Hardened subminiture telemetry and sensor system for a ballistic projectile

Information

  • Patent Grant
  • 6378437
  • Patent Number
    6,378,437
  • Date Filed
    Monday, April 3, 2000
    24 years ago
  • Date Issued
    Tuesday, April 30, 2002
    22 years ago
Abstract
A hardened subminiature telemetry and sensor system for a ballistic projectile having a radome, antenna, steel insert, S-band transmitter circuit board, data recorder, sensor or measurement device and battery. The entire assembly is contained in such a way that the assembly can be threaded into the existing tracer well of a kinetic energy projectile.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to telemetry systems in general and more specifically to a system for instrumenting a ballistic projectile with a miniaturized sensor(s) and a telemetry system for testing and evaluation.




2. Discussion of Related Art




The in-flight measurement of artillery projectile flight dynamics (acceleration, pitch, yaw, spin and derivative thereof) or diagnostics of on-board devices (fuzing, warhead, etc) has been routinely accomplished at the Amy Research Laboratory. In most applications, commercial telemetry subsystems such as voltage controlled oscillators, transmitters, antennae, sensors, etc., could be located in either the nose, ogive, body, base or in some cases, all sections of the projectile. Typical volumes for these systems could range from 9 cubic inches to 27 cubic inches depending on the application.




Another example of prior art is as such, a test engineer wants to measure spin and yaw on a KE projectile. Kinetic energy projectiles, such as the one featured in

FIG. 1

, usually consist of a long slender rod, a pointed windshield, and a small set of fins. There isn't much room to install an instrumentation pack of any sort. The current state of the art process involves setting up several large placards in the flight path of the KE projectile. These placards are placed at precise distances from the muzzle of the gun tube. The KE projectile passes through these placards leaving fin-shaped holes. The engineer then has to digitize the shapes of the holes into a computer, where an algorithm determines the spin rate and attitude dynamics. This is usually accomplished from several minutes to several hours after the test has been performed.




A separate example of measuring spin was an experiment that Motorola performed at the Ballistic Research Laboratory. A spin stabilized, 105 millimeter KE training round was instrumented with a small device. The device incorporated a small power supply, transmitter and antenna. The device transmitted a pilot tone while the projectile was in free flight. The transmission used the C-band frequency, which is not compatible with military testing specifications. No sensor was incorporated into this device.




The current state of the art process of measuring projectile base pressure involves drilling small holes into the breech of a cannon tube and installing pressure gages. The gages measure the pressure event and a digital computer algorithm extrapolates the data to provide an estimate of the actual pressure and accelerations experienced by the projectile while travelling through the cannon tube. The procedure is very quick; however, the base pressure and the acceleration are still numerically derived. Future gun systems will be more complicated in design and difficult to instrument in the fashion previously mentioned.




SUMMARY OF THE INVENTION




Accordingly, it is an object of the present invention to provide a hardened subminiature telemetry and sensor system for a ballistic projectile.




Ballistic projectiles include kinetic energy (KE) projectiles, which are launched from a tank cannon, and artillery projectiles which are launched from artillery cannon. These types of ballistic projectiles are un-guided There is a need to provide a continuous measurement of the environments of both in-bore and free-flight events. The environments are severe since KE projectiles are launched from tank gun cannons at accelerations in excess of 100,000 g's. Artillery projectiles are launched with less acceleration, however, the projectiles exit the cannon with spin rates of about 18,000 revolutions per minute. The geometry of the KE projectile is a long, solid rod, with a thin pointed windshield and a small set of fins for stanbilization. With the exception of the tracer well cavity, there is no space on a KE projectile for an instrumentation package. Modifications to the projectile can create adverse effects to the trajectory and are therefore not allowed. Through the use of mini ed sensor(s), batteries, acceleration switches, signal conditioning electronics, transmitter and antenna, the present invention will provide simultaneous in-flight measurements of both the in-bore and free-flight environment. As soon as the projectile exits the cannon tube and is experiencing a free-flight trajectory, the present invention will telemeter the data to a nearby ground station. The sensors will measure projectile spin history, axial and transverse accelerations, pitch and yaw angles and rates, temperature, base pressure, or a combination thereof. This invention will improve the testing and evaluation of a projectile The invention is rugged, being capable of surviving temperatures in excess of 3500 degrees K, accelerations of 100,000 g's and spin rates in excess of 1,000 Hz. The invention is also extremely compact, taking up to 0.5-1.0 cubic inches of volume, thus making it much easier to instrument any projectile.




Ammunition testers could thread this invention into the existing tracer well of a KE projectile, as seen in

FIG. 2

, and measure the actual environment of the projectile continuously and more accurately. The tracer is a gas/flame generator which serves two purposes: first to help the gunner to track the projectile while in flight, and secondly, to reduce any base drag on the projectile. If a manufacturer need to test a specific lot of KE projectiles, the installation can be easily incorporated in the assembly. Instead of a tracer, the manufacturer can install the invention, which used the same threads as the tracer. The intent of the invention is not about the individual technologies or the miniaturized electronics, but the incorporation of the technologies into one device.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will be better understood, and further objects, features, and advantages thereof will become more apparent from the following description of the preferred embodiment, taken in conjunction with the accompanying drawings in which:





FIG. 1

is a view showing a typical Kinetic Energy Projectile.





FIG. 2

shows the Hardened Subminiature Telemetry and Sensor System in the fin area of the Kinetic Energy projectile of FIG.


1


.





FIG. 3

shows an exploded view of the Hardened Subminiature Telemetry and Sensor System.





FIG. 4

shows the detail of the steel insert component of the Hardened Subminiature Telemetry and Sensor System.





FIG. 5

is a block diagram of the Hardened Subminiature Telemetry and Sensor System.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Shown in

FIG. 1

is a typical Kinetic Energy projection


10


which includes a windscreen


1


, three sabot petals


2


, fins


3


, and tracer well


4


. The entire assembly of sensors, the telemetry system and the power supply which comprise the present invention is contained in such a way that the assembly can be threaded into the existing tracer well


4


of kinetic energy projectile


10


. As shown in

FIG. 2

, Hardened Subminiature Telemetry and Sensor System


20


is threaded into tracer well


4


of fins


3


. A steel insert


30


(

FIG. 4

) is the housing within which system


20


is incorporated. An s-band antenna (linearly or circularly polarized) with a coaxial lead is placed into the non-threaded side of steel insert


30


. The coaxial lead passes through a small hole in the firewall


31


of steel insert


30


.

FIG. 4

shows a detailed description of steel insert


30


which comprises firewall


31


, antenna/radome assembly cavity


32


, transmitter/sensors/signal conditioning/power supply cavity


33


, and threaded portion


34


.




Shown in

FIG. 3

is an exploded view of the Hardened Subminiature Telemetry and Sensor System


20


. System


20


consists of radome


21


, antenna


22


, steel insert


30


, S-band transmitter circuit board


23


, data recorder


24


, and battery


25


. Electrical potting, preferably Stycast 1090-SI is applied to antenna


22


and protective radome


21


is then placed on top of antenna


22


. The potting has a very small dielectric constant and loss tangent, so radiated energy from antenna


22


is not absorbed. This end of steel insert


30


is then crimped over the antenna/radome assembly. This process compresses the assembly together, removing any possible air gaps. An opening of about one-inch is diameter is left for antenna


22


to transmit through.




Shown in

FIG. 5

is an electrical schematic drawing of the miniature telemetry and sensor system


20


. The miniature S-band transmitter board


23


includes a transmitter


40


and a magnetic spin sensor


41


powered from a miniaturized lithium manganese dioxide battery


25


through the intermediary of a latching g-switch


42


. The telemetry and sensor system


20


may also include an integrated power amplifier and signal conditioning circuits (not shown) connected to antenna


22


. As shown in

FIG. 3

, the miniature S-band transmitter board


23


sits inside the threaded side of steel insert


30


. A miniature data recorder


24


is installed next followed by the miniaturized lithium manganese dioxide batter


25


. Assembly


20


is placed into a mod and filled with electrical potting such as Stycast 1090-SI and allowed to cure. Ultimately, a thin metallic shell could be placed over the potted region to provide more protection.




Before the potting is applied, the system can be configured to accommodate various sensors. For example, magnetic spin sensors, accelerometers, and other rate sensors can be imbedded into the system by locating the sensor on a separate circuit board or incorporating it into transmitter board


23


. Other sensors, such as a pressure or temperature sensor would have to be located at the point of measurement.




This system is then installed into KE projectile


10


via threads


34


on steel insert


30


. Projectile


10


is now ready to be loaded into a cartridge. Before a test is conducted, the test engineer needs to set up a receiving antenna and data recording equipment. When projectile


10


is launched, Hardened Subminiature Telemetry and Sensor System


20


will transmit data while projectile


10


is in free-flight. If the sensors are measuring the in-bore environment of the launch phase, which lasts from seven to fifteen milliseconds, Hardened Subminiature Telemetry and Sensor System


20


will capture and play back the data after projectile


10


has exited the cannon tube.




It will be readily seen by one of ordinary skill in the art that the present invention fulfills all of the objects set forth above. After reading the foregoing specification, one of ordinary skill will be able to effect various changes, substitutions of equivalents and various other aspects of the present invention as broadly disclosed herein. It is therefore intended that the protection granted hereon be limited only by the definition contained in the appended claims and equivalents thereof.




Having thus shown and described what is at present considered to be the preferred embodiment of the present invention, it should be noted that the same has been made by way of illustration and not limitation. Accordingly, all modifications, alterations and changes coming within the spirit and scope of the present invention are herein meant to be included.



Claims
  • 1. A subminiature telemetry and sensor system for a ballistic projectile having a tracer well comprising:a radome; an antenna behind said radome; a transmitter circuit board with electronic telemetry circuits thereon; a data recorder connected to said circuit board; a battery providing power to said circuit board; at least one sensor for measuring an in-motion parameter of said projectile; a housing means; said radome, antenna, circuit board, data recorder, battery and said at least one sensor contained within said housing means and being operational to sense and telemeter parameter information; said housing means having threads to mate with threads in said tracer well of said ballistic projectile and being sized to be retained entirely within said tracer well of said projectile.
  • 2. The system of claim 1 wherein said circuit board with electronic telemetry circuits thereon includes an integrated power amplifier, signal conditioning circuits and a g-switch.
  • 3. The system of claim 2 wherein said antenna comprises a linearly polarized antenna.
  • 4. The system of claim 2 wherein said antenna comprises a circularly polarized antenna.
  • 5. The system of claim 1 wherein said system has ability to survive an environment consisting of an excess of 100,000 g's, 1,000 HZ spin rate, and temperature in excess of 3500 degrees.
  • 6. The system of claim 1 wherein said at least one sensor measures the environment of said projectile while said projectile is traversing a launch tube.
  • 7. The system of claim 1 wherein said at least one sensor measures the environment of said projectile while said projectile is in ballistic free flight.
  • 8. The system of claim 1 wherein:said housing means has a cylindrical configuration having a central axis and includes a firewall oriented transverse to said central axis to define a forward cavity and a rearward cavity, said radome and said antenna being positioned in said rearward cavity; and said circuit board, said data recorder, and said at least one sensor are positioned in said forward cavity.
  • 9. The system of claim 8 wherein:said firewall has a small hole therein for electrically linking said antenna to said circuit board.
  • 10. The system of claim 9 wherein:said ballistic projectile is a kinetic energy projectile comprising a long slender rod having a pointed windshield and a set of rear fins surrounding a rearward disposed tracer well.
  • 11. The system of claim 10 wherein:said housing means is made of steel.
  • 12. The system of claim 1 wherein:said ballistic projectile is a kinetic energy projectile comprising a long slender rod having a pointed windshield and a set of rear fins surrounding a rearward disposed tracer well.
RIGHTS OF THE GOVERNMENT

The invention described herein may be manufactured, used, and licensed by or for the United States Government for governmental purposes without the payment to us of any royalty thereon.

US Referenced Citations (3)
Number Name Date Kind
4515082 Pizzurro May 1985 A
4951901 Dunne Aug 1990 A
5280751 Murihead et al. Jan 1994 A