Various embodiments relate generally to portable wireless audio speakers.
Audio speakers are audio transducers. A transducer may convert an audio signal into sound waves. Some audio speakers convert signals into sound waves audible to a user. Users of audio speakers include individuals, businesses, organizations, and facilities. For example, a person may listen to music using an audio speaker connected to a music player. Some audio speakers are portable. In various scenarios, portable speakers may be configured with wireless interfaces. Portable speakers with wireless interfaces may permit multiple individuals near a common location to listen to different music or other programming.
In an illustrative example, the music or program chosen for listening by some users may not align with the preference of other users near the same location. Some users may prefer to wear earplugs to block music they do not want to listen to, or use earbuds or headphones to privately listen to their preferred music. In some examples, workers at construction site locations may wish to listen to music while working, without disturbing each other. However, construction site safety restrictions may require that the workers wear hardhats for protection against injury. If an individual at a construction site were to wish to listen to music using earphones, headphones, earbuds, or the like, it may be difficult, or impossible, to do so while wearing a hardhat.
In some exemplary scenarios, the use of earbuds or other in-ear listening devices may distract users from their surroundings, leading to increased danger on a construction site. In an illustrative example, some construction site safety restrictions may prohibit users from using earbuds or headphones, to avoid dangerous distractions. A group of construction workers may have to choose whether all should listen to the same music, or not have music at all.
Apparatus and associated methods relate to a wireless audio speaker module configured to play music at a volume level that will not disturb those nearby, based on adapting a wireless audio speaker to be retained within headgear, adjusting the volume of sound emitted by the speaker to a level that will not disturb those nearby, and amplifying the speaker sound as a function of the headgear interior reflecting the sound emitted by the speaker to the user's ear. In an illustrative example, an airgap may be configured between the speaker and the headgear user's ear. In various embodiments, the sound volume emitted by the speaker may be adjusted to avoid disturbing those nearby. In some examples, the headgear may be a hardhat, advantageously configured with a wireless audio speaker module to permit construction workers to listen to music amplified by reflection within their hardhats without disturbing or distracting each other.
Various embodiments may achieve one or more advantages. For example, some embodiments may improve a user's ease of listening to music while working, or when accompanied by others nearby. This facilitation may be a result of reducing the user's effort adjusting listening devices and configuring audio speakers in the user's workplace environment. Various embodiments may reduce the potential for workplace disagreement resulting from worker music preference differences. Such reduced potential for workplace disagreement may be a result of a wireless audio speaker module configured to play music at a volume level that will not disturb those nearby, permitting each worker to privately listen to music aligned with their individual preference.
Some embodiments may reduce the potential for dangerous workplace distraction. This facilitation may be a result of a wireless audio speaker module retained within a user's headgear and positioned to increase the speaker sound incident on the user's ear, based on the headgear interior reflecting sound emitted by the speaker to the user's ear. In some examples, the sound pressure emitted directly from the speaker, measured at a point outside the helmet, may be maintained lower than the total sound pressure reaching the user's ear. In an illustrative example, the total sound pressure reaching a user's ear may include first sound energy emitted directly from the speaker, plus second sound energy reflected from the headgear interior to the user's ear. In various scenarios, amplifying the speaker sound from the perspective of the user's ear, without increasing the apparent volume outside the headgear, may be a result of positioning the speaker within the headgear to reflect such second sound energy from the headgear interior to the user's ear. Some embodiments may improve workplace safety. Such improved workplace safety may be a result of a wireless audio speaker module retained within a worker's headgear and configured with an airgap between the speaker and the user's ear, permitting the user to hear sounds from nearby sources while listening to music from the speaker.
The details of various embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
To aid understanding, this document is organized as follows. First, a wireless audio speaker module adapted to play music without disturbing those nearby, based on amplifying the speaker sound by reflection from the interior of headgear retaining the speaker, is briefly introduced with reference to
Although various embodiments have been described with reference to the Figures, other embodiments are possible. For example, in various exemplary scenarios, some embodiment hardhat speaker implementations may be referred to as a HardBeatz Bluetooth Speaker. In an illustrative example, various HardBeatz Bluetooth Speaker designs may advantageously solve one or more problem. In an illustrative example, some HardBeatz Bluetooth Speaker implementations may provide construction grade personal audio in a Bluetooth speaker designed for a hardhat. For example, individuals working in or around construction sites may be required to wear a hardhat in order to maintain safety in the workplace. In an illustrative example, if an individual were to wish to listen to music using earphones, headphones, or the like, it can be difficult or impossible to do so while wearing the hardhat. Additionally, such in-ear listening devices may also distract the individual, leaving them unaware of their surroundings. One option may be for the individual to listen to a radio. However, this leads to multiple individuals being forced to listen to the same thing, which certain individuals may not desire. Being unable to listen to music throughout a workday can be exceptionally frustrating and make days extremely boring.
In an illustrative scenario exemplary of prior art usage, construction workers are tired of other tradesmen loudly listening to their personal radio and music. Workplace speakers can be a distraction and can bother coworkers and others sharing a jobsite. In-ear listening devices such as headphones and earbuds may be an option but can be a dangerous distraction, reducing awareness to the surrounding worksite. Often headphones are not allowed on construction sites, due to OSHA and other safety regulations. Construction and trades workers may ask the question, “Why work in silence?”
In order to address these concerns, various embodiments of the present invention provide a speaker attachment for a hardhat. Some embodiment Hard Beatz Bluetooth speaker designs may be configured to fit into a hard hat. In various embodiments, a Hard Beatz Bluetooth speaker design may be configured to fit into other helmets. Some embodiment Hard Beatz Bluetooth speaker implementations create a solution to workplace silence. In various examples, construction workers can listen to their music through an embodiment Bluetooth personal speaker system designed to fit inside of a hard hat, eliminating the need for any in-ear devices while reducing distractions without reducing productivity. Various embodiment Hard Beatz Bluetooth speaker designs provide construction grade personal audio. Some embodiment designs may include adjustable volume. Various implementations may include battery power, configured to be recharged using USB charging. Various embodiment Hardbeatz Bluetooth speaker implementations may be designed to mount inside of any hard hat easily and quickly. In an illustrative scenario exemplary of some embodiments' usage, an embodiment HardBeatz Bluetooth interface may easily connect to any personal audio device. In some illustrative examples, the dual speakers may play music in crisp clear stereo using the hard hat as an amplifier. For example, in various scenarios, an embodiment Hardbeatz speaker may only emit enough sound to keep the wearer entertained, while keeping workplace distraction to a minimum, allowing for listening during a wide range of activities.
Various embodiments of the present invention provide a speaker attachment for a hardhat. Some embodiment designs may include a housing having a front surface, a rear surface, and a plurality of sidewalls defining a triangular prism. In some designs, a pair of speakers may be disposed on the front surface. Various embodiments may include a fastener disposed on the rear surface. In some embodiments, the fastener may be configured to removably secure the housing within a hardhat. In various exemplary scenarios, some embodiments of the present invention may allow individuals to listen to their own music while wearing a hardhat, without the need for headphones or earbuds.
Referring now to
In the embodiment depicted by
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. Some exemplary embodiments were chosen and described in order to best explain the principles of the present invention and its practical application, to thereby enable others skilled in the art to best utilize the present invention and various embodiments with various modifications as are suited to the particular use contemplated.
In the Summary above and in this Detailed Description, and the Claims below, and in the accompanying drawings, reference is made to particular features of various embodiments of the invention. It is to be understood that the disclosure of embodiments of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used—to the extent possible—in combination with and/or in the context of other particular aspects and embodiments of the invention, and in the invention generally.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from this detailed description. The invention is capable of myriad modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature and not restrictive.
It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments.
In the present disclosure, various features may be described as being optional, for example, through the use of the verb “may;”, or, through the use of any of the phrases: “in some embodiments,” “in some implementations,” “in some designs,” “in various embodiments,” “in various implementations,”, “in various designs,” “in an illustrative example,” or “for example;” or, through the use of parentheses. For the sake of brevity and legibility, the present disclosure does not explicitly recite each and every permutation that may be obtained by choosing from the set of optional features. However, the present disclosure is to be interpreted as explicitly disclosing all such permutations. For example, a system described as having three optional features may be embodied in seven different ways, namely with just one of the three possible features, with any two of the three possible features or with all three of the three possible features.
In various embodiments. elements described herein as coupled or connected may have an effectual relationship realizable by a direct connection or indirectly with one or more other intervening elements.
In the present disclosure, the term “any” may be understood as designating any number of the respective elements, i.e. as designating one, at least one, at least two, each or all of the respective elements. Similarly, the term “any” may be understood as designating any collection(s) of the respective elements, i.e. as designating one or more collections of the respective elements, a collection comprising one, at least one, at least two, each or all of the respective elements. The respective collections need not comprise the same number of elements.
While various embodiments of the present invention have been disclosed and described in detail herein, it will be apparent to those skilled in the art that various changes may be made to the configuration, operation and form of the invention without departing from the spirit and scope thereof. In particular, it is noted that the respective features of embodiments of the invention, even those disclosed solely in combination with other features of embodiments of the invention, may be combined in any configuration excepting those readily apparent to the person skilled in the art as nonsensical. Likewise, use of the singular and plural is solely for the sake of illustration and is not to be interpreted as limiting.
In the present disclosure, all embodiments where “comprising” is used may have as alternatives “consisting essentially of,” or “consisting of” In the present disclosure, any method or apparatus embodiment may be devoid of one or more process steps or components. In the present disclosure, embodiments employing negative limitations are expressly disclosed and considered a part of this disclosure.
Certain terminology and derivations thereof may be used in the present disclosure for convenience in reference only and will not be limiting. For example, words such as “upward,” “downward,” “left,” and “right” would refer to directions in the drawings to which reference is made unless otherwise stated. Similarly, words such as “inward” and “outward” would refer to directions toward and away from, respectively, the geometric center of a device or area and designated parts thereof. References in the singular tense include the plural, and vice versa, unless otherwise noted.
The term “comprises” and grammatical equivalents thereof are used herein to mean that other components, ingredients, steps, among others, are optionally present. For example, an embodiment “comprising” (or “which comprises”) components A, B and C can consist of (i.e., contain only) components A, B and C, or can contain not only components A, B, and C but also contain one or more other components.
Where reference is made herein to a method comprising two or more defined steps, the defined steps can be carried out in any order or simultaneously (except where the context excludes that possibility), and the method can include one or more other steps which are carried out before any of the defined steps, between two of the defined steps, or after all the defined steps (except where the context excludes that possibility).
The term “at least” followed by a number is used herein to denote the start of a range beginning with that number (which may be a range having an upper limit or no upper limit, depending on the variable being defined). For example, “at least 1” means 1 or more than 1. The term “at most” followed by a number (which may be a range having 1 or 0 as its lower limit, or a range having no lower limit, depending upon the variable being defined). For example, “at most 4” means 4 or less than 4, and “at most 40%” means 40% or less than 40%. When, in this specification, a range is given as “(a first number) to (a second number)” or “(a first number)-(a second number),” this means a range whose limit is the second number. For example, 25 to 100 mm means a range whose lower limit is 25 mm and upper limit is 100 mm.
Many suitable methods and corresponding materials to make each of the individual parts of embodiment apparatus are known in the art. According to an embodiment of the present invention, one or more of the parts may be formed by machining, 3D printing (also known as “additive” manufacturing), CNC machined parts (also known as “subtractive” manufacturing), and injection molding, as will be apparent to a person of ordinary skill in the art. Metals, wood, thermoplastic and thermosetting polymers, resins and elastomers as may be described herein-above may be used. Many suitable materials are known and available and can be selected and mixed depending on desired strength and flexibility, preferred manufacturing method and particular use, as will be apparent to a person of ordinary skill in the art.
Any element in a claim herein that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. § 112 (f). Specifically, any use of “step of” in the claims herein is not intended to invoke the provisions of 35 U.S.C. § 112 (f).
According to an embodiment of the present invention, the system and method may be accomplished through the use of one or more computing devices. As depicted, for example, at least in
In various embodiments, communications means, data store(s), processor(s), or memory may interact with other components on the computing device, in order to effect the provisioning and display of various functionalities associated with the system and method detailed herein. One of ordinary skill in the art would appreciate that there are numerous configurations that could be utilized with embodiments of the present invention, and embodiments of the present invention are contemplated for use with any appropriate configuration.
According to an embodiment of the present invention, the communications means of the system may be, for instance, any means for communicating data over one or more networks or to one or more peripheral devices attached to the system. Appropriate communications means may include, but are not limited to, circuitry and control systems for providing wireless connections, wired connections, cellular connections, data port connections, Bluetooth connections, or any combination thereof. One of ordinary skill in the art would appreciate that there are numerous communications means that may be utilized with embodiments of the present invention, and embodiments of the present invention are contemplated for use with any communications means.
Throughout this disclosure and elsewhere, block diagrams and flowchart illustrations depict methods, apparatuses (i.e., systems), and computer program products. Each element of the block diagrams and flowchart illustrations, as well as each respective combination of elements in the block diagrams and flowchart illustrations, illustrates a function of the methods, apparatuses, and computer program products. Any and all such functions (“depicted functions”) can be implemented by computer program instructions; by special-purpose, hardware-based computer systems; by combinations of special purpose hardware and computer instructions; by combinations of general purpose hardware and computer instructions; and so on—any and all of which may be generally referred to herein as a “circuit,” “module,” or “system.”
While the foregoing drawings and description may set forth functional aspects of the disclosed systems, no particular arrangement of software for implementing these functional aspects should be inferred from these descriptions unless explicitly stated or otherwise clear from the context.
Each element in flowchart illustrations may depict a step, or group of steps, of a computer-implemented method. Further, each step may contain one or more sub-steps. For the purpose of illustration, these steps (as well as any and all other steps identified and described above) are presented in order. It will be understood that an embodiment can contain an alternate order of the steps adapted to a particular application of a technique disclosed herein. All such variations and modifications are intended to fall within the scope of this disclosure. The depiction and description of steps in any particular order is not intended to exclude embodiments having the steps in a different order, unless required by a particular application, explicitly stated, or otherwise clear from the context.
Traditionally, a computer program consists of a sequence of computational instructions or program instructions. It will be appreciated that a programmable apparatus (i.e., computing device) can receive such a computer program and, by processing the computational instructions thereof, produce a further technical effect.
A programmable apparatus may include one or more microprocessors, microcontrollers, embedded microcontrollers, programmable digital signal processors, programmable devices, programmable gate arrays, programmable array logic, memory devices, application specific integrated circuits, or the like, which can be suitably employed or configured to process computer program instructions, execute computer logic, store computer data, and so on. Throughout this disclosure and elsewhere a computer can include any and all suitable combinations of at least one general purpose computer, special-purpose computer, programmable data processing apparatus, processor, processor architecture, and so on.
It will be understood that a computer can include a computer-readable storage medium and that this medium may be internal or external, removable and replaceable, or fixed. It will also be understood that a computer can include a Basic Input/Output System (BIOS), firmware, an operating system, a database, or the like that can include, interface with, or support the software and hardware described herein.
Embodiments of the system as described herein are not limited to applications involving conventional computer programs or programmable apparatuses that run them. It is contemplated, for example, that embodiments of the invention as claimed herein could include an optical computer, quantum computer, analog computer, or the like.
Regardless of the type of computer program or computer involved, a computer program can be loaded onto a computer to produce a particular machine that can perform any and all of the depicted functions. This particular machine provides a means for carrying out any and all of the depicted functions.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Computer program instructions can be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner. The instructions stored in the computer-readable memory constitute an article of manufacture including computer-readable instructions for implementing any and all of the depicted functions.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
The elements depicted in flowchart illustrations and block diagrams throughout the figures imply logical boundaries between the elements. However, according to software or hardware engineering practices, the depicted elements and the functions thereof may be implemented as parts of a monolithic software structure, as standalone software modules, or as modules that employ external routines, code, services, and so forth, or any combination of these. All such implementations are within the scope of the present disclosure.
Unless explicitly stated or otherwise clear from the context, the verbs “execute” and “process” are used interchangeably to indicate execute, process, interpret, compile, assemble, link, load, any and all combinations of the foregoing, or the like. Therefore, embodiments that execute or process computer program instructions, computer-executable code, or the like can suitably act upon the instructions or code in any and all of the ways just described.
The functions and operations presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent to those of skill in the art, along with equivalent variations. In addition, embodiments of the invention are not described with reference to any particular programming language. It is appreciated that a variety of programming languages may be used to implement the present teachings as described herein, and any references to specific languages are provided for disclosure of enablement and best mode of embodiments of the invention. Embodiments of the invention are well suited to a wide variety of computer network systems over numerous topologies. Within this field, the configuration and management of large networks include storage devices and computers that are communicatively coupled to dissimilar computers and storage devices over a network, such as the Internet.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. For example, advantageous results may be achieved if the steps of the disclosed techniques were performed in a different sequence, or if components of the disclosed systems were combined in a different manner, or if the components were supplemented with other components. Accordingly, other implementations are contemplated within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/623,051, titled “HardBeatz Bluetooth Speaker,” filed by Charlie Jordan, Applicant, on Jan. 29, 2018; Inventor: Charlie Jordan. This application incorporates the entire contents of the above-referenced application herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20140355807 | McDowell | Dec 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20190231020 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62623051 | Jan 2018 | US |