Hard disk double lubrication layer

Information

  • Patent Grant
  • 9607646
  • Patent Number
    9,607,646
  • Date Filed
    Tuesday, March 4, 2014
    10 years ago
  • Date Issued
    Tuesday, March 28, 2017
    7 years ago
Abstract
Systems and methods are illustrated for manufacturing hard disks with double lubrication layers that allow minimization of a HDD head DFH touchdown point while maintaining good tribology performance for HDD reliability. An exemplary hard disk includes a magnetic recording layer, a carbon overcoat, and a double lubrication layer: a bonded lubrication layer and a mobile lubrication layer. The bonded lubrication layer includes a high conformity and high density first lubricant. The mobile layer include a high lubricity lubricant that promotes HDI reliability.
Description
BACKGROUND

In magnetic storage devices such as hard disk drives (HDD), read and write heads are used to magnetically read and write information to and from the storage media. In a HDD, data is stored on one or more disks in a series of adjacent concentric circles. A HDD comprises a rotary actuator, a suspension mounted on an arm of the rotary actuator, and a slider bonded to the suspension to form a head gimbal assembly. In a traditional HDD, the slider carries a read/write head, and radially floats over the recording surface of the disk under the control of a servo control system that selectively position the head over a specific track of the disk.


During read and write operations, the head moves adjacent to the recording surface of the disk at the Head Disk Interface (HDI) in preparation for performing read and write operations. During this movement, intermittent contact between the head and disk surface may occur at the HDI, particularly at low fly heights (FH) between the flying head and the rotating disk. The conventional disk includes a conventional carbon overcoat to protect the magnetic recording layer of the disk and a conventional lubrication layer on the carbon overcoat to prevent the head from crashing. More recently, the conventional read/write head also includes a dynamic flying height (DFH) adjust to control the FH. The DFH adjust acts by lowering the head portion of the slider to the disk by applying thermal actuation during read and write operations.


With areal recording densities rapidly increasing on the HDD, however, the FH continues to decrease, approaching sub 1 nm ranges. This decrease in FH decreases the available spacing margin for the slider. Even slight pitches or roll angles of the slider at this FH result in head-disk contacts. Accordingly, it is desirable to manufacture a hard disk with a lubrication layer that increases the DFH touch-down power by minimizing the spacing between the disk head and disk surface while maintaining good tribology performance.





BRIEF DESCRIPTION OF THE DRAWINGS

The present application is illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:



FIG. 1 is a schematic diagram illustrating a lubricated hard disk in accordance with the present disclosure.



FIGS. 2A through 2D-6 illustrate molecular structures for exemplary lubricants that may be used as the lubricant in the bonded lubrication layer of the hard disk of FIG. 1.



FIGS. 3A through 3B-6 illustrate molecular structures for exemplary lubricants that may be used as the lubricant in the mobile lubrication layer of the hard disk of FIG. 1.



FIG. 4 is an operational flow diagram illustrating an exemplary dipping lubrication process for manufacturing the lubricated disk of FIG. 1.



FIG. 5 is an operational flow diagram illustrating a vaporization lubrication process for manufacturing the lubricated disk of FIG. 1.





DETAILED DESCRIPTION

In the following description, numerous specific details are set forth to provide a thorough understanding of various embodiment of the present disclosure. It will be apparent to one skilled in the art, however, that these specific details need not be employed to practice various embodiments of the present disclosure. In other instances, well known components or methods have not been described in detail to avoid unnecessarily obscuring various embodiments of the present disclosure.


The terms “over,” “under,” “between,” and “on” as used herein refer to a relative position of one media layer with respect to other layers. As such, for example, one layer disposed over or under another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer disposed between two layers may be directly in contact with the two layers or may have one or more intervening layers. By contrast, a first layer “on” a second layer is in contact with that second layer. Additionally, the relative position of one layer with respect to other layers is provided assuming operations are performed relative to a substrate without consideration of the absolute orientation of the substrate.


In accordance with the present disclosure, systems and methods are illustrated for manufacturing hard disks with double lubrication layers that allow minimization of the DFH touchdown point while maintaining good tribology performance for HDD reliability. These benefits are achieved by providing two lubrication layers comprising different lubricant materials to maximize the separate functions of: 1) conformity and 2) durability and mobility. The disclosed hard disks may be implemented in a high storage density HDD that includes a DFH adjust. In one embodiment, the disclosed hard disk may be implemented in a heat-assisted magnetic recording HDD.



FIG. 1 is a schematic diagram illustrating an exemplary lubricated hard disk 100 in accordance with the present disclosure. Hard disk 100 comprises a magnetic recording layer 101, a carbon overcoat 102, and a double lubrication layer: bonded lubrication layer 103 and mobile lubrication layer 104. Hard disk 100 may be implemented in any high storage density HDD comprising a read/write head that reads and writes data to magnetic recording layer 101. In one embodiment the thickness of carbon overcoat layer 102 is between 10 Å and 30 Å.


In this exemplary embodiment, the two lubrication layers 103-104 comprise different lubricants. In one embodiment, the different lubricants are per-fluoro-poly-ether (PFPE) lubricants. Bonded lubrication layer 103 comprises a highly condensed and conformal lubricant for maximizing the available spacing margin and thereby lowering the DFH touch-down point. In one embodiment, the thickness of bonded lubrication layer 103 is between 5 Å and 10 Å. The thinness and uniformity of bonded lubrication layer 103 provides the benefit of allowing a close fly-by of the HDD head.



FIGS. 2A through 2D-6 illustrate molecular structures for exemplary PFPE lubricants that may be used in one embodiment of bonded lubrication layer 103. In this exemplary embodiment, the molecular structure 200 of bonded lubrication layer 103 comprises a functional end group 201, a center connection structure 202, and a fluorocarbon chain 203. These exemplary lubricants exhibit the property of a short branch length relative to conventional lubricants, thereby allowing for a smaller gyration diameter and lower physical thickness of bonded lubrication layer 103.



FIGS. 2B-1 through 2B-8 illustrate center connection structures 202 that may be used in 2-chain embodiments of molecular structure 200. FIGS. 2B-9 through 2B-11 illustrate center connection structures 202 that may be used in 3-chain embodiments of molecular structure 200. FIG. 2B-12 illustrates a center connection structure 202 that may be used in 4-chain embodiments of molecular structure 200. FIGS. 2B-13 through 2B-14 illustrate center connection structures 202 that may be used in 6-chain embodiments of molecular structure 200.



FIGS. 2C-1 through 2C-7 illustrate exemplary fluorocarbon chain structures 203 that may be used in embodiments of molecular structure 200. FIG. 2C-2, for example, illustrates a tri-fluoro methane molecular structure. FIG. 2C-7, for example, illustrates a tri-fluoro phenoxy benzene molecular structure. FIGS. 2D-1 through 2D-6 illustrate exemplary functional end groups 201 that may be used in embodiments of molecular structure 200.


Mobile lubrication layer 104 comprises a low friction and high durability lubricant for improving tribology performance of the HDD, i.e. preventing dragging of a read/write head on disk 100. The high lubricity of mobile lubrication layer 104 provides the benefit of minimizing the wear of carbon overcoat layer 102, which protects the magnetic recording layer 101 of disk 100. Moreover, the high lubricity of mobile lubrication layer 104 provides the benefit of minimizing HDD head carbon overcoat wear. In one embodiment, the thickness of mobile lubrication layer 104 is between 2 Å to 4 Å.



FIGS. 3A through 3B-6 illustrate molecular structures for exemplary lubricants that may be used as the lubricant in the mobile lubrication layer 104 of the hard disk of FIG. 1. In this exemplary embodiment, the molecular structure 300 of bonded lubrication layer 103 comprises a functional end group 301 and a fluorinated chain 302. FIGS. 3B-1 through 3B-6 illustrate exemplary functional end groups 301 that may be used in embodiments of molecular structure 300.


In one embodiment, bonded lubrication layer 103 and mobile layer 104 comprise the same PFPE lubricant but with different molecular weights (MW). For example, in one embodiment mobile layer 104 may comprise a higher MW version of the PFPE lubricant. This provides the benefit of preventing the loss of mobile lubrication by evaporation during drive operations at high temperatures. In this embodiment, bonded lubrication layer 103 may comprise a lower MW version of the PFPE lubricant for a thin and conformal lubrication layer structure.



FIGS. 4-5 are operational flow diagrams illustrating exemplary processes for manufacturing lubricated disk 100. In both processes, a sputtered magnetic disk with magnetic recording layer 101 and carbon overcoat 102 is provided prior to lubrication. FIG. 4 illustrates an exemplary dipping lubrication process 400 for manufacturing lubricated disk 100. At operation 402, the disk is coated with a first solution comprising a first lubricant and a fluorosolvent. In this exemplary dipping lubrication process 400, operation 402 is performed by dipping the disk in the first solution and removing the disk from the first solution at a predetermined speed, for example, 1 to 2 mm/second. In one embodiment, the fluorosolvent has a concentration of 0.01-0.02 wt %.


At operation 404, a bonding treatment is applied to the disk to bond the first lubricant to the disk, thereby creating the first lubrication layer, bonded lubrication layer 103. The bonding treatment increases the bonding strength between the lubricant molecules and the carbon overcoat 102. In one embodiment, the bonding treatment comprises exposing the disk to ultraviolet (UV) light. For example, the disk may be exposed to a low-pressure Mercury UV lamp between 20 and 40 seconds. In an alternative embodiment, the bonding treatment comprises heating the disk in a chamber above a predetermined temperature, for example 100 C. The second lubrication layer may then be formed at operations 406-408.


Before coating the disk with a second lubricant after bonding operation 404, any non-bonding lubricant may be removed at operation 406. This removal process provides the benefit of preventing mixing of non-bonded first lubricant with the second lubricant, thereby maximizing the effect of the second lubricant. Moreover, operation 406 provides the benefit of keeping the subsequent coating process contamination free. In one embodiment, non-bonded lubricant is removed or stripped using a stripping solvent. For example, the disk may be soaked in fluorinated solvent for 5 to 10 minutes to dissolve un-bonded first lubricant material into the solvent. After soaking, the disk may be removed from the solvent at a predetermined speed, for example, 1 to 2 mm/second.


At operation 408, the disk is coated with a second solution comprising a second lubricant and a fluorosolvent. In exemplary dipping lubrication process 400, operation 408 is performed by dipping the disk in the second solution and removing the disk from the first solution at a predetermined speed (e.g. 1 to 2 mm/second), thereby creating a second lubrication layer, mobile layer 104. In one embodiment, the fluorosolvent has a concentration of 0.01-0.02 wt %.



FIG. 5 is an operational flow diagram illustrating an exemplary vaporization lubrication process 500 for manufacturing lubricated disk 100. At operation 502, the disk is coated with a first lubricant by applying a vapor lubrication process. In one exemplary implementation of the vapor lubrication process, a high conformity lubricant is coated on the disk without solvent by vaporizing the lubricant via direct heating inside a vacuum chamber. The first lubricant may then be bonded to the disk's carbon overcoat 102 at operation 504 by applying a bonding treatment (as described above) to the disk to bond the first lubricant to the disk, thereby creating the first lubrication layer, bonded lubrication layer 103.


At operation 506, prior to coating the disk with a second lubricant via a second vaporization process, any non-bonding first lubricant is removed using any suitable removal process such as for example, the strip removal process described above in operation 406. The disk is then coated with a second lubricant at operation 508 by applying a vapor lubrication process. In one exemplary implementation of the vapor lubrication process, a high lubricity lubricant is coated on the disk without solvent by vaporizing the lubricant via direct heating inside a vacuum chamber. A second lubrication layer, mobile layer 104, is thereby creating.


In alternative embodiments, a combination of dipping and vaporization processes may be implemented in the manufacture of the double lubrication layer (e.g. dipping to create first lubrication layer and vaporization to create second lubrication layer or vice-versa). In yet other embodiments, the disk may comprise more than two lubrication layers, whereby the plurality of lubrication layers improve the head touchdown point and overall HDI reliability.


In the foregoing specification, embodiments of the disclosure have been described with reference to specific exemplary features thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure. The specification and figures are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A hard disk lubrication layer, comprising: a first lubrication layer bonded on a carbon overcoat of the hard disk, the first lubrication layer comprising a lubricant with chemical structure:
  • 2. The hard disk lubrication layer of claim 1, wherein the first lubrication layer comprises per-fluoro-poly-ether (PFPE) lubricant.
  • 3. The hard disk lubrication layer of claim 1, wherein the thickness of the first lubrication layer is 5 Å to 10 Å.
  • 4. The hard disk lubrication layer of claim 1, wherein the thickness of the second lubrication layer is 2 Å to 4 Å.
  • 5. A hard disk drive comprising: a disk drive base;a spindle motor attached to the disk drive base and configured to support a disk for rotating the disk with respect to the disk drive base surface; anda rotatable disk, comprising: a carbon overcoat on a magnetic recording layer;a first lubrication layer bonded on a carbon overcoat of the hard disk, the first lubrication layer comprising a lubricant with chemical structure:
  • 6. The hard disk drive of claim 5, wherein the first lubrication layer comprises per-fluoro-poly-ether (PFPE) lubricant.
  • 7. The hard disk drive of claim 5, wherein the thickness of the first lubrication layer is 5 Å to 10 Å.
  • 8. The hard drive of claim 5, wherein the thickness of the second lubrication layer is 2 Å to 4 Å.
  • 9. A method of lubricating a hard disk comprising a carbon overcoat, comprising: creating a first lubrication layer on top of the carbon overcoat, the first lubrication layer comprising a lubricant with chemical structure:
  • 10. The method of claim 9, wherein creating the first lubrication layer comprises: coating the disk with a first solution comprising a first lubricant and a fluorosolvent; andapplying a bonding treatment to the disk to bond the first lubricant to the disk.
  • 11. The method of claim 10, wherein coating the disk with the first solution comprises: dipping the disk into the first solution; andremoving the disk from the first solution at a first predetermined speed.
  • 12. The method of claim 11, wherein applying a bonding treatment comprises exposing the disk to UV light or heating the disk in a chamber.
  • 13. The method of claim 11, wherein creating the second lubrication layer comprises: removing the non-bonding first lubricant from the disk using a strip solvent; andcoating the disk with a second solution comprising a second lubricant and a fluorosolvent.
  • 14. The method of claim 13, wherein coating the disk with the second solution comprises: dipping the disk into the second solution; andremoving the disk from the second solution at a second predetermined speed.
  • 15. The method of claim 14, wherein the first and second predetermined speeds are between 1 mm/second and 2 mm/second.
  • 16. The method of claim 9, wherein the disk is a sputtered magnetic disk and the thickness of the carbon overcoat is between 10 Å and 30 Å.
  • 17. The method of claim 9, wherein creating the first lubrication layer comprises: coating the disk with a vaporized first lubricant; andapplying a bonding treatment to the disk to bond the first lubricant to the disk; and wherein creating the second lubrication layer comprises:removing the non-bonding first lubricant from the disk using a strip solvent; andcoating the disk with a vaporized second lubricant.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/859,938, filed Jul. 30, 2013, which is incorporated herein by reference in its entirety.

US Referenced Citations (320)
Number Name Date Kind
5331487 Gregory et al. Jul 1994 A
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6627302 Tang et al. Sep 2003 B1
6628466 Alex Sep 2003 B2
6663971 Falcone Dec 2003 B1
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6800349 Ma et al. Oct 2004 B2
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7060377 Liu et al. Jun 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7354666 Liu et al. Apr 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7670695 Wakabayashi et al. Mar 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7772172 Liu et al. Aug 2010 B2
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20040022387 Weikle Feb 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20050282045 Sonoda Dec 2005 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120222276 Guo et al. Sep 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yi et al. Feb 2014 A1
Related Publications (1)
Number Date Country
20150036240 A1 Feb 2015 US
Provisional Applications (1)
Number Date Country
61859938 Jul 2013 US