
Number | Date | Country | |
---|---|---|---|
Parent | 15471977 | Mar 2017 | US |
Child | 16014244 | US |