This application claims the priority benefit of Korean Patent Application No. 2004-51976, filed on Jul. 5, 2004, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates to a hard disk drive (HDD), and more particularly, to an HDD and method for suppressing turbulence during the rotation of a HDD disk.
2. Description of the Related Art
Hard disk drives (HDDs), which are auxiliary memory devices for computers, reproduce information stored in a magnetic disk or record new information on the magnetic disk by way of a magnetic head. There have been demands for HDDs to have higher capacity and operate at higher speeds with lower vibrations. To meet these demands, extensive research and development efforts have been made.
Referring to
The disks 20 and 22 are fixed on a rotor of the spindle motor 30 so as to rotate relative to the base member 11. Servo signals indicating positions of data recorded or to be recorded are previously recorded on tens of thousands of tracks on surfaces of the respective disks 20 and 22 along the circumferences of the disks 20 and 22.
The actuator 40, which is driven by a voice coil motor 48, rotates around a pivot bearing 47 that is installed on the base member 11. The actuator 40 includes a swing arm 42 that is pivotably coupled to the pivot bearing 47, and a suspension 43 that elastically biases a slider 45, on which the magnetic head is mounted, toward the surfaces of the respective disks 20 and 22.
If the HDD 10 is turned on and the disks 20 and 22 begin to rotate, a lifting force is generated due to an air pressure difference. Accordingly, the slider 45 is maintained over the surfaces of the respective disks 20 and 22 at a height where the lifting force generated from the rotation of the disks 20 and 22 is equal to an elastic force of the suspension 43. Consequently, the magnetic head mounted on the slider 45 records or reproduces data on the disks 20 and 22 while maintaining a predetermined distance from the respective disks 20 and 22.
As such, the conventional HDD 10 suffers from vibrations due to structural defects of the spindle motor 30, assembly errors of the disks 20 and 22, and turbulent air flow in the HDD 10, for example. Such vibrations cause position error signals (PESs) and negatively affect recording and reproducing operations of the HDD 10.
A recent attempt to use a hydrodynamic bearing in the spindle motor 30 of the HDD has considerably reduced vibrations in comparison to spindle motors using ball bearings. Accordingly, turbulent air flow from the high speed rotation of the disks 20 and 22 has become the primary cause of vibrations of the HDD 10. Several approaches have been made to suppress the turbulent air flow, for example, by forming grooves 12 and 16 on surfaces of the base member 11 and the cover member 15, which face the disks 20 and 22, respectively. Another method includes forming a blade (not shown). However, if the grooves 12 and 16 or the blade is applied to the HDD 10 as shown in
The present invention provides a hard disk drive (HDD), which prevents turbulence by disposing a damper, on which grooves are formed, between stacked disks.
Additional aspects and/or advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
To achieve the above and/or other aspects and advantages, embodiments of the present invention set forth a hard disk drive including a housing including a base member attached to a cover member, a plurality of disks rotatably stacked on the base member and spaced apart from one another, an actuator pivotably installed on the base member and fixedly supporting, on its leading end, a slider on which a magnetic head for recording or reproducing data to or from the disks is mounted, and a damper disposed between two of the plurality of stacked disks, wherein a groove is formed on at least one surface of the damper respectively facing at least one of the two disks.
A depth of the groove may range from 1/10 to ⅓ of a thickness of the damper or a width of the groove may range from 1/20 to 3/20 of a width of the damper. In addition, a plurality of adjacent grooves may be formed on the at least one surface of the damper, and a gap between the adjacent grooves may range from 1/10 to ½ of the width of the damper.
Further, if a rotational axis of the at least one disk is chosen as an origin and a pair of virtual straight lines intersecting each other are drawn to divide a corresponding plane into four sections, a center of curvature of the groove is positioned in a quadrant symmetric with respect to an origin to a quadrant in which a pivot axis of the actuator is positioned and a radius of curvature of the groove is greater than a radius of the disk. An angle formed between a tangent line contacting an outer peripheral surface of the damper at the groove and a line extending a terminal end of the groove that meets the tangent line may range from 10 to 45 degrees.
The damper may be mounted on the base member so as to not contact the two disks or disturb the rotation of the actuator. The damper may have a “C” shape thereby facing only a portion of the surface area of the respective at least one of the two disks. Accordingly, the groove can suppress turbulence generated by the rotation of at least one of the two disks. The groove may also be one of a plurality of radial grooves suppressing turbulence.
The plurality of radial grooves may be formed only on a portion of the damper adjacent to the actuator. The plurality of radial grooves may also be formed only on a portion of the damper not adjacent to the actuator.
To achieve the above and/or other aspects and advantages, embodiments of the present invention set forth a disk drive turbulence suppression method, including rotating a plurality of disks rotatably stacked on a base member and spaced apart from one another, and dampening turbulence between at least two of the plurality of stacked disks, comprising channeling air through at least one groove formed on at least one surface of at least one damper respectively facing at least one of the two disks.
The disk drive may be a hard disk drive. Further, the method may include pivoting an actuator fixedly supporting, on its leading end, a slider on which a magnetic head for recording or reproducing data to or from at least one of the plurality of disks is mounted.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below to explain the present invention by referring to the figures.
Referring to
The housing includes the base member 101 that supports the spindle motor 120 and the actuator 130, and the cover member 105 which is attached to the base member 101 to protect the disks 110 and 112. The housing is generally made of stainless steel or aluminium.
The first and second disks 110 and 112 are mounted inside the housing. Four or more disks have been mounted in a HDD in order to increase data storage capacity, but with the recent drastic increase in surface recording density, one or two disks can store a sufficient amount of data. Accordingly, HDDs having only one or two disks have been mainly used in recent years.
The spindle motor 120 rotates the first and second disks 110 and 112, and is fixed on the base member 101. A ring-shaped spacer 122 is inserted between the first and second disks 110 and 112 to maintain a space between the two disks 110 and 112. A disk clamp 125 is screwed to a top portion of the spindle motor 120 to prevent separation of the disks 110 and 112.
The actuator 130 is used to record or read data on the disks 110 and 112, and is pivotably installed on the base member 101. The actuator 130 includes a swing arm 132 rotating around a pivot bearing 137, first through fourth suspensions 133a, 133b, 133c, and 133d coupled to a leading end portion of the swing arm 132, and first through fourth sliders 135a, 135b, 135c, and 135d, supported by the suspensions 133a, 133b, 133c, and 133d, respectively. First through fourth magnetic heads 136a, 136b, 136c, and 136d, for recording and reproducing data, are mounted on the sliders 135a, 135b, 135c, and 135d, respectively. Further, a voice coil motor (VCM) 138 provides a rotating force for rotating the swing arm 132 around the pivot bearing 137. The VCM 138 can be controlled by a servo control system, and rotates the swing arm 132 in a direction defined by Fleming's Left Hand Rule due to an interaction between current input to a VCM coil and a magnetic field formed by magnets. Accordingly, the four sliders 135a, 135b, 135c, and 135d, attached to leading ends of the suspensions 133a, 133b, 133c, and 133d, respectively, are moved over the first and second disks 110 and 112 toward the spindle motor 120 or toward outer peripheries of the disks 110 and 112.
The HDD 100 according to embodiments of the present invention employs a damper 150, which is disposed between the rotating disks 110 and 112 to suppress vibrations and noise caused by the rotation of the disks 110 and 112. Upper and lower grooves 152 and 153 are formed on top and bottom surfaces of the damper 150, respectively facing the disks 110 and 112. The damper 150 can be made of metal, such as aluminium, and is mounted on the base member 101 so as to not contact the disks 110 and 112. Further, the damper 150 is out of the scope of activity of the actuator 130, so as not to disturb the rotation of the actuator 130, and has a “C” shape, thereby facing about half of the surface areas of the respective disks 110 and 112.
Focusing on
In addition, it is preferable, though not necessary, that a width Wg of the respective grooves 152 and 153 range from 1/20 to 3/20 of a width Wd of the damper 150. If the width Wg of the grooves 152 and 153 is less than 1/20 of the width Wd of the damper 150, the grooves 152 and 153 cannot guide the air flow satisfactorily, and if the width Wg is greater than 3/20 of the width Wd, the stiffness of the damper 150 may deteriorate.
Also, it is preferable, though not necessary, that a plurality of grooves 152a through 152d, of grooves 152, be formed on the top surface of the damper 150 and a plurality of grooves 153a through 153d, of grooves 153, be formed on the bottom surface of the damper 150, with a gap G between adjacent grooves ranging from 1/10 to ½ of the width Wd of the damper 150. If the gap G between the adjacent grooves is less than 1/10 of the width Wd of the damper 150, the stiffness of the damper 150 may deteriorate, and if the gap G is greater than ½ of the width Wd, the number of grooves is reduced and thus the grooves 152 and 153 cannot guide the air flow satisfactorily.
Referring to
Furthermore, it is preferable, though not necessary, that an angle A formed between a tangent line P1 contacting an outer peripheral surface of the damper 150 at a terminal end of a groove and an extension line P2 of the terminal end of the groove that meets the tangent line P1 range from 10 to 45 degrees. If the angle A is less than 10 degrees, the grooves 152 and 153 may not satisfactorily guide the counterclockwise air flow to the spindle motor 120, and if the angle A is greater than 45 degrees, the counterclockwise air flow can be disturbed, thereby causing turbulence.
A computational fluid dynamics (CFD) analysis was performed to verify the effects of embodiments of the present invention.
Referring to
It is assumed that a virtual line positioned before the air flow enters the damper in the HDDs Default is an inlet line L1 and a virtual line positioned after the air flow goes out of the damper is an outlet line L2, as illustrated in
The graphs of
In order to more easily grasp the results shown in
Further, “Standard Deviation” in Tables 1 and 2 is a standard deviation for each of the HDDs Default and Types #1 through #6.
It can be seen from Tables 1 through 3 that a “sum of change rates” for each of the HDDs Types #1 through #6 is smaller than that of the HDD Default. This means that less turbulence is created in the air flow in the HDDs Types #1 through #6, and accordingly, it can be expected that vibrations of the disks and actuator will similarly be reduced.
In particular, a sum of the HDD Type #4 is over 30% lower than that of the HDD Default, and a sum of each of the other remaining HDDs is 3-8% lower than that of the HDD Default. Additionally, it can be seen that change rates at the heads #1 and #2 are the minimum values. Accordingly, it can be appreciated that the HDD Type #4 is superior to the other HDDs, Default and Types #1, #2, #3, #5, and #6. Specifically, the HDD Type #4 is superior in suppressing turbulent air flow between inner surfaces of the disks, which do not face a base member and a cover member.
As described above, since the HDD, according to embodiments of the present invention, reduces the turbulence in the air flow inside the housing, vibrations of the disks and the actuator can be reduced. Consequently, position error signals can similarly be reduced, and data recording and reproducing operations of the HDD will be improved.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims. For example, the HDD may have a plurality of disks, and dampers with grooves may be disposed between two adjacent disks of the plurality of disks. Accordingly, the scope of the present invention is defined only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0051976 | Jul 2004 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5541791 | Yamasaki et al. | Jul 1996 | A |
5898545 | Schirle | Apr 1999 | A |
6542328 | Harrison et al. | Apr 2003 | B2 |
6788493 | Subramaniam et al. | Sep 2004 | B1 |
6989959 | Chang et al. | Jan 2006 | B2 |
7031104 | Butt et al. | Apr 2006 | B1 |
20020075591 | Chang et al. | Jun 2002 | A1 |
20020149876 | Sakata et al. | Oct 2002 | A1 |
20030072103 | Kang et al. | Apr 2003 | A1 |
20030179493 | Kim | Sep 2003 | A1 |
20050190488 | Chan et al. | Sep 2005 | A1 |
20050270691 | Pottebaum et al. | Dec 2005 | A1 |
20060028760 | Zuo et al. | Feb 2006 | A1 |
20060114603 | Ser et al. | Jun 2006 | A1 |
20060126218 | Chen et al. | Jun 2006 | A1 |
20060146443 | Chang et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
63269392 | Nov 1988 | JP |
3-83202 | Apr 1991 | JP |
5-28488 | Feb 1993 | JP |
5-151738 | Jun 1993 | JP |
2000357385 | Dec 2000 | JP |
10-2003-0009124 | Jan 2003 | KR |
2003-68261 | Aug 2003 | KR |
2003-70529 | Aug 2003 | KR |
2006057859 | May 2006 | KR |
Number | Date | Country | |
---|---|---|---|
20060002008 A1 | Jan 2006 | US |