Today, computing devices such as personal computers, laptop computers, personal digital assistants, mobile devices, tablets, cell-phones, etc., are routinely used at work, home, and everywhere in-between. Computing devices advantageously enable the use of application specific software, file sharing, the creation of electronic documents, and electronic communication and commerce through the Internet and other computer networks. Typically, each computing device has a storage peripheral such as a disk drive. A huge market exists for disk drives for computing devices such as laptop computers, desktop computers, mobile computers, mobile devices, server computers, etc.
Disk drives typically comprise a disk and a head connected to a distal end of an actuator arm which is rotated by a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk typically comprises a plurality of radially spaced, concentric tracks for recording user data sectors and servo sectors. The servo sectors typically comprise head positioning information (e.g., a track address) which is read by the head and processed by a servo control system to control the velocity of the actuator arm as it seeks from track to track. Data is typically written to the disk by modulating a write current in an inductive coil to record magnetic transitions onto the disk surface. During readback, the magnetic transitions are sensed by a read element (e.g., a magnetoresistive element) and the resulting read signal demodulated by a suitable read channel.
To be competitive in the disk drive market, a disk drive should be relatively inexpensive and should embody a design that is adaptive for low-cost mass production, while at the same time provide high data storage capacity, provide rapid access to data, and meet ever decreasing size requirements. Satisfying these competing restraints of low-cost, high data storage capacity, rapid access to data, and decreasing size, requires innovation in each of the numerous components of the disk drive and the methods of assembly.
As an example, many laptop computer and mobile device developers are requiring that disk drives be of decreased size to meet customer demands for thin, light weight, and very portable computing devices. Disk drive manufacturers currently manufacture both the mechanical/electro-mechanical components associated with the disk drive (e.g., the disks, the heads, the actuator arms, etc., often termed the hard disk drive assembly (HDA)), as well as the computing components (e.g., the processor, the servo controller, the read/write channel, etc.) as part of a printed circuit board assembly (PCBA), that is attached to the HDA create the complete disk drive. The complete disk drive is then sent onto the computing device developer for assembly with their computing device.
With reference to
With additional reference to
HDA 10 may comprise: a plurality of disks 46 for data storage; a spindle motor 45 for rapidly spinning each disk 46 on a spindle 48; and head stack assembly (HSA) 40 including a voice coil motor (VCM) for moving the plurality of actuator arms 41 and heads 64 over disks 46. As is known, each of the disks 46 may have a plurality of tracks defined by a plurality of embedded servo sectors. Each servo sector may include head positioning information such as a track address for course positioning during seeks and servo bursts for fine positioning while tracking the centerline of a target track during write/read operations. Further, each of the tracks may include data sectors between each of the servo sectors for data storage. The heads 64 via head wire(s) 52 may be connected to a flex circuit board 50 that includes a preamplifier to aid in reading and writing data to and from disks 46. Flex circuit board 50 may be connected to read/write channel circuitry 12 in the SOC 8 of host computer 4 via a flex circuit cable 51 to enable reading and writing data to and from the disks 46 under the control of SOC 8.
As can be particularly seen in
As can be particularly seen in
During disk read and write operations, data transferred by HDA 10 may be encoded and decoded by read/write channel 12. For example, during read operations, read/write channel 12 may decode data into digital bits for use by processor 14. During write operations, processor 14 may provide digital data to read/write channel 12 which encodes the data prior to its transmittal to HDA 10. Read/write data may be transmitted via flex circuit cable 51 to flex circuit board 50 and from flex circuit board 50 via head wires 52 to heads 64 for reading and writing data to and from disks 46. SOC circuitry 8 may process a read signal emanating from a head 64 to demodulate the servo sectors into a position error signal (PES). The PES may be filtered with a suitable compensation filter to generate a control signal applied through the servo controller 18 to the VCM which rotates an actuator arm 41 of the actuator assembly 40 about a pivot in a direction that reduces the PES. Further, processor 14 may operate as a disk controller for formatting and providing error detection and correction of disk data, a host interface controller for responding to commands from host computer 4, and as a buffer controller for storing data which is transferred between disks 46 and host computer 4.
Servo controller 18 provides an interface between processor 14 and HDA 10. Processor 14 may command logic in servo controller 18 to position actuator arms 41 and heads 64 using the VCM driver of the actuator assembly 40 and to precisely control the rotation of a spindle motor to spin the disks 46. Disk drive 1 may employ a sampled servo system in which equally spaced servo sectors are recorded on each track of each disk 46. Data sectors may be recorded in the intervals between the servo sectors on each track. Servo sectors may be sampled at regular intervals by servo controller 18 to provide servo position information to processor 14. Servo sectors may be received by read/write channel 12 and are processed by servo controller 18 to provide position information to processor 14. It should be appreciated that this is a simplified description of a disk drive 1 and that many different types of disk drive implementations may be implemented in accordance with embodiments of the invention.
According to one embodiment of the invention, a disk drive 1 is provided that is operable with a host computer 4 in which the host computer 4 includes the PCBA 6. As previously described, PCBA 6 includes a SOC 8 that is operable on the host computer 4 and that includes all of the typical electronic components of a PCBA that are typically mounted within the disk drive itself—including a read/write channel 12, a processer 14, a memory 16, and servo controller 18—for conducting normal disk drive operations. In this way, the HDA 10 is mounted or coupled to the host computer 4 and the host computer includes the PCBA 6 circuitry. It should be appreciated that the host computer 4 may be any type computing device (e.g., laptop computer, desktop computer, server computer, mobile computer, mobile device, etc.). However, it should be appreciated that when the host computer 4 is a smaller/portable type of computing device (e.g., laptop computer, mobile device, etc.), that by simply attaching the HDA 10 to the host computing device 4 that already includes the PCBA 6 functionality, that this enhances the thinness of the portable computing device and lowers the weight of the portable computing device.
In one embodiment, disk drive 1 includes HDA 10 and a non-volatile semiconductor memory (NVSM) 60 that is located in the HDA 10. The NVSM 60 located in the HDA 10 may be coupled to the processor 14 of the SOC 8 of the host computer 4 by flex circuit cable 51 which couples to a serial peripheral interface (SPI) 55 of SOC 8 that is coupled to the processor 14 of SOC 8 by link 57. NVSM 60 may be configured to store configuration data for disk drive operations. In particular, the configuration data may be configured to be retrieved by the SOC 8 for controlling disk drive operations, as will be described. As an example, the NVSM may include a flash memory. However, it should be noted that the term non-volatile semiconductor memory (NVSM) may refer to any type of non-volatile memory or non-volatile storage that may be a type of memory that retains stored information even when it is not powered. Example of non-volatile memory may include read-only memory, flash memory, ferroelectric RAM (F-RAM) as well as other types of non-volatile memory.
As previously described, HDA 10 may include a flex circuit cable 51 coupled to a flex circuit board 50 that is coupled through head wires 52 to aid in communicating read/write data between heads 64 and PCBA 6. With brief additional reference to
With brief additional reference to
As an example, in operation, to start-up up the disk drive 1, the processor 14 of SOC 8 of the host computer 4 may retrieve the configuration data 66 and the disk drive start program 68 from the NVSM 60 of the HDA 10 through flex circuit cable 51 coupled to SPI 55 of SOC 8 and via link 57 coupled to processor 14. The SOC 8 of the host computer 4 may store the disk drive start program 17 in memory 16 such that processor 14 of the SOC 8 under control of the disk drive start program 17 may start-up disk drive 1. After disk drive 1 is started-up, SOC 8 of the host computer 4 may perform normal disk drive operations under disk drive operation program 19 also received from the HDA 10. These operations will be discussed in more detail hereinafter.
In starting-up disk drive 1, the disk drive start program 17 under the control of processor 14 of the SOC 8 of the host computer 4 may read and utilize configuration data 66 stored in the NVSM 60. For example, servo data 80 related to servo gain, servo detection thresholds, etc., may be utilized by servo controller 18 to synch-up the servo controller 18. Microjog information 82 may be utilized to account for the distances between the read and write heads. Track information 84 may be utilized to determine the number of tracks on the disk and the location of the disk drive operation program 19 stored at reserved tracks. Calibration information 86 related to preamplifier gains for heads, temperature data related to start-up, write current magnitudes, etc., may be utilized to aid the disk drive start program 17 in starting-up the disk drive 1. Further, a wide variety of other types of configuration data 66 may be utilized by the disk drive start program 17 to start-up the disk drive 1 such as: the type of disk drive family 72, the disk drive serial number 74, the type of head and the number of heads 76, the type of disk and the number of disks 78, etc. It should be appreciated that the use of calibration information to start-up a disk drive itself is known.
However, according to embodiments of the invention, an HDA 10 is manufactured that includes a NVSM 60 that stores both configuration data 66 and a disk drive start program 68 that may be read and implemented by the PCBA 6 of a host computer 4. In this way, a host computer 4 may read and implement the disk drive start program 68 stored at the HDA 10 based upon configuration data 66 also stored by HDA 10 to start-up the disk drive.
As an example, in operation, after the host computer 4 is turned on, disk drive 1 may be started-up. As part of the start-up process, the disk drive start program 68 is read from the NVSM 60 and stored in memory 16 of the SOC 8 as disk drive start program 17 and is implemented by processor 14 of the SOC 8. Further, configuration data 66 may be read from the NVSM 60 by the SOC 8 of the host computer 4 to aid processor 14 in implementing the disk drive start program 17 to start-up the disk drive. For example, in the disk drive start-up: the spindle motor 45 may be spun up and disks 46 sped up to a pre-determined rotational speed; the actuator 40 may rotate the arms 41 such that the heads 64 are loaded out over the surfaces of the disks 46; and servo controller 18 may be synchronized such that the heads are synchronized to read the disk media. All of this may be based on the configuration data 66 and the disk drive start program 68 retrieved by the SOC 8 of the host computer 4 from the NVSM 60 stored on the HDA 10 itself.
Further, after start-up, the disk drive operation program 19 is read from a reserved track area of one or more of the disks 46 and loaded into memory 16 of the SOC 8 of the host computer 4 such that the processor 14 of the PCBA 6 of the host computer 4 can implement normal disk drive operations. Disk drive operation program 19 may be stored as a firmware program in a reserved track area of one or more of the disks 46. However, it should be appreciated that disk drive operation program 19 may also be stored in flash memory or in another type of memory of the HDA 10.
With additional reference to
In one embodiment, process 600 includes manufacturing a HDA (block 602). As previously described, an HDA 10 may be manufactured that includes coupling a NVSM 60 to a portion of the HDA itself (block 604). As previously described examples, the NVSM 60 may be located within or coupled to at least one of a flex circuit cable 51, a flex circuit board 50, or a preamplifier 62, and/or combinations thereof. Also, the NVSM 60 may be a flash memory and may be configured to store configuration data 66 and a disk drive start program 68 to enable disk drive start-up by the PCBA of the host computer.
Next, the HDA 10 is transmitted to a host computer manufacturer (HCM) (block 606). At the HCM, the HDA 10 may be coupled to the SOC 8 of the host computer 4 (block 608), where it can be tested to see if proper coupling (decision block 610) has occurred. If proper coupling does not occur such that the HDA 10 does not interface correctly with the host computer 4 for disk drive operations then the HDA 10 is removed (block 612). It should be appreciated that properly coupling may refer to the HDA 10 properly connecting physically to the host computer 4 and properly starting-up and properly performing normal disk drive operation tests with the host computer 4 to make sure the disk drive correctly interfaces with the host computer.
On the other hand, when proper coupling occurs, the SOC 8 of the host computer 4 retrieves the configuration data 66 from the NVSM 60 of the HDA 10 and controls disk drive operations based on the configuration data (block 614). In particular, when proper coupling occurs, the SOC 8 of the host computer 4 retrieves the configuration data 66 from the NVSM 60 and the disk drive start program 68 from the NVSM 60 and properly starts-up the disk drive by implementing the disk drive start program 17 by the SOC 8 of the host computer 4, as previously described. After successful start-up, the disk drive operation program may be read from a reserved track section of one of the disks and stored as disk drive operation program 19 and may be implemented by processor 14 of the SOC 8 of the host computer 4 to perform normal disk drive operations. In particular, disk drive 1 may be tested to ensure that it operates properly. If disk drive 1 passes testing, an optimization process may be run to optimize the disk drive's performance with the host computer 4.
In this way, an HDA 10 may be manufactured and sent to a host computer manufacturer where it is connected to the host computer 4 and tested. The host computer manufacturer can simply attach the HDA 10 to the host computer 4 and perform start-up and testing to see if the disk drive 1 operates correctly. The disk drive start up program 68 and configuration data 66 are already conveniently stored in the NVSM 60 of the HDA 10 itself (along with the disk operation program already stored on disk) such that the PCBA 6 of the host computer 4 can start-up, test, and optimize the disk drive 1 for operation with the host computer 4.
Because the corresponding PCBA 6 is already present in the circuitry of the host computer 4, the HDA 10 is simply attached to the host computer and connected to the existing PCBA 6 by the host computer manufacturer. This allows for the host computer 4 to be manufactured in a thinner and lighter weight fashion and at a lower cost. This may be beneficial for laptop computers and mobile computing devices that seek further thinness and lighter weight to enhance portability. Further, disk drive manufacturers only have to develop the mechanical/electro-mechanical components of the HDA 10 associated with the disk drive (e.g., the disks, the heads, the actuator arms, etc.), whereas the PCBA functionality may be implemented within the circuitry of the computing device itself, thereby reducing the overall cost of the development of the disk drive as well as the host computer itself.
It should be appreciated that host computer 4 may be any type of computing device, such as, a desktop computer, a laptop computer, a mobile computer, a mobile device, a sever computer, etc. It should be appreciated that host computer 4 may operate under the control of programs, firmware, or routines to execute the methods or processes in accordance with the embodiments of the invention, previously described. Further, it should be appreciated that embodiments of the invention may relate to various types of disk drives and HDAs 10 having various numbers of heads, disks, and storage capability.
For purposes of the present specification, it should be appreciated that the terms “system on chip,” “printed circuit board assembly,” “processor,” “read/write channel,” “servo controller,” etc., refer to any machine or collection of logic that is capable of executing a sequence of instructions and shall be taken to include, but not limited to, general purpose microprocessors, special purpose microprocessors, central processing units (CPUs), digital signal processors (DSPs), application specific integrated circuits (ASICs), multi-media controllers, signal processors, microcontrollers, etc.
Components of the various embodiments of the invention may be implemented as hardware, software, firmware, microcode, or any combination thereof. When implemented in software, firmware, or microcode, the elements of the embodiment of the invention are the program code or code segments that include instructions to perform the necessary tasks. A code segment may represent a procedure, a function, a sub-program, a program, a routine, a sub-routine, a module, a software package, or any combination of instructions, data structures, or program statements.
The program, instruction, or code segments may be stored in a processor readable medium. The “processor readable or accessible medium” may include any medium that can store, transmit, or transfer information. Examples of accessible media include an electronic circuit, a semiconductor memory device, a read only memory (ROM), a flash memory, an erasable ROM (EROM), a floppy diskette, a compact disk (CD-ROM), an optical disk, a hard disk, a fiber optic medium, a radio frequency (RF) link, etc. The code segments may be downloaded via computer networks such as the Internet, Intranet, etc. The processor readable or accessible medium may include data that, when accessed by a processor or circuitry, cause the processor or circuitry to perform the operations described herein. The term “data” herein refers to any type of information that is encoded for machine-readable purposes. Therefore, it may include programs, code, data, files, etc.
The methods and processes described previously may be employed by a disk drive that includes a hard disk drive assembly (HDA) having a non-volatile semiconductor memory (NVSM) located in the HDA to store configuration data. However, it should be appreciated, that other types of data storage devices with similar or other media format characteristics may be utilize aspects of the invention.
This application is a continuation of U.S. application Ser. No. 13/465,716, filed on May 7, 2012, entitled “HARD DISK DRIVE ASSEMBLY INCLUDING A NVSM TO STORE CONFIGURATION DATA FOR CONTROLLING DISK DRIVE OPERATIONS,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6018789 | Sokolov et al. | Jan 2000 | A |
6057981 | Fish et al. | May 2000 | A |
6065095 | Sokolov et al. | May 2000 | A |
6078452 | Kittilson et al. | Jun 2000 | A |
6081447 | Lofgren et al. | Jun 2000 | A |
6092149 | Hicken et al. | Jul 2000 | A |
6092150 | Sokolov et al. | Jul 2000 | A |
6094707 | Sokolov et al. | Jul 2000 | A |
6105104 | Guttmann et al. | Aug 2000 | A |
6111717 | Cloke et al. | Aug 2000 | A |
6145052 | Howe et al. | Nov 2000 | A |
6175893 | D'Souza et al. | Jan 2001 | B1 |
6178056 | Cloke et al. | Jan 2001 | B1 |
6191909 | Cloke et al. | Feb 2001 | B1 |
6195218 | Guttmann et al. | Feb 2001 | B1 |
6205494 | Williams | Mar 2001 | B1 |
6208477 | Cloke et al. | Mar 2001 | B1 |
6223303 | Billings et al. | Apr 2001 | B1 |
6230233 | Lofgren et al. | May 2001 | B1 |
6246346 | Cloke et al. | Jun 2001 | B1 |
6249393 | Billings et al. | Jun 2001 | B1 |
6256695 | Williams | Jul 2001 | B1 |
6262857 | Hull et al. | Jul 2001 | B1 |
6263459 | Schibilla | Jul 2001 | B1 |
6272694 | Weaver et al. | Aug 2001 | B1 |
6278568 | Cloke et al. | Aug 2001 | B1 |
6279089 | Schibilla et al. | Aug 2001 | B1 |
6289484 | Rothberg et al. | Sep 2001 | B1 |
6292912 | Cloke et al. | Sep 2001 | B1 |
6310740 | Dunbar et al. | Oct 2001 | B1 |
6317850 | Rothberg | Nov 2001 | B1 |
6327106 | Rothberg | Dec 2001 | B1 |
6337778 | Gagne | Jan 2002 | B1 |
6369969 | Christiansen et al. | Apr 2002 | B1 |
6384999 | Schibilla | May 2002 | B1 |
6388833 | Golowka et al. | May 2002 | B1 |
6405342 | Lee | Jun 2002 | B1 |
6408357 | Hanmann et al. | Jun 2002 | B1 |
6408406 | Parris | Jun 2002 | B1 |
6411452 | Cloke | Jun 2002 | B1 |
6411458 | Billings et al. | Jun 2002 | B1 |
6412083 | Rothberg et al. | Jun 2002 | B1 |
6415349 | Hull et al. | Jul 2002 | B1 |
6425128 | Krapf et al. | Jul 2002 | B1 |
6441981 | Cloke et al. | Aug 2002 | B1 |
6442328 | Elliott et al. | Aug 2002 | B1 |
6445524 | Nazarian et al. | Sep 2002 | B1 |
6449767 | Krapf et al. | Sep 2002 | B1 |
6453115 | Boyle | Sep 2002 | B1 |
6470420 | Hospodor | Oct 2002 | B1 |
6480020 | Jung et al. | Nov 2002 | B1 |
6480349 | Kim et al. | Nov 2002 | B1 |
6480932 | Vallis et al. | Nov 2002 | B1 |
6483986 | Krapf | Nov 2002 | B1 |
6487032 | Cloke et al. | Nov 2002 | B1 |
6490635 | Holmes | Dec 2002 | B1 |
6493173 | Kim et al. | Dec 2002 | B1 |
6499083 | Hamlin | Dec 2002 | B1 |
6519104 | Cloke et al. | Feb 2003 | B1 |
6525892 | Dunbar et al. | Feb 2003 | B1 |
6545830 | Briggs et al. | Apr 2003 | B1 |
6546489 | Frank, Jr. et al. | Apr 2003 | B1 |
6550021 | Dalphy et al. | Apr 2003 | B1 |
6552880 | Dunbar et al. | Apr 2003 | B1 |
6553457 | Wilkins et al. | Apr 2003 | B1 |
6578106 | Price | Jun 2003 | B1 |
6580573 | Hull et al. | Jun 2003 | B1 |
6594183 | Lofgren et al. | Jul 2003 | B1 |
6600620 | Krounbi et al. | Jul 2003 | B1 |
6601137 | Castro et al. | Jul 2003 | B1 |
6603622 | Christiansen et al. | Aug 2003 | B1 |
6603625 | Hospodor et al. | Aug 2003 | B1 |
6604220 | Lee | Aug 2003 | B1 |
6606682 | Dang et al. | Aug 2003 | B1 |
6606714 | Thelin | Aug 2003 | B1 |
6606717 | Yu et al. | Aug 2003 | B1 |
6611393 | Nguyen et al. | Aug 2003 | B1 |
6615312 | Hamlin et al. | Sep 2003 | B1 |
6618930 | Fish et al. | Sep 2003 | B1 |
6639748 | Christiansen et al. | Oct 2003 | B1 |
6647481 | Luu et al. | Nov 2003 | B1 |
6654193 | Thelin | Nov 2003 | B1 |
6657810 | Kupferman | Dec 2003 | B1 |
6661591 | Rothberg | Dec 2003 | B1 |
6665772 | Hamlin | Dec 2003 | B1 |
6687073 | Kupferman | Feb 2004 | B1 |
6687078 | Kim | Feb 2004 | B1 |
6687850 | Rothberg | Feb 2004 | B1 |
6690523 | Nguyen et al. | Feb 2004 | B1 |
6690882 | Hanmann et al. | Feb 2004 | B1 |
6691198 | Hamlin | Feb 2004 | B1 |
6691213 | Luu et al. | Feb 2004 | B1 |
6691255 | Rothberg et al. | Feb 2004 | B1 |
6693760 | Krounbi et al. | Feb 2004 | B1 |
6694477 | Lee | Feb 2004 | B1 |
6697914 | Hospodor et al. | Feb 2004 | B1 |
6704153 | Rothberg et al. | Mar 2004 | B1 |
6708251 | Boyle et al. | Mar 2004 | B1 |
6710951 | Cloke | Mar 2004 | B1 |
6711628 | Thelin | Mar 2004 | B1 |
6711635 | Wang | Mar 2004 | B1 |
6711660 | Milne et al. | Mar 2004 | B1 |
6715044 | Lofgren et al. | Mar 2004 | B2 |
6724982 | Hamlin | Apr 2004 | B1 |
6725329 | Ng et al. | Apr 2004 | B1 |
6735650 | Rothberg | May 2004 | B1 |
6735693 | Hamlin | May 2004 | B1 |
6744772 | Eneboe et al. | Jun 2004 | B1 |
6745283 | Dang | Jun 2004 | B1 |
6751402 | Elliott et al. | Jun 2004 | B1 |
6757481 | Nazarian et al. | Jun 2004 | B1 |
6772281 | Hamlin | Aug 2004 | B2 |
6781826 | Goldstone et al. | Aug 2004 | B1 |
6782449 | Codilian et al. | Aug 2004 | B1 |
6791779 | Singh et al. | Sep 2004 | B1 |
6792486 | Hanan et al. | Sep 2004 | B1 |
6799274 | Hamlin | Sep 2004 | B1 |
6811427 | Garrett et al. | Nov 2004 | B2 |
6826003 | Subrahmanyam | Nov 2004 | B1 |
6826614 | Hanmann et al. | Nov 2004 | B1 |
6832041 | Boyle | Dec 2004 | B1 |
6832929 | Garrett et al. | Dec 2004 | B2 |
6845405 | Thelin | Jan 2005 | B1 |
6845427 | Atai-Azimi | Jan 2005 | B1 |
6850443 | Lofgren et al. | Feb 2005 | B2 |
6851055 | Boyle et al. | Feb 2005 | B1 |
6851063 | Boyle et al. | Feb 2005 | B1 |
6853731 | Boyle et al. | Feb 2005 | B1 |
6854022 | Thelin | Feb 2005 | B1 |
6862660 | Wilkins et al. | Mar 2005 | B1 |
6880043 | Castro et al. | Apr 2005 | B1 |
6882486 | Kupferman | Apr 2005 | B1 |
6884085 | Goldstone | Apr 2005 | B1 |
6888831 | Hospodor et al. | May 2005 | B1 |
6892217 | Hanmann et al. | May 2005 | B1 |
6892249 | Codilian et al. | May 2005 | B1 |
6892313 | Codilian et al. | May 2005 | B1 |
6895455 | Rothberg | May 2005 | B1 |
6895500 | Rothberg | May 2005 | B1 |
6898730 | Hanan | May 2005 | B1 |
6910099 | Wang et al. | Jun 2005 | B1 |
6928470 | Hamlin | Aug 2005 | B1 |
6931439 | Hanmann et al. | Aug 2005 | B1 |
6934104 | Kupferman | Aug 2005 | B1 |
6934713 | Schwartz et al. | Aug 2005 | B2 |
6940873 | Boyle et al. | Sep 2005 | B2 |
6943978 | Lee | Sep 2005 | B1 |
6948165 | Luu et al. | Sep 2005 | B1 |
6950267 | Liu et al. | Sep 2005 | B1 |
6954733 | Ellis et al. | Oct 2005 | B1 |
6961814 | Thelin et al. | Nov 2005 | B1 |
6965489 | Lee et al. | Nov 2005 | B1 |
6965563 | Hospodor et al. | Nov 2005 | B1 |
6965966 | Rothberg et al. | Nov 2005 | B1 |
6967799 | Lee | Nov 2005 | B1 |
6968422 | Codilian et al. | Nov 2005 | B1 |
6968450 | Rothberg et al. | Nov 2005 | B1 |
6973495 | Milne et al. | Dec 2005 | B1 |
6973570 | Hamlin | Dec 2005 | B1 |
6976190 | Goldstone | Dec 2005 | B1 |
6983316 | Milne et al. | Jan 2006 | B1 |
6986007 | Procyk et al. | Jan 2006 | B1 |
6986154 | Price et al. | Jan 2006 | B1 |
6995933 | Codilian et al. | Feb 2006 | B1 |
6996501 | Rothberg | Feb 2006 | B1 |
6996669 | Dang et al. | Feb 2006 | B1 |
7002926 | Eneboe et al. | Feb 2006 | B1 |
7003674 | Hamlin | Feb 2006 | B1 |
7006316 | Sargenti, Jr. et al. | Feb 2006 | B1 |
7009820 | Hogg | Mar 2006 | B1 |
7023639 | Kupferman | Apr 2006 | B1 |
7024491 | Hanmann et al. | Apr 2006 | B1 |
7024549 | Luu et al. | Apr 2006 | B1 |
7024614 | Thelin et al. | Apr 2006 | B1 |
7027716 | Boyle et al. | Apr 2006 | B1 |
7028174 | Atai-Azimi et al. | Apr 2006 | B1 |
7031902 | Catiller | Apr 2006 | B1 |
7046465 | Kupferman | May 2006 | B1 |
7046488 | Hogg | May 2006 | B1 |
7050252 | Vallis | May 2006 | B1 |
7054937 | Milne et al. | May 2006 | B1 |
7055000 | Severtson | May 2006 | B1 |
7055167 | Masters | May 2006 | B1 |
7057836 | Kupferman | Jun 2006 | B1 |
7062398 | Rothberg | Jun 2006 | B1 |
7075746 | Kupferman | Jul 2006 | B1 |
7076604 | Thelin | Jul 2006 | B1 |
7082494 | Thelin et al. | Jul 2006 | B1 |
7088538 | Codilian et al. | Aug 2006 | B1 |
7088545 | Singh et al. | Aug 2006 | B1 |
7092186 | Hogg | Aug 2006 | B1 |
7095577 | Codilian et al. | Aug 2006 | B1 |
7099095 | Subrahmanyam et al. | Aug 2006 | B1 |
7106537 | Bennett | Sep 2006 | B1 |
7106947 | Boyle et al. | Sep 2006 | B2 |
7110202 | Vasquez | Sep 2006 | B1 |
7111116 | Boyle et al. | Sep 2006 | B1 |
7114029 | Thelin | Sep 2006 | B1 |
7120737 | Thelin | Oct 2006 | B1 |
7120806 | Codilian et al. | Oct 2006 | B1 |
7126776 | Warren, Jr. et al. | Oct 2006 | B1 |
7129763 | Bennett et al. | Oct 2006 | B1 |
7133600 | Boyle | Nov 2006 | B1 |
7136244 | Rothberg | Nov 2006 | B1 |
7146094 | Boyle | Dec 2006 | B1 |
7149046 | Coker et al. | Dec 2006 | B1 |
7150036 | Milne et al. | Dec 2006 | B1 |
7155616 | Hamlin | Dec 2006 | B1 |
7171108 | Masters et al. | Jan 2007 | B1 |
7171110 | Wilshire | Jan 2007 | B1 |
7194576 | Boyle | Mar 2007 | B1 |
7200698 | Rothberg | Apr 2007 | B1 |
7205805 | Bennett | Apr 2007 | B1 |
7206497 | Boyle et al. | Apr 2007 | B1 |
7215496 | Kupferman et al. | May 2007 | B1 |
7215771 | Hamlin | May 2007 | B1 |
7237054 | Cain et al. | Jun 2007 | B1 |
7240161 | Boyle | Jul 2007 | B1 |
7249365 | Price et al. | Jul 2007 | B1 |
7263709 | Krapf | Aug 2007 | B1 |
7274639 | Codilian et al. | Sep 2007 | B1 |
7274659 | Hospodor | Sep 2007 | B2 |
7275116 | Hanmann et al. | Sep 2007 | B1 |
7280302 | Masiewicz | Oct 2007 | B1 |
7292774 | Masters et al. | Nov 2007 | B1 |
7292775 | Boyle et al. | Nov 2007 | B1 |
7296284 | Price et al. | Nov 2007 | B1 |
7302501 | Cain et al. | Nov 2007 | B1 |
7302579 | Cain et al. | Nov 2007 | B1 |
7318088 | Mann | Jan 2008 | B1 |
7319806 | Willner et al. | Jan 2008 | B1 |
7325244 | Boyle et al. | Jan 2008 | B2 |
7330323 | Singh et al. | Feb 2008 | B1 |
7346790 | Klein | Mar 2008 | B1 |
7366641 | Masiewicz et al. | Apr 2008 | B1 |
7369340 | Dang et al. | May 2008 | B1 |
7369343 | Yeo et al. | May 2008 | B1 |
7372650 | Kupferman | May 2008 | B1 |
7380147 | Sun | May 2008 | B1 |
7392340 | Dang et al. | Jun 2008 | B1 |
7404013 | Masiewicz | Jul 2008 | B1 |
7406545 | Rothberg et al. | Jul 2008 | B1 |
7415571 | Hanan | Aug 2008 | B1 |
7436610 | Thelin | Oct 2008 | B1 |
7437502 | Coker | Oct 2008 | B1 |
7440214 | Ell et al. | Oct 2008 | B1 |
7451344 | Rothberg | Nov 2008 | B1 |
7471483 | Ferris et al. | Dec 2008 | B1 |
7471486 | Coker et al. | Dec 2008 | B1 |
7486060 | Bennett | Feb 2009 | B1 |
7496493 | Stevens | Feb 2009 | B1 |
7518819 | Yu et al. | Apr 2009 | B1 |
7526184 | Parkinen et al. | Apr 2009 | B1 |
7539924 | Vasquez et al. | May 2009 | B1 |
7543117 | Hanan | Jun 2009 | B1 |
7551383 | Kupferman | Jun 2009 | B1 |
7562282 | Rothberg | Jul 2009 | B1 |
7577973 | Kapner, III et al. | Aug 2009 | B1 |
7596797 | Kapner, III et al. | Sep 2009 | B1 |
7599139 | Bombet et al. | Oct 2009 | B1 |
7619841 | Kupferman | Nov 2009 | B1 |
7647544 | Masiewicz | Jan 2010 | B1 |
7649704 | Bombet et al. | Jan 2010 | B1 |
7653927 | Kapner, III et al. | Jan 2010 | B1 |
7656603 | Feb 2010 | B1 | |
7656763 | Jin et al. | Feb 2010 | B1 |
7657149 | Boyle | Feb 2010 | B2 |
7672072 | Boyle et al. | Mar 2010 | B1 |
7673075 | Masiewicz | Mar 2010 | B1 |
7688540 | Mei et al. | Mar 2010 | B1 |
7724461 | McFadyen et al. | May 2010 | B1 |
7725584 | Hanmann et al. | May 2010 | B1 |
7730295 | Lee | Jun 2010 | B1 |
7760458 | Trinh | Jul 2010 | B1 |
7768776 | Szeremeta et al. | Aug 2010 | B1 |
7804657 | Hogg et al. | Sep 2010 | B1 |
7813954 | Price et al. | Oct 2010 | B1 |
7827320 | Stevens | Nov 2010 | B1 |
7839588 | Dang et al. | Nov 2010 | B1 |
7843660 | Yeo | Nov 2010 | B1 |
7852596 | Boyle et al. | Dec 2010 | B2 |
7859782 | Lee | Dec 2010 | B1 |
7872822 | Rothberg | Jan 2011 | B1 |
7898756 | Wang | Mar 2011 | B1 |
7898762 | Guo et al. | Mar 2011 | B1 |
7900037 | Fallone et al. | Mar 2011 | B1 |
7907364 | Boyle et al. | Mar 2011 | B2 |
7929234 | Boyle et al. | Apr 2011 | B1 |
7933087 | Tsai et al. | Apr 2011 | B1 |
7933090 | Jung et al. | Apr 2011 | B1 |
7934030 | Sargenti, Jr. et al. | Apr 2011 | B1 |
7940491 | Szeremeta et al. | May 2011 | B2 |
7944639 | Wang | May 2011 | B1 |
7945727 | Rothberg et al. | May 2011 | B2 |
7949564 | Hughes et al. | May 2011 | B1 |
7974029 | Tsai et al. | Jul 2011 | B2 |
7974039 | Xu et al. | Jul 2011 | B1 |
7982993 | Tsai et al. | Jul 2011 | B1 |
7984200 | Bombet et al. | Jul 2011 | B1 |
7990648 | Wang | Aug 2011 | B1 |
7992179 | Kapner, III et al. | Aug 2011 | B1 |
8004785 | Tsai et al. | Aug 2011 | B1 |
8006027 | Stevens et al. | Aug 2011 | B1 |
8014094 | Jin | Sep 2011 | B1 |
8014977 | Masiewicz et al. | Sep 2011 | B1 |
8019914 | Vasquez et al. | Sep 2011 | B1 |
8040625 | Boyle et al. | Oct 2011 | B1 |
8078943 | Lee | Dec 2011 | B1 |
8079045 | Krapf et al. | Dec 2011 | B2 |
8082433 | Fallone et al. | Dec 2011 | B1 |
8085487 | Jung et al. | Dec 2011 | B1 |
8089719 | Dakroub | Jan 2012 | B1 |
8090902 | Bennett et al. | Jan 2012 | B1 |
8090906 | Blaha et al. | Jan 2012 | B1 |
8091112 | Elliott et al. | Jan 2012 | B1 |
8094396 | Zhang et al. | Jan 2012 | B1 |
8094401 | Peng et al. | Jan 2012 | B1 |
8116020 | Lee | Feb 2012 | B1 |
8116025 | Chan et al. | Feb 2012 | B1 |
8134793 | Vasquez et al. | Mar 2012 | B1 |
8134798 | Thelin et al. | Mar 2012 | B1 |
8139301 | Li et al. | Mar 2012 | B1 |
8139310 | Hogg | Mar 2012 | B1 |
8144419 | Liu | Mar 2012 | B1 |
8145452 | Masiewicz et al. | Mar 2012 | B1 |
8149528 | Suratman et al. | Apr 2012 | B1 |
8154812 | Boyle et al. | Apr 2012 | B1 |
8159768 | Miyamura | Apr 2012 | B1 |
8161328 | Wilshire | Apr 2012 | B1 |
8164849 | Szeremeta et al. | Apr 2012 | B1 |
8174780 | Tsai et al. | May 2012 | B1 |
8190575 | Ong et al. | May 2012 | B1 |
8194338 | Zhang | Jun 2012 | B1 |
8194340 | Boyle et al. | Jun 2012 | B1 |
8194341 | Boyle | Jun 2012 | B1 |
8201066 | Wang | Jun 2012 | B1 |
8271692 | Dinh et al. | Sep 2012 | B1 |
8279550 | Hogg | Oct 2012 | B1 |
8281218 | Ybarra et al. | Oct 2012 | B1 |
8285923 | Stevens | Oct 2012 | B2 |
8289656 | Huber | Oct 2012 | B1 |
8305705 | Roohr | Nov 2012 | B1 |
8307156 | Codilian et al. | Nov 2012 | B1 |
8310775 | Boguslawski et al. | Nov 2012 | B1 |
8315006 | Chahwan et al. | Nov 2012 | B1 |
8316263 | Gough et al. | Nov 2012 | B1 |
8320067 | Tsai et al. | Nov 2012 | B1 |
8324974 | Bennett | Dec 2012 | B1 |
8332695 | Dalphy et al. | Dec 2012 | B2 |
8341337 | Ong et al. | Dec 2012 | B1 |
8350628 | Bennett | Jan 2013 | B1 |
8356184 | Meyer et al. | Jan 2013 | B1 |
8370683 | Ryan et al. | Feb 2013 | B1 |
8375225 | Ybarra | Feb 2013 | B1 |
8375274 | Bonke | Feb 2013 | B1 |
8380922 | DeForest et al. | Feb 2013 | B1 |
8390948 | Hogg | Mar 2013 | B2 |
8390952 | Szeremeta | Mar 2013 | B1 |
8392689 | Lott | Mar 2013 | B1 |
8407393 | Yolar et al. | Mar 2013 | B1 |
8413010 | Vasquez et al. | Apr 2013 | B1 |
8417566 | Price et al. | Apr 2013 | B2 |
8421663 | Bennett | Apr 2013 | B1 |
8422172 | Dakroub et al. | Apr 2013 | B1 |
8427771 | Tsai | Apr 2013 | B1 |
8429343 | Tsai | Apr 2013 | B1 |
8433937 | Wheelock et al. | Apr 2013 | B1 |
8433977 | Vasquez et al. | Apr 2013 | B1 |
8458526 | Dalphy et al. | Jun 2013 | B2 |
8462466 | Huber | Jun 2013 | B2 |
8467151 | Huber | Jun 2013 | B1 |
8489841 | Strecke et al. | Jul 2013 | B1 |
8493679 | Boguslawski et al. | Jul 2013 | B1 |
8498074 | Mobley et al. | Jul 2013 | B1 |
8499198 | Messenger et al. | Jul 2013 | B1 |
8512049 | Huber et al. | Aug 2013 | B1 |
8514506 | Li et al. | Aug 2013 | B1 |
8531791 | Reid et al. | Sep 2013 | B1 |
8554741 | Malina | Oct 2013 | B1 |
8560759 | Boyle et al. | Oct 2013 | B1 |
8565053 | Chung | Oct 2013 | B1 |
8576511 | Coker et al. | Nov 2013 | B1 |
8578100 | Huynh et al. | Nov 2013 | B1 |
8578242 | Burton et al. | Nov 2013 | B1 |
8589773 | Wang et al. | Nov 2013 | B1 |
8593753 | Anderson | Nov 2013 | B1 |
8595432 | Vinson et al. | Nov 2013 | B1 |
8599510 | Fallone | Dec 2013 | B1 |
8601248 | Thorsted | Dec 2013 | B2 |
8611032 | Champion et al. | Dec 2013 | B2 |
8612650 | Carrie et al. | Dec 2013 | B1 |
8612706 | Madril et al. | Dec 2013 | B1 |
8612798 | Tsai | Dec 2013 | B1 |
8619383 | Jung et al. | Dec 2013 | B1 |
8621115 | Bombet et al. | Dec 2013 | B1 |
8621133 | Boyle | Dec 2013 | B1 |
8626463 | Stevens et al. | Jan 2014 | B2 |
8630052 | Jung et al. | Jan 2014 | B1 |
8630056 | Ong | Jan 2014 | B1 |
8631188 | Heath et al. | Jan 2014 | B1 |
8634158 | Chahwan et al. | Jan 2014 | B1 |
8635412 | Wilshire | Jan 2014 | B1 |
8640007 | Schulze | Jan 2014 | B1 |
8654619 | Cheng | Feb 2014 | B1 |
8661193 | Cobos et al. | Feb 2014 | B1 |
8667248 | Neppalli | Mar 2014 | B1 |
8670205 | Malina et al. | Mar 2014 | B1 |
8683295 | Syu et al. | Mar 2014 | B1 |
8683457 | Hughes et al. | Mar 2014 | B1 |
8687306 | Coker et al. | Apr 2014 | B1 |
8693133 | Lee et al. | Apr 2014 | B1 |
8694841 | Chung et al. | Apr 2014 | B1 |
8699159 | Malina | Apr 2014 | B1 |
8699171 | Boyle | Apr 2014 | B1 |
8699172 | Gunderson et al. | Apr 2014 | B1 |
8699175 | Olds et al. | Apr 2014 | B1 |
8699185 | Teh et al. | Apr 2014 | B1 |
8700850 | Lalouette | Apr 2014 | B1 |
8743502 | Bonke et al. | Jun 2014 | B1 |
8749910 | Dang et al. | Jun 2014 | B1 |
8751699 | Tsai et al. | Jun 2014 | B1 |
8755141 | Dang | Jun 2014 | B1 |
8755143 | Wilson et al. | Jun 2014 | B2 |
8756361 | Carlson et al. | Jun 2014 | B1 |
8756382 | Carlson et al. | Jun 2014 | B1 |
20010043419 | Osaki | Nov 2001 | A1 |
20020101677 | Dykes et al. | Aug 2002 | A1 |
20090113702 | Hogg | May 2009 | A1 |
20090257142 | Sevvom | Oct 2009 | A1 |
20100011350 | Zayas | Jan 2010 | A1 |
20100205367 | Ehrlich et al. | Aug 2010 | A1 |
20100246048 | Ranmuthu | Sep 2010 | A1 |
20100306551 | Meyer et al. | Dec 2010 | A1 |
20110226729 | Hogg | Sep 2011 | A1 |
20120159042 | Lott et al. | Jun 2012 | A1 |
20120262812 | McGuire et al. | Oct 2012 | A1 |
20120275050 | Wilson et al. | Nov 2012 | A1 |
20120281963 | Krapf et al. | Nov 2012 | A1 |
20120324980 | Nguyen et al. | Dec 2012 | A1 |
Entry |
---|
Office Action dated Sep. 19, 2013 from U.S. Appl. No. 13/465,716, 13 pages. |
Office Action dated Sep. 19, 2013 from U.S. Appl. No. 13/465,672, 13 pages. |
Notice of Allowance dated Jan. 31, 2014 from U.S. Appl. No. 13/465,716, 12 pages. |
Notice of Allowance dated Feb. 14, 2014 from U.S. Appl. No. 13/465,672, 10 pages. |
Number | Date | Country | |
---|---|---|---|
Parent | 13465716 | May 2012 | US |
Child | 14197053 | US |