The above and other objects, features, and advantages will become more readily apparent from the following description, reference being made to the accompanying drawing whose sole FIGURE is a diagrammatic representation of an apparatus for carrying out the method of this invention.
As seen in the drawing an apparatus for hardening foundry cores or molds of sand-containing molding materials with an inorganic binding system is connected to a core mold (core box) 20 via a so-called gasification plate 21. It has a pressurized hot-air device 1 that can be provided upstream of the core box 20 and that produces streams of hot air that can be conducted at a predetermined pressure, predetermined temperature, and for a predetermined time through a core or a mold C in the core box 20. The core box 20 is set up such that a good flow of hot compressed air is provided through it in order to attain the lowest possible cycle times. Furthermore, the core box 20 can be attached to an unillustrated core shooter.
The pressurized hot-air device 1 has an upstream flow heater 2 with an output temperature for instance up to 80° C. as well as additional, in this case cascading, downstream flow heaters 3, 4, and 5 with an output temperature for instance up to 250° C. and higher for optimal heating of a stream of hot air intended for the core hardening in a first hardening cycle at a predetermined pressure, predetermined temperature, and for a predetermined time.
The compressed air required for this is supplied by means of a compressed air line 6 via a valve 7 of the upstream flow heater 2. The compressed air from the compressed air line with a pressure of no less than 5.0 bar is regulated to the required final pressure in a pressure regulator 10 via a proportional valve with the desired increase in pressure in a predetermined ramp time.
For core hardening in a first hardening cycle, the above-described valve 7 is opened at the side of the upstream flow heater 2 and a valve 9 in a pressure line an outlet of the flow heater 2 and the downstream flow heaters 3, 4, and 5 is opened so that the compressed air flowing therethrough travels at the predetermined temperature via a pressure line 15 from the outlet of the furthest downstream heater 5 into the core box 20 and flows therethrough. During this hardening stage another valve 8 in a direct line 16 connected between the outlet of the upstream flow heater 2 and the core box 20 is closed.
After the first hardening cycle has concluded, the two above-described valves 7 and 9 are preferably closed to start with.
For an after-treatment cycle for relaxing the core C in the core box 20, another stream of hot air is then conducted at a predetermined pressure but reduced temperature that is approximately the temperature at the end of the hardening cycle, and for a predetermined time, through the core box 20. To achieve this, the valve 9 is closed, the valve 7 on the inlet side of the upstream flow heater 2 is opened, and the valve 8 on the outlet side of the upstream flow heater 2 is opened so that the compressed hot air travels, at a predetermined low temperature, directly to the core box 20 through the upstream flow heater 2 via the pressure line 16 and regulator 10.
When the after-treatment cycle has concluded, the valves 7 and 8 are closed again.
In order to attain optimum hardening of the cores, each flow heater 2, 3, 4, and 5 is equipped with a discrete electronic temperature regulator such as shown at 22 for heater 5 as part of a programmable electronic controller 30 connected to the various heaters and sensors by control lines 12. The heating of the core box 20, on the other hand, is controlled from the unillustrated core shooter via a line 13. Furthermore, for switching purposes the above-described valves 7, 8, and 9 are also joined to the electronic control system via control lines 11.
Through the exclusive use of inorganic binding agent systems, only extremely low emissions are released by the inventive measures during core production. The inventive method and the inventive apparatus are suitable both for production of individual cores and molds and also and in particular for series production, the cores and molds attaining optimum properties.
Moreover, nearly all of the old sand can be completely reclaimed without complex regeneration after decoring. Since compared to the cold-box method no thermal regeneration is required, this system uses a regeneration system for sand-containing molding materials with an inorganic binding system that requires lower capital investment and less space than conventional thermal regeneration systems.
Variants are possible in the framework of this invention without departing from the inventive idea. For instance, instead of the two two-way valves 8 and 9, the stream, of hot air for the hardening cycle and the after-treatment cycle can also be regulated by means of a three-way valve. Moreover, an additional valve 23 can also be provided between the core box 20 in the pressure line 15 to the outlet side of the last flow heater 5 and in the pressure line 16 that can be controlled with the valve 8, in order to prevent flow back into pressure lines 16 and 15 during operation. Furthermore, the inorganic binding agents that can be used here and the core sand means can be variable.
Number | Date | Country | Kind |
---|---|---|---|
0668/06 | Apr 2006 | CH | national |