This application is related to patent applications: “HARDWARE COMMAND TRAINING FOR MEMORY USING WRITE LEVELING MECHANISM,” concurrently filed with this application, with attorney docket number NVID-P-SC-10-0133-US1; “HARDWARE CHIP SELECT TRAINING FOR MEMORY USING WRITE LEVELING MECHANISM,” concurrently filed with this application, with attorney docket number NVID-P-SC-10-0135-US1; “MULTI-DIMENSIONAL HARDWARE DATA TRAINING BETWEEN MEMORY CONTROLLER AND MEMORY,” concurrently filed with this application, with attorney docket number NVID-P-SC-10-0137-US1; “METHOD AND SYSTEM FOR CHANGING BUS DIRECTION IN DDR MEMORY SYSTEMS,” concurrently filed with this application, with attorney docket number NVID-P-SC-10-0127-US1; and “HARDWARE CHIP SELECT TRAINING FOR MEMORY USING READ COMMANDS,” concurrently filed with this application, with attorney docket number NVID-P-SC-10-0134-US1, which are all herein incorporated by reference in their entirety.
In memory qualification and validation, proper timing between a memory controller and DRAM chips is established for operation. The memory controller ensures that command signals meet setup and hold time tolerances at the DRAM chip. Current methods to train command signals are achieved by the cumbersome method of extracting trace length and delays of command signals and clock signals for each and every board type using various printed circuit board trace length extraction tools. With the help of a software algorithm, the delays are analyzed and compensated for.
The current methodology is error prone as it involves interaction of various tools, software and manual interpretation of results. Further, it is time consuming as all the tools need to be set up and loaded with the proper constraints and the process must be repeated for every possible board type and every possible memory configuration. Finally, the methodology is not ideal because as the frequency of DRAM increases, the available command signal and clock eye width decreases making it increasingly difficult to obtain a common skew compensation across the entire silicon process range.
Accordingly, a need exists for a method and system of automatic hardware based memory controller command signal training. Embodiments of the present invention disclose a method and system for automatically training the skew between command signals and clock signals using read commands for memory devices, e.g. DDR3 compatible devices in one embodiment.
More specifically, embodiments of the present invention are directed towards a method of training command signals for a memory module. The method includes programming a memory controller into a mode wherein a column access strobe is active for a single clock cycle. The method then programs a programmable delay line of the column access strobe with a delay value and performs initialization of the memory module. A read command is then sent to the memory module. A number of data strobe signals sent by the memory module in response to the read command are counted. A determination is made whether the memory module is in a pass state or an error state based on a result of the counting.
In another embodiment, the present invention is drawn to a computer readable storage medium having stored thereon, computer executable instructions that, if executed by a computer system cause the computer system to perform a method of training command signals for a memory module. The method includes programming a memory controller into a mode wherein a column access strobe is active for a single clock cycle. The method then programs a programmable delay line of the column access strobe with a delay value and performs initialization of the memory module. A read command is then sent to the memory module. A number of data strobe signals sent by the memory module in response to the read command are counted. A determination is made whether the memory module is in a pass state or an error state based on a result of the counting.
In yet another embodiment, the present invention is drawn to a system. The system comprises a processor coupled to a computer readable storage media using a bus and executing computer readable code which causes the computer system to perform a method of training command signals for a memory module. The method includes programming a memory controller into a mode wherein a column access strobe is active for a single clock cycle. The method then programs a programmable delay line of the column access strobe with a delay value and performs initialization of the memory module. A read command is then sent to the memory module. A number of data strobe signals sent by the memory module in response to the read command are counted. A determination is made whether the memory module is in a pass state or an error state based on a result of the counting.
The embodiments of the present invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the present invention will be discussed in conjunction with the following embodiments, it will be understood that they are not intended to limit the present invention to these embodiments alone. On the contrary, the present invention is intended to cover alternatives, modifications, and equivalents which may be included with the spirit and scope of the present invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, embodiments of the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
Computer system 100 also comprises a graphics subsystem 114 including at least one graphics processor unit (GPU) 110. For example, the graphics subsystem 114 may be included on a graphics card. The graphics subsystem 114 may be coupled to a display 116. One or more additional GPU(s) 110 can optionally be coupled to computer system 100 to further increase its computational power. The GPU(s) 110 may be coupled to the CPU 102 and the system memory 104 via a communication bus 108. The GPU 110 can be implemented as a discrete component, a discrete graphics card designed to couple to the computer system 100 via a connector (e.g., AGP slot, PCI-Express slot, etc.), a discrete integrated circuit die (e.g., mounted directly on a motherboard), or as an integrated GPU included within the integrated circuit die of a computer system chipset component (not shown). Additionally, memory devices 112 may be coupled with the GPU 110 for high bandwidth graphics data storage, e.g., the frame buffer. In an embodiment, the memory devices 112 may be dynamic random-access memory. A power source unit (PSU) 118 may provide electrical power to the system board 106 and graphics subsystem 114.
The CPU 102 and the GPU 110 can also be integrated into a single integrated circuit die and the CPU and GPU may share various resources, such as instruction logic, buffers, functional units and so on, or separate resources may be provided for graphics and general-purpose operations. The GPU may further be integrated into a core logic component. Accordingly, any or all the circuits and/or functionality described herein as being associated with the GPU 110 can also be implemented in, and performed by, a suitably equipped CPU 102. Additionally, while embodiments herein may make reference to a GPU, it should be noted that the described circuits and/or functionality can also be implemented and other types of processors (e.g., general purpose or other special-purpose coprocessors) or within a CPU.
System 100 can be implemented as, for example, a desktop computer system or server computer system having a powerful general-purpose CPU 102 coupled to a dedicated graphics rendering GPU 110. In such an embodiment, components can be included that add peripheral buses, specialized audio/video components, IO devices, and the like. Similarly, system 100 can be implemented as a portable device (e.g., cellphone, PDA, etc.), direct broadcast satellite (DBS)/terrestrial set-top box or a set-top video game console device such as, for example, the Xbox®, available from Microsoft Corporation of Redmond, Wash., or the PlayStation3®, available from Sony Computer Entertainment Corporation of Tokyo, Japan. System 100 can also be implemented as a “system on a chip”, where the electronics (e.g., the components 102, 104, 110, 112, and the like) of a computing device are wholly contained within a single integrated circuit die. Examples include a hand-held instrument with a display, a car navigation system, a portable entertainment system, and the like.
In one example, memory controller 120 includes output signals consistent with the JEDEC DDR3 SDRAM Specification. The output signals are sent to memory module 104 (
Memory controller 120 also includes bidirectional signals DQS-DQS# 236 and DQ 238 (both described in
It is appreciated that embodiments of the present invention enable the hardware within computer system 100 (
Advantageously, embodiments of the present invention provide for a method to train command signals on memory controller 120. Often times, there may be a high variance in the skew between the command signals and the clock signal 224. This variance may be attributed to silicon speed grade, packaging, board trace length, or variable DIMM fly by delay due to loading. Since the memory module 104 (
Command signal training is typically a part of memory qualification and validation procedures. One advantage to using the read command to train the command signals versus clock 224 delay is that the memory module 104 (
Memory controller 120 supports four features consistent with the training. First, memory controller 120 supports adjustable delay settings on command (A 232, BA 239, RAS# 230, CAS# 239 and WE# 241), clock 224, and control (not shown) signals.
Second, memory controller 120 also supports a special mode wherein all command signals are driven for a programmable time period rather than only one clock cycle. This mode is used for performing memory module initialization.
Third, memory controller 120 supports a special wherein all command signals except CAS# 239 are driven for a programmable time period instead of only one clock cycle and driving CAS# 239 for exactly one clock cycle. This mode is used for sending read commands during the command signal training. Since only CAS# 239 is being trained, this mode ensures that all the remaining command signal bits are sampled correctly at the memory module 104 as they are practically kept static by driving the command signal bits statically for a significant period of time.
Fourth, memory controller 120 comprises a counter circuit 240 that counts the number of DQS-DQS# 236 signal strobes received by the memory module 104 (
Memory controller 120 also supports a mechanism to reset the memory module 104 (
DQS-DQS# 236 is the data strobe signal that is output with read data and input with write data. The data strobe is edge-aligned with read data and centered with write data. DQ 238 is the bi-directional data bus wherein data is transmitted over the respective bus.
In block 404, a programmable delay line of the column access strobe (CAS#) signal is programmed with a delay value. For example, in
In block 406, the memory module is initialized. For example, in
In block 408, a read command is sent to the memory module. For example, in
In block 410, a number of data strobe signals sent by the memory module in response to the read command are counted. For example, in
In block 412, it is determined whether the memory module is in a pass state or an error state based on a result of the counting. The memory module is determined to be in a pass state when a count of the data strobe signals by the memory module is equal to a burst length of the read command. The memory module is determined to be in an error state when the count of the data strobe signals by the memory module is equal to zero. The burst length is equal to 8 according to the JEDEC DDR3 Specification.
In an embodiment, the pass/error state of the memory module is recorded. If the memory module is determined to be in an error state, the memory module is reset via the #RESET signal. The programmable delay line is then reprogrammed with a different delay value and the command signal training process is repeated. Each subsequent pass/error state of the memory module is recorded and a range of values for where the memory module is in a pass state is compiled. These range of values represent the acceptable command signal timing values with respect to the clock to ensure proper function of the memory module.
In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is, and is intended by the applicants to be, the invention is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Hence, no limitation, element, property, feature, advantage, or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings.
Number | Date | Country | |
---|---|---|---|
Parent | 13727078 | Dec 2012 | US |
Child | 13728976 | US |