The disclosed embodiments relate generally to memory systems, and in particular, to power sequencing and data hardening in data storage devices.
Semiconductor memory devices, including flash memory, typically utilize memory cells to store data as an electrical value, such as an electrical charge or voltage. A flash memory cell, for example, includes a single transistor with a floating gate that is used to store a charge representative of a data value. Flash memory is a non-volatile data storage device that can be electrically erased and reprogrammed. More generally, non-volatile or persistent memory (e.g., flash memory, as well as other types of non-volatile memory implemented using any of a variety of technologies) retains stored information even when not powered, as opposed to volatile memory, which requires power to maintain the stored information.
Data hardening, the saving of data and mission critical metadata held in volatile storage, is an integral part of a storage device. When there is a power failure, mission critical data may reside in volatile memory in a number of sub-system components. Coordinating and managing multiple sub-system components to ensure that volatile data is saved successfully is important for protecting data in a storage device.
Various implementations of systems, methods and devices within the scope of the appended claims each have several aspects, no single one of which is solely responsible for the attributes described herein. Without limiting the scope of the appended claims, after considering this disclosure, and particularly after considering the section entitled “Detailed Description” one will understand how the aspects of various implementations are used to enable power sequencing and data hardening in data storage devices. In one aspect, a power fail operation is performed in accordance with a determination that a power supply voltage provided to a storage device is higher than an over-voltage threshold.
So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various implementations, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate the more pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
The various implementations described herein include systems, methods and/or devices used to enable power sequencing and data hardening in data storage devices. Some implementations include systems, methods and/or devices to perform a power fail operation in accordance with a determination that a power supply voltage provided to a storage device is higher than an over-voltage threshold.
More specifically, some implementations include a method of protecting data in a storage device. In some implementations, the method includes determining whether a power supply voltage provided to the storage device is higher than an over-voltage threshold. The method further includes, in accordance with a determination that the power supply voltage is higher than the over-voltage threshold, performing a power fail operation, the power fail operation including: (1) signaling a power fail condition to a plurality of controllers on the storage device, (2) transferring data held in volatile memory to non-volatile memory, and (3) removing power from the plurality of controllers on the storage device.
In some embodiments, the plurality of controllers on the storage device include a storage controller (sometimes herein called a memory controller) and one or more non-volatile memory (NVM) controllers, the one or more NVM controllers coupled by the storage controller to a host interface of the storage device.
In some embodiments, transferring data held in volatile memory to non-volatile memory includes: (1) transferring data from the storage controller to the one or more NVM controllers, and (2) transferring data from the one or more NVM controllers to the non-volatile memory.
In some embodiments, removing power from the plurality of controllers on the storage device includes: (1) resetting the storage controller subsequent to transferring data from the storage controller to the one or more NVM controllers, and (2) removing power from the storage controller subsequent to resetting the storage controller.
In some embodiments, the one or more NVM controllers include a first NVM controller and a second NVM controller, and removing power from the plurality of controllers on the storage device includes: (1) resetting the first NVM controller subsequent to transferring data from the first NVM controller to the non-volatile memory, (2) resetting the second NVM controller subsequent to transferring data from the second NVM controller to the non-volatile memory, and (3) removing power from the first and the second NVM controllers subsequent to resetting the first and second NVM controllers.
In some embodiments, removing power from the first and the second NVM controllers is subsequent to removing power from the storage controller.
In some embodiments, the power fail operation is performed to completion regardless of whether the power supply voltage returns to a voltage lower than or equal to the over-voltage threshold.
In some embodiments, the power supply voltage is a voltage supplied by a host system.
In some embodiments, the power supply voltage is a voltage supplied for serial presence detect (SPD) functionality.
In some embodiments, the power supply voltage includes a first voltage and a second voltage, and performing the power fail operation includes: (1) performing the power fail operation in accordance with a determination that the first voltage is higher than a first over-voltage threshold, and (2) performing the power fail operation in accordance with a determination that the second voltage is higher than a second over-voltage threshold.
In some embodiments, power fail operation is performed using power from a reserve energy storage device.
In some embodiments, the power fail operation is performed using power from an energy storage device on the storage device.
In some embodiments, the energy storage device includes one or more capacitors.
In some embodiments, the method further includes (1) monitoring the energy storage device to ensure capacitors in the energy storage device are charged to at least a first charge level, and (2) selectively testing one or more capacitors from the energy storage device during operation of the storage device.
In some embodiments, the method further includes, prior to determining whether the power supply voltage provided to the storage device is higher than the over-voltage threshold, (1) charging the energy storage device using a higher voltage than the power supply voltage provided to the storage device, (2) determining whether the energy storage device meets a minimum charge level threshold within a predefined charge time, and (3) in accordance with a determination that the energy storage device does not meet the minimum charge level threshold in the predefined charge time, preventing operation of the storage device.
In some embodiments, preventing operation of the storage device includes communicating a failure message to a host system.
In some embodiments, the method further includes discharging the energy storage device subsequent to removing power from the plurality of controllers on the storage device.
In some embodiments, the non-volatile memory comprises one or more NVM devices.
In some embodiments, the storage device includes a dual in-line memory module (DIMM) device.
In some embodiments, the plurality of controllers on the storage device include at least one non-volatile storage controller and at least one other storage controller other than the at least one non-volatile storage controller.
In some embodiments, one of the plurality of controllers on the storage device maps double data rate (DDR) interface commands to serial advance technology attachment (SATA) interface commands.
In another aspect, any of the methods described above are performed by a storage device including (1) an interface for coupling the storage device to a host system, (2) a plurality of controllers, each of the plurality of controllers configured to transfer data held in volatile memory to non-volatile memory, and (3) a data hardening module including an energy storage device, the data hardening module configured to: (a) determine whether a power supply voltage provided to the storage device is higher than an over-voltage threshold, and (b) in accordance with a determination that the power supply voltage is higher than the over-voltage threshold, perform a power fail operation, the power fail operation including: (i) signaling a power fail condition to the plurality of controllers, causing the plurality of controllers to transfer data held in volatile memory to non-volatile memory, and (ii) removing power from the plurality of controllers on the storage device.
In some embodiments, the over-voltage threshold is programmable.
In some embodiments, the data hardening module includes one or more processors.
In some embodiments, wherein signaling the power fail condition to the plurality of controllers on the storage device includes separately signaling the power fail condition to each of the plurality of controllers.
In some embodiments, the method further includes recording data regarding the power fail operation to non-volatile memory.
In some embodiments, the method further includes performing a power fail test operation, the power fail test operation including: (1) signaling the power fail condition to one or more controllers of the plurality of controllers on the storage device, (2) for the one or more controllers, transferring data held in volatile memory to non-volatile memory, (3) removing power from the one or more controllers on the storage device, and (4) recording data regarding the power fail test operation.
In some embodiments, the storage device is configured to perform any of the methods described above.
In yet another aspect, any of the methods described above are performed by a storage device operable to protect data. In some embodiments, the device includes (1) an interface for coupling the storage device to a host system, (2) means for determining whether a power supply voltage provided to the storage device is higher than an over-voltage threshold, and (3) means for performing a power fail operation, in accordance with a determination that the power supply voltage is higher than the over-voltage threshold, the means for performing the power fail operation including: (a) means for signaling a power fail condition to a plurality of controllers on the storage device, (b) means for transferring data held in volatile memory to non-volatile memory, and (c) means for removing power from the plurality of controllers on the storage device.
In yet another aspect, a non-transitory computer readable storage medium, storing one or more programs for execution by one or more processors of a storage device having a plurality of controllers and a data hardening module, the one or more programs including instructions for performing any of the methods described above.
In some embodiments, the non-transitory computer readable storage medium includes a non-transitory computer readable storage medium associated with each of the plurality of controllers on the storage device and a non-transitory computer readable storage medium associated with the data hardening module.
Numerous details are described herein in order to provide a thorough understanding of the example implementations illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known methods, components, and circuits have not been described in exhaustive detail so as not to unnecessarily obscure more pertinent aspects of the implementations described herein.
Computer system 110 is coupled to storage device 120 through data connections 101. However, in some implementations computer system 110 includes storage device 120 as a component and/or sub-system. Computer system 110 may be any suitable computer device, such as a personal computer, a workstation, a computer server, or any other computing device. Computer system 110 is sometimes called a host or host system. In some implementations, computer system 110 includes one or more processors, one or more types of memory, optionally includes a display and/or other user interface components such as a keyboard, a touch screen display, a mouse, a track-pad, a digital camera and/or any number of supplemental devices to add functionality. Further, in some implementations, computer system 110 sends one or more host commands (e.g., read commands and/or write commands) on control line 111 to storage device 120. In some implementations, computer system 110 is a server system, such as a server system in a data center, and does not have a display and other user interface components.
In some implementations, storage device 120 includes NVM devices 140, 142 such as flash memory devices (e.g., NVM devices 140-1 through 140-n and NVM devices 142-1 through 142-k) and NVM controllers 130 (e.g., NVM controllers 130-1 through 130-m). In some implementations, each NVM controller of NVM controllers 130 include one or more processing units (also sometimes called CPUs or processors or microprocessors or microcontrollers) configured to execute instructions in one or more programs (e.g., in NVM controllers 130). In some implementations, the one or more processors are shared by one or more components within, and in some cases, beyond the function of NVM controllers 130. NVM devices 140, 142 are coupled to NVM controllers 130 through connections that typically convey commands in addition to data, and optionally convey metadata, error correction information and/or other information in addition to data values to be stored in NVM devices 140, 142 and data values read from NVM devices 140, 142. For example, NVM devices 140, 142 can be configured for enterprise storage suitable for applications such as cloud computing, or for caching data stored (or to be stored) in secondary storage, such as hard disk drives. Additionally and/or alternatively, flash memory (e.g., NVM devices 140, 142) can also be configured for relatively smaller-scale applications such as personal flash drives or hard-disk replacements for personal, laptop and tablet computers. Although flash memory devices and flash controllers are used as an example here, in some embodiments storage device 120 includes other non-volatile memory device(s) and corresponding non-volatile storage controller(s).
In some implementations, storage device 120 also includes host interface 122, SPD device 124, data hardening module 126, and storage controller 128. Storage device 120 may include various additional features that have not been illustrated for the sake of brevity and so as not to obscure more pertinent features of the example implementations disclosed herein, and a different arrangement of features may be possible. Host interface 122 provides an interface to computer system 110 through data connections 101.
In some implementations, data hardening module 126 includes one or more processing units (also sometimes called CPUs or processors or microprocessors or microcontrollers) configured to execute instructions in one or more programs (e.g., in data hardening module 126). In some implementations, the one or more processors are shared by one or more components within, and in some cases, beyond the function of data hardening module 126. Data hardening module 126 is coupled to host interface 122, SPD device 124, storage controller 128, and NVM controllers 130 in order to coordinate the operation of these components, including supervising and controlling functions such as power up, power down, data hardening, charging energy storage device(s), data logging, and other aspects of managing functions on storage device 120.
Storage controller 128 is coupled to host interface 122, data hardening module 126, and NVM controllers 130. In some implementations, during a write operation, storage controller 128 receives data from computer system 110 through host interface 122 and during a read operation, storage controller 128 sends data to computer system 110 through host interface 122. Further, host interface 122 provides additional data, signals, voltages, and/or other information needed for communication between storage controller 128 and computer system 110. In some embodiments, storage controller 128 and host interface 122 use a defined interface standard for communication, such as double data rate type three synchronous dynamic random access memory (DDR3). In some embodiments, storage controller 128 and NVM controllers 130 use a defined interface standard for communication, such as serial advance technology attachment (SATA). In some other implementations, the device interface used by storage controller 128 to communicate with NVM controllers 130 is SAS (serial attached SCSI), or other storage interface. In some implementations, storage controller 128 includes one or more processing units (also sometimes called CPUs or processors or microprocessors or microcontrollers) configured to execute instructions in one or more programs (e.g., in storage controller 128). In some implementations, the one or more processors are shared by one or more components within, and in some cases, beyond the function of storage controller 128.
SPD device 124 is coupled to host interface 122 and data hardening module 126. Serial presence detect (SPD) refers to a standardized way to automatically access information about a computer memory module (e.g., storage device 120). For example, if the memory module has a failure, the failure can be communicated with a host system (e.g., computer system 110) through SPD device 124.
In some implementations, power storage and distribution module 250 includes circuitry for monitoring, storing, and distributing power for a storage device (e.g., storage device 120,
Communication buses 208 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Data hardening module 126 is coupled to host interface 122, SPD device 124, storage controller 128, and NVM controllers 130 (e.g., NVM controllers 130-1 through 130-m) by communication buses 208. Memory 206 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 206 optionally includes one or more storage devices remotely located from processor(s) 202. Memory 206, or alternately the non-volatile memory device(s) within memory 206, comprises a non-transitory computer readable storage medium. In some embodiments, memory 206, or the computer readable storage medium of memory 206 stores the following programs, modules, and data structures, or a subset thereof:
In some embodiments, memory 206, or the computer readable storage medium of memory 206 further stores a configuration module for configuring storage device 120 and data hardening module 126, and/or configuration values (such as one or more over-voltage threshold values) for configuring data hardening module 126, neither of which is explicitly shown in
In some embodiments, the monitor module 210 is also used for monitoring and determining whether a power supply voltage provided to the storage device is lower than an under-voltage threshold.
In some embodiments, the power fail module 218 optionally includes the following modules or sub-modules, or a subset thereof:
Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 206 may store a subset of the modules and data structures identified above. Furthermore, memory 206 may store additional modules and data structures not described above. In some embodiments, the programs, modules, and data structures stored in memory 206, or the computer readable storage medium of memory 206, provide instructions for implementing any of the methods described below with reference to
Although
In some embodiments, the power fail module 314 optionally includes a transfer module 316 that is used for transferring data held in volatile memory to non-volatile memory.
Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 306 may store a subset of the modules and data structures identified above. Furthermore, memory 306 may store additional modules and data structures not described above. In some embodiments, the programs, modules, and data structures stored in memory 306, or the computer readable storage medium of memory 306, provide instructions for implementing respective operations in the methods described below with reference to
Although
In some embodiments, the power fail module 414 optionally includes a transfer module 416 that is used for transferring data held in volatile memory to non-volatile memory.
Each of the above identified elements may be stored in one or more of the previously mentioned memory devices, and corresponds to a set of instructions for performing a function described above. The above identified modules or programs (i.e., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 406 may store a subset of the modules and data structures identified above. Furthermore, memory 406 may store additional modules and data structures not described above. In some embodiments, the programs, modules, and data structures stored in memory 406, or the computer readable storage medium of memory 406, provide instructions for implementing respective operations in the methods described below with reference to
Although
In some implementations, processor 202 monitors and manages the functionality in data hardening module 126. For example, processor 202 monitors voltages Vdd 502 and VSPD 504. If either Vdd 502 or VSPD 504 rise above corresponding over-voltage thresholds, processor 202 signals a power fail condition to a plurality of controllers on storage device 120 (e.g., storage controller 128 and NVM controllers 130,
In some embodiments, during regular operation of storage device 120, Vdd 502 is used to supply power to storage device 120. However, during a power fail operation, an energy storage device 522 is used to provide power to storage device 120. In some implementations, processor 202 controls transistors 511-512 to control Vswitched 508 to be voltage from Vdd 502 (e.g., during regular operation) or voltage from energy storage device 522 (e.g., during a power fail operation). For example, during regular operation of storage device 120, Vdd 502 is used to supply power to storage device 120, so transistor 511 is turned on (e.g., to complete the connection between Vdd 502 and Vswitched 508) and transistor 512 is turned off (e.g., to disable the connection between energy storage device 522 and Vswitched 508). However, during a power fail operation, energy storage device 522 is used to provide power to storage device 120, so transistor 511 is turned off (e.g., to disable the connection between Vdd 502 and Vswitched 508) and transistor 512 is turned on (e.g., to enable the connection between energy storage device 522 and Vswitched 508). Although a single energy storage device 522 is shown in
In some implementations, energy storage device 522 is charged using Vholdup 506, a voltage higher than Vdd 502. In some implementations, Vdd 502 is boosted up to Vholdup 506 using boost circuitry 520 (e.g., 1.35 volts or 1.5 volts is boosted up to 5.7 volts). In some implementations, boost circuitry 520 is controlled and enabled by processor 202. Further, in some embodiments, Vswitched 508 is used as an input to keeper circuitry 524, which along with VSPD 504 provides power to processor 202. During a power fail operation, Vswitched 508 is provided via keeper circuitry 524 to processor 202 so as to provide power to processor 202 during the power fail operation. In some implementations, processor 202 has one or more connections 530 used to monitor and control other functions within storage device 120. In some implementations, VSPD 504 provides power to keeper circuitry 524. Furthermore, in some implementations, VSPD 504 is provided to storage device 120 before Vdd 502 is provided to storage device 120, allowing devices in storage device 120 to operate before main power Vdd 502 is provide to storage device 120.
A storage device (e.g., storage device 120,
In some embodiments, the power supply voltage is (604) a voltage supplied by a host system. In some implementations, the voltage supplied by a host system (e.g., Vdd 502,
In some embodiments, the power supply voltage is (606) a voltage supplied for serial presence detect (SPD) functionality. In some implementations, the voltage supplied for SPD functionality (e.g., VSPD 504,
In some embodiments, the storage device includes (608) a dual in-line memory module (DIMM) device. In some implementations, the storage device is compatible with a DIMM memory slot. For example, in some implementations, the storage device is compatible with a 240-pin DIMM memory slot using a DDR3 interface specification.
In some embodiments, the over-voltage threshold is programmable (610). In some implementations, the over-voltage threshold is programmable in accordance with a measurement of a power supply voltage. For example, the programmable over-threshold, or a corresponding parameter, may be stored in non-volatile memory, such as the SPD 124. Optionally, different over-threshold voltages are established for different power supply voltage levels. For example, a lower over-threshold voltage is established when the power supply voltage is 1.35 volts than when the power supply voltage is 1.5 volts. In some implementations, the over-voltage threshold is programmable by a host device such as computer system 110,
In some implementations, the over-voltage threshold is programmable in accordance with one or more characteristics of the storage device (e.g., storage device 120,
Next, the storage device, in accordance with a determination that the power supply voltage is higher than the over-voltage threshold, performs (612) a power fail operation. Using the example above where the target value of the power supply voltage is 1.5 volts and the over-voltage threshold is 1.575 volts, in accordance with a determination that the power supply voltage is higher than 1.575 volts, the storage device performs a power fail operation. In some implementations, a power fail module (e.g., power fail module 218,
In some embodiments, one or more power supply voltages are monitored for over-voltage thresholds and the power fail operation is performed if any of the monitored power supply voltages rise above their respective over-voltage thresholds. For example, if two power supply voltages (e.g., a first power supply voltage and a second power supply voltages) are monitored for over-voltage thresholds (e.g., a first over-voltage threshold and a second over-voltage threshold, respectively), the power fail operation is performed in accordance with a determination that the first power supply voltage is higher than the first over-voltage threshold and the power fail operation is performed in accordance with a determination that the second power supply voltage is higher than the second over-voltage threshold. The over-voltage threshold (sometimes called “trip point”) varies based on the target value of the power supply voltage. In some embodiments, the first power supply voltage is a voltage supplied by a host system (e.g., with a target value of 1.5 volts or less) and the second power supply voltage is a voltage supplied for serial presence detect (SPD) functionality (e.g., with a target value of 3.3 volts). Further, in some embodiments, one or more power supply voltages are monitored with respect to both over-voltage thresholds and under-voltage thresholds, and the power fail operation is performed if any of the monitored power supply voltages rise above their respective over-voltage thresholds or fall below their respective under-voltage thresholds.
First, the power fail operation includes (612) signaling (614) a power fail condition to a plurality of controllers on the storage device (e.g., storage controller 128 and NVM controllers 130,
In some embodiments, the plurality of controllers on the storage device include (616) a storage controller (e.g., storage controller 128,
In some embodiments, the plurality of controllers on the storage device include (618) at least one non-volatile storage controller and at least one other controller other than the at least one non-volatile storage controller (e.g., a storage controller). In some implementations, the at least one non-volatile storage controller is a flash controller (e.g., NVM controller 130-1,
In some embodiments, one of the plurality of controllers on the storage device maps (620) double data rate (DDR) interface commands to serial advance technology attachment (SATA) interface commands. For example, a storage controller (e.g., storage controller 128,
In some embodiments, signaling (614) the power fail condition to the plurality of controllers on the storage device includes separately signaling (622) the power fail condition to each of the plurality of controllers. In some implementations, individual power fail signals to each of the plurality of controllers allow for sequential sequencing of the power fail operation across the plurality of controllers, parallel performance of the power fail operation across the plurality of controllers, or a combination of sequential and parallel sequencing for the power fail operation. In a non-limiting example of a sequential sequence, the power fail operation for a first NVM controller (e.g., NVM controller 130-1,
Next, the power fail operation includes (612) transferring (624) data held in volatile memory to non-volatile memory (e.g., NVM devices 140, 142,
In some embodiments, transferring data held in volatile memory to non-volatile memory includes transferring (626) data (e.g., volatile data 318,
In some embodiments, transferring data held in volatile memory to non-volatile memory includes transferring (628) data (e.g., volatile data 418,
In some embodiments, the non-volatile memory comprises (630) one or more NVM devices (e.g., NVM devices 140, 142,
Next, the power fail operation includes (612) removing (632) power from the plurality of controllers on the storage device (e.g., storage controller 128 and NVM controllers 130,
In some embodiments, removing power from the plurality of controllers on the storage device includes resetting (634) the storage controller subsequent to transferring data from the storage controller to the one or more NVM controllers. In some implementations, the storage controller (e.g., storage controller 128,
Next, in some embodiments, removing power from the plurality of controllers on the storage device includes removing (636) power from the storage controller subsequent to resetting the storage controller. In some implementations, the storage controller (e.g., storage controller 128,
In some embodiments, the one or more NVM controllers include (638) a first NVM controller and a second NVM controller (e.g., first and second flash controllers) and removing power from the plurality of controllers on the storage device includes resetting (640) the first NVM controller subsequent to transferring data from the first NVM controller to the non-volatile memory. In some implementations, the first NVM controller (e.g., NVM controller 130-1,
In some embodiments, the one or more NVM controllers include (638) a first NVM controller and a second NVM controller (e.g., first and second flash controllers) and removing power from the plurality of controllers on the storage device further includes resetting (642) the second NVM controller subsequent to transferring data from the second NVM controller to the non-volatile memory. Explanations provided above in connection with resetting the first NVM controller (in operation 640) are equally applicable to resetting the second NVM controller. In some implementations, a reset module in the data hardening module (e.g., reset module 222,
In some embodiments, the one or more NVM controllers include (638) a first NVM controller and a second NVM controller (e.g., first and second flash controllers) and removing power from the plurality of controllers on the storage device further includes removing (644) power from the first and the second NVM controllers subsequent to resetting the first and second NVM controllers. In some embodiments, the first NVM controller and the second NVM controller share the same power domain, and power is removed from the first and the second NVM controllers after both the first and the second NVM controllers have been reset. In some embodiments, the first NVM controller is in a first power domain and the second NVM controller is in a second power domain, and power is removed from the first NVM controller independent of when power is removed from the second NVM controller. In some implementations, a power removal module (e.g., power removal module 224,
In some embodiments, removing (646) power from the first and the second NVM controllers is subsequent to removing power from the storage controller. As discussed above, independent power domains on the storage device allow a data hardening module (e.g., data hardening module 126,
In some embodiments, the power fail operation is (648) performed to completion regardless of whether the power supply voltage returns to a voltage lower than or equal to the over-voltage threshold. In some implementations, even if the power fail condition is temporary (e.g., a lightning strike that briefly causes the power supply voltage to flicker above the over-voltage threshold), the power fail operation is performed to completion. In some implementations, once a power fail operation begins, the data hardening module (e.g., data hardening module 126,
In some embodiments, the power supply voltage includes (650) a first voltage and a second voltage, and performing the power fail operation includes (612) performing (652) the power fail operation in accordance with a determination that the first voltage is higher than a first over-voltage threshold. In some embodiments, the first voltage is a voltage supplied by a host system (e.g., Vdd 502,
Next, where the power supply voltage includes (650) a first voltage and a second voltage, performing the power fail operation includes (612) performing (654) the power fail operation in accordance with a determination that the second voltage is higher than a second under-threshold voltage. In some embodiments, the second voltage is a voltage supplied for serial presence detect (SPD) functionality (e.g., VSPD 504,
In some embodiments, the power fail operation (658) is performed using power from an energy storage device (e.g., energy storage device 204,
In some embodiments, the energy storage device includes (660) one or more capacitors. For example, in some implementations, the energy storage device 522 includes a single capacitor, while in other implementations, the energy storage device includes a plurality of capacitors. In other implementations, the energy storage device includes one or more inductors. In some implementations, the energy storage device includes one or more other passive elements that store energy.
Optionally, the storage device monitors (662) the energy storage device to ensure capacitors in the energy storage device are charged to at least a first charge level. In some implementations, a data hardening module (e.g., data hardening module 126,
Further, the storage device selectively tests (664) one or more capacitors from the energy storage device during operation of the storage device. In some implementations, the data hardening module (e.g., data hardening module 126,
Optionally, prior to determining (666) whether the power supply voltage provided to the storage device is higher than the over-voltage threshold, the storage device charges (668) the energy storage device using a higher voltage than the power supply voltage provided to the storage device. As described above with respect to
Next, the storage device determines (670) whether the energy storage device (e.g., energy storage device 204,
Further, in accordance with a determination that the energy storage device does not meet the minimum charge level threshold in the predefined charge time, the storage device prevents (672) operation of the storage device. In some implementations, a determination that the energy storage device does not meet the minimum charge level threshold in the predefined charge time indicates that there will be a data hardening failure when a power fail operation is performed in the future (e.g., a predictive failure detection). As a result, operation of the storage device is prevented to avoid a future data hardening failure. In some implementations, an energy storage device module (e.g., energy storage device module 212,
In some embodiments, preventing operation of the storage device includes communicating (674) a failure message to a host system (e.g., computer system 110,
Optionally, the storage device discharges (676) the energy storage device subsequent to removing power from the plurality of controllers on the storage device. In some implementations, subsequent to removing power from the plurality of controllers (e.g., storage controller 128 and NVM controllers 130,
In some embodiments, the method 600 of protecting data in a storage device further comprises recording data (678) regarding the power fail operation to non-volatile memory. In some implementations, recording data regarding the power fail operation includes recording one or more of the following: which power supply voltage caused the power fail operation (e.g., Vdd 502 or VSPD 504), what condition caused the power fail operation (e.g., lower than an under-voltage threshold or higher than an over-voltage threshold), the real time when the power fail event happened (e.g., Monday, Oct. 15, 2013, at 12:03:17 AM), the length of time the power fail operation took to complete, whether the power fail operation was successful, and optionally other information regarding the power fail operation.
In some embodiments, the method 600 of protecting data in a storage device further comprises performing a power fail test operation (680). A power fail test operation may be initiated without the actual occurrence of a power failure. For example, a power fail test operation may be initiated by a command from a host system, or when a milestone event is detected (e.g., a real time clock matching a scheduled test time), without the actual occurrence of a power failure. The power fail test operation includes signaling (682) the power fail condition to one or more controllers of the plurality of controllers on the storage device, transferring (684) data held in volatile memory to non-volatile memory for the one or more controllers, removing (686) power from the one or more controllers on the storage device, and recording (688) data regarding the power fail test operation. In some implementations, the recorded data regarding the power fail test operation includes one or more of: the length of time the power fail test operation took to complete, whether the power fail operation was successful, and optionally other information regarding the power fail test operation.
In some implementations, with respect to any of the methods described above, the non-volatile memory is a single NVM device (e.g., flash memory device), while in other implementations, the non-volatile memory includes a plurality of NVM devices (e.g., flash memory devices).
In some implementations, with respect to any of the methods described above, a storage device includes (1) an interface for coupling the storage device to a host system, (2) a plurality of controllers, each of the plurality of controllers configured to transfer data held in volatile memory to non-volatile memory, and (3) a data hardening module including one or more processors and an energy storage device, the storage device configured to perform or control performance of any of the methods described above.
It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first contact could be termed a second contact, and, similarly, a second contact could be termed a first contact, which changing the meaning of the description, so long as all occurrences of the “first contact” are renamed consistently and all occurrences of the second contact are renamed consistently. The first contact and the second contact are both contacts, but they are not the same contact.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
The foregoing description, for purpose of explanation, has been described with reference to specific implementations. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The implementations were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.
This application claims priority to U.S. Provisional Patent Application No. 61/909,924 filed Nov. 27, 2013, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4600962 | Bliehall | Jul 1986 | A |
4916652 | Schwarz et al. | Apr 1990 | A |
5193176 | Brandin | Mar 1993 | A |
5519847 | Fandrich et al. | May 1996 | A |
5530705 | Malone, Sr. | Jun 1996 | A |
5537555 | Landry et al. | Jul 1996 | A |
5551003 | Mattson et al. | Aug 1996 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5666114 | Brodie et al. | Sep 1997 | A |
5943692 | Marberg et al. | Aug 1999 | A |
5982664 | Watanabe | Nov 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6016560 | Wada et al. | Jan 2000 | A |
6295592 | Jeddeloh | Sep 2001 | B1 |
6311263 | Barlow et al. | Oct 2001 | B1 |
6393584 | McLaren et al. | May 2002 | B1 |
6442076 | Roohparvar | Aug 2002 | B1 |
6449625 | Wang | Sep 2002 | B1 |
6484224 | Robins et al. | Nov 2002 | B1 |
6678788 | O'Connell | Jan 2004 | B1 |
6738268 | Sullivan et al. | May 2004 | B1 |
6757768 | Potter et al. | Jun 2004 | B1 |
6775792 | Ulrich et al. | Aug 2004 | B2 |
6810440 | Micalizzi, Jr. et al. | Oct 2004 | B2 |
6836808 | Bunce et al. | Dec 2004 | B2 |
6836815 | Purcell et al. | Dec 2004 | B1 |
6842436 | Moeller | Jan 2005 | B2 |
6871257 | Conley et al. | Mar 2005 | B2 |
6895464 | Chow et al. | May 2005 | B2 |
6978343 | Ichiriu | Dec 2005 | B1 |
6981205 | Fukushima et al. | Dec 2005 | B2 |
6988171 | Beardsley et al. | Jan 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7032123 | Kane et al. | Apr 2006 | B2 |
7043505 | Teague et al. | May 2006 | B1 |
7100002 | Shrader | Aug 2006 | B2 |
7111293 | Hersh et al. | Sep 2006 | B1 |
7162678 | Saliba | Jan 2007 | B2 |
7173852 | Gorobets et al. | Feb 2007 | B2 |
7184446 | Rashid et al. | Feb 2007 | B2 |
7516292 | Kimura et al. | Apr 2009 | B2 |
7523157 | Aguilar, Jr. et al. | Apr 2009 | B2 |
7571277 | Mizushima | Aug 2009 | B2 |
7574554 | Tanaka et al. | Aug 2009 | B2 |
7596643 | Merry, Jr. et al. | Sep 2009 | B2 |
7681106 | Jarrar et al. | Mar 2010 | B2 |
7685494 | Varnica et al. | Mar 2010 | B1 |
7707481 | Kirschner et al. | Apr 2010 | B2 |
7761655 | Mizushima et al. | Jul 2010 | B2 |
7774390 | Shin | Aug 2010 | B2 |
7840762 | Oh et al. | Nov 2010 | B2 |
7870326 | Shin et al. | Jan 2011 | B2 |
7890818 | Kong et al. | Feb 2011 | B2 |
7913022 | Baxter | Mar 2011 | B1 |
7925960 | Ho et al. | Apr 2011 | B2 |
7934052 | Prins et al. | Apr 2011 | B2 |
7971112 | Murata | Jun 2011 | B2 |
7978516 | Olbrich et al. | Jul 2011 | B2 |
7996642 | Smith | Aug 2011 | B1 |
8001419 | Killian et al. | Aug 2011 | B2 |
8032724 | Smith | Oct 2011 | B1 |
8412985 | Bowers et al. | Apr 2013 | B1 |
20020024846 | Kawahara et al. | Feb 2002 | A1 |
20020083299 | Van Huben et al. | Jun 2002 | A1 |
20020152305 | Jackson et al. | Oct 2002 | A1 |
20020162075 | Talagala et al. | Oct 2002 | A1 |
20020165896 | Kim | Nov 2002 | A1 |
20030041299 | Kanazawa et al. | Feb 2003 | A1 |
20030043829 | Rashid et al. | Mar 2003 | A1 |
20030074592 | Hasegawa | Apr 2003 | A1 |
20030088805 | Majni et al. | May 2003 | A1 |
20030093628 | Matter et al. | May 2003 | A1 |
20030126494 | Strasser | Jul 2003 | A1 |
20030188045 | Jacobson | Oct 2003 | A1 |
20030189856 | Cho et al. | Oct 2003 | A1 |
20030198100 | Matsushita et al. | Oct 2003 | A1 |
20030212719 | Yasuda et al. | Nov 2003 | A1 |
20040024957 | Lin et al. | Feb 2004 | A1 |
20040024963 | Talagala et al. | Feb 2004 | A1 |
20040073829 | Olarig | Apr 2004 | A1 |
20040153902 | Machado et al. | Aug 2004 | A1 |
20040181734 | Saliba | Sep 2004 | A1 |
20040199714 | Estakhri et al. | Oct 2004 | A1 |
20040237018 | Riley | Nov 2004 | A1 |
20040252670 | Rong et al. | Dec 2004 | A1 |
20050060456 | Shrader et al. | Mar 2005 | A1 |
20050060501 | Shrader | Mar 2005 | A1 |
20050114587 | Chou et al. | May 2005 | A1 |
20050172065 | Keays | Aug 2005 | A1 |
20050172207 | Radke et al. | Aug 2005 | A1 |
20050193161 | Lee et al. | Sep 2005 | A1 |
20050201148 | Chen et al. | Sep 2005 | A1 |
20050257120 | Gorobets et al. | Nov 2005 | A1 |
20050273560 | Hulbert et al. | Dec 2005 | A1 |
20050289314 | Adusumilli et al. | Dec 2005 | A1 |
20060039196 | Gorobets et al. | Feb 2006 | A1 |
20060053246 | Lee | Mar 2006 | A1 |
20060085671 | Majni et al. | Apr 2006 | A1 |
20060136570 | Pandya | Jun 2006 | A1 |
20060156177 | Kottapalli et al. | Jul 2006 | A1 |
20060195650 | Su et al. | Aug 2006 | A1 |
20060259528 | Dussud et al. | Nov 2006 | A1 |
20070011413 | Nonaka et al. | Jan 2007 | A1 |
20070058446 | Hwang et al. | Mar 2007 | A1 |
20070061597 | Holtzman et al. | Mar 2007 | A1 |
20070076479 | Kim et al. | Apr 2007 | A1 |
20070081408 | Kwon et al. | Apr 2007 | A1 |
20070083697 | Birrell et al. | Apr 2007 | A1 |
20070083779 | Misaka et al. | Apr 2007 | A1 |
20070113019 | Beukema et al. | May 2007 | A1 |
20070133312 | Roohparvar | Jun 2007 | A1 |
20070147113 | Mokhlesi et al. | Jun 2007 | A1 |
20070150790 | Gross et al. | Jun 2007 | A1 |
20070157064 | Falik et al. | Jul 2007 | A1 |
20070174579 | Shin | Jul 2007 | A1 |
20070180188 | Fujibayashi et al. | Aug 2007 | A1 |
20070208901 | Purcell et al. | Sep 2007 | A1 |
20070234143 | Kim | Oct 2007 | A1 |
20070245061 | Harriman | Oct 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070291556 | Kamei | Dec 2007 | A1 |
20070294496 | Goss et al. | Dec 2007 | A1 |
20070300130 | Gorobets | Dec 2007 | A1 |
20080019182 | Yanagidaira et al. | Jan 2008 | A1 |
20080022163 | Tanaka et al. | Jan 2008 | A1 |
20080052446 | Lasser et al. | Feb 2008 | A1 |
20080077841 | Gonzalez et al. | Mar 2008 | A1 |
20080077937 | Shin et al. | Mar 2008 | A1 |
20080086677 | Yang et al. | Apr 2008 | A1 |
20080144371 | Yeh et al. | Jun 2008 | A1 |
20080147964 | Chow et al. | Jun 2008 | A1 |
20080147998 | Jeong | Jun 2008 | A1 |
20080148124 | Zhang et al. | Jun 2008 | A1 |
20080163030 | Lee | Jul 2008 | A1 |
20080168319 | Lee et al. | Jul 2008 | A1 |
20080170460 | Oh et al. | Jul 2008 | A1 |
20080229000 | Kim | Sep 2008 | A1 |
20080229003 | Mizushima et al. | Sep 2008 | A1 |
20080229176 | Arnez et al. | Sep 2008 | A1 |
20080270680 | Chang | Oct 2008 | A1 |
20080282128 | Lee et al. | Nov 2008 | A1 |
20080285351 | Shlick et al. | Nov 2008 | A1 |
20090003058 | Kang | Jan 2009 | A1 |
20090037652 | Yu et al. | Feb 2009 | A1 |
20090144598 | Yoon et al. | Jun 2009 | A1 |
20090168525 | Olbrich et al. | Jul 2009 | A1 |
20090172258 | Olbrich et al. | Jul 2009 | A1 |
20090172259 | Prins et al. | Jul 2009 | A1 |
20090172260 | Olbrich et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090172262 | Olbrich et al. | Jul 2009 | A1 |
20090172308 | Prins et al. | Jul 2009 | A1 |
20090172335 | Kulkarni et al. | Jul 2009 | A1 |
20090172499 | Olbrich et al. | Jul 2009 | A1 |
20090193058 | Reid | Jul 2009 | A1 |
20090207660 | Hwang et al. | Aug 2009 | A1 |
20090222708 | Yamaga | Sep 2009 | A1 |
20090296466 | Kim et al. | Dec 2009 | A1 |
20090296486 | Kim et al. | Dec 2009 | A1 |
20090319864 | Shrader | Dec 2009 | A1 |
20100008175 | Sweere et al. | Jan 2010 | A1 |
20100061151 | Miwa et al. | Mar 2010 | A1 |
20100095048 | Bechtolsheim et al. | Apr 2010 | A1 |
20100103737 | Park | Apr 2010 | A1 |
20100199125 | Reche | Aug 2010 | A1 |
20100202196 | Lee et al. | Aug 2010 | A1 |
20100208521 | Kim et al. | Aug 2010 | A1 |
20100262889 | Bains | Oct 2010 | A1 |
20100281207 | Miller et al. | Nov 2010 | A1 |
20100281342 | Chang et al. | Nov 2010 | A1 |
20110066872 | Miller et al. | Mar 2011 | A1 |
20110083060 | Sakurada et al. | Apr 2011 | A1 |
20110085657 | Matthews, Jr. | Apr 2011 | A1 |
20110113281 | Zhang et al. | May 2011 | A1 |
20110131444 | Buch et al. | Jun 2011 | A1 |
20110205823 | Hemink et al. | Aug 2011 | A1 |
20110213920 | Frost et al. | Sep 2011 | A1 |
20110228601 | Olbrich et al. | Sep 2011 | A1 |
20110231600 | Tanaka et al. | Sep 2011 | A1 |
20120054456 | Grube et al. | Mar 2012 | A1 |
20120096217 | Son et al. | Apr 2012 | A1 |
20120195126 | Roohparvar | Aug 2012 | A1 |
20120239976 | Cometti et al. | Sep 2012 | A1 |
20120271990 | Chen et al. | Oct 2012 | A1 |
20130019076 | Amidi et al. | Jan 2013 | A1 |
20140006798 | Prakash et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1465203 | Oct 2004 | EP |
1 956 489 | Aug 2008 | EP |
2002-532806 | Oct 2002 | JP |
WO 2007036834 | Apr 2007 | WO |
WO 2007080586 | Jul 2007 | WO |
WO 2008121553 | Oct 2008 | WO |
WO 2008121577 | Oct 2008 | WO |
WO 2009028281 | Mar 2009 | WO |
WO 2009032945 | Mar 2009 | WO |
WO 2009058140 | May 2009 | WO |
WO 2009134576 | Nov 2009 | WO |
Entry |
---|
Barr, Introduction to Watchdog Timers, Oct. 2001, 3 pgs. |
Canim, Buffered Bloom ilters on Solid State Storage, ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs. |
Kang, A Multi-Channel Architecture for High-Performance NAND Flash-Based Storage System, J. Syst. Archit., 53, 9, Sep. 2007, 15 pgs. |
Kim, A Space-Efficient Flash Translation Layer for CompactFlash Systems, May 2002, 10 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, article, 6 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs. |
McLean, Information Technology—AT Attachment with Packet Interface Extension, Aug. 19, 1998, 339 pgs. |
Park, A High Performance Controller for NAND Flash-Based Solid State Disk (NSSD), Feb. 12-16, 2006, 4 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88133, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88136, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88146, Feb. 26, 2009, 10 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88154, Feb. 27, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88164, Feb. 13, 2009, 6 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88206, Feb. 18, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88217, Feb. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88229, Feb. 13, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88232, Feb. 19, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88236, Feb. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US2011/028637, Oct. 27, 2011, 11 pgs. |
Pliant Technology, Supplementary ESR, 08866997.3, Feb. 23, 2012, 6 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042764, Aug. 31, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042771, Mar. 4, 2013, 14 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042775, Sep. 26, 2012, 8 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059447, Jun. 6, 2013, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/U52012/059453, Jun. 6, 2013, 12 pgs. |
Sandisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059459, Feb. 14, 2013, 9 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065914, May 23, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065916, Apr. 5, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065919, Jun. 17, 2013, 8 pgs. |
SanDisk Enterprise IP LLC, Notification of the Decision to Grant a Patent Right for Patent for Invention, CN 200880127623.8, Jul. 4, 2013, 1 pg. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Apr. 18, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Dec. 31, 2012, 9 pgs. |
SanDisk Enterprise IP LLC, Office Action, JP 2010-540863, Jul. 24, 2012, 3 pgs. |
Watchdog Timer and Power Savin Modes, Microchip Technology Inc., 2005, 14 pgs. |
Zeidman, 1999 Verilog Designer's Library, 9 pgs. |
IBM Corporation, “Systems Management, Work Management,” Version 5, Release 4, 9th Edition, Feb. 2006, pp. 1-21. |
Texas Instruments, “Power Management IC for Digital Set Top Boxes,” SLVSA10A, Sep. 2009, pp. 1-22. |
International Search Report and Written Opinion dated Jan. 26, 2015, received in International Patent Application No. PCT/US2014/059118, which corresponds to U.S. Appl. No. 14/135,371, 11 pages (Lucas). |
International Search Report and Written Opinion dated Jul. 26, 2013, received in International Patent Application No. PCT/US2013/035162, which corresponds to U.S. Appl. No. 13/855,567, 7 pages (Ellis). |
International Preliminary Report on Patentability dated Oct. 30, 2014, received in International Patent Application No. PCT/US2013/035162, which corresponds to U.S. Appl. No. 13/855,567, 4 pages (Ellis). |
International Search Report and Written Opinion dated May 27, 2015, received in International Patent Application No. PCT/US2014/067476, which corresponds to U.S. Appl. No. 14/135,417, 14 pages (Lucas). |
Number | Date | Country | |
---|---|---|---|
20150149806 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61909924 | Nov 2013 | US |