Hardware-efficient implementation of dynamic element matching in sigma-delta DAC's

Information

  • Patent Grant
  • 6795003
  • Patent Number
    6,795,003
  • Date Filed
    Thursday, January 30, 2003
    21 years ago
  • Date Issued
    Tuesday, September 21, 2004
    20 years ago
Abstract
A data shuffler apparatus for shuffling input bits includes a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a vector {x0′, x1′} such that a number of 1's at bit x0′ over time is within ±1 of a number of 1's at bit x1′. At least two 4-bit vector shufflers input the vectors {x0′, x1′}, and output 4-bit vectors, each 4-bit vector corresponding to a combination of corresponding two vectors {x0′, x1′} produced by the bit shufflers, such that the 4-bit vector shufflers operate on the vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1. The current state of the bit shufflers is updated based on a next state of the 4-bit vector shufflers.
Description




BACKGROUND OF THE INVENTION




In high resolution digital-to-analog converters (DACs), performance metrics such as linearity and noise are nominally determined by the matching of parameters derived from physical quantities in the construction of the DACs on an integrated circuit (IC), such as width, length, thickness, doping, etc. As a general rule, for each additional bit of performance in the DAC, parameter matching needs to be twice as tight. This translates to an increase by a factor of four in the IC area required by the DAC. When the DAC resolution is in the 16-bit range, it is no longer practical/economical to use size alone to achieve the required matching.




Over-sampled (sigma-delta) DACs (also referred to as “converters”) alleviate the need for raw matching using single-bit conversion (so called 1-bit DACs in CD players). A single-bit DAC has only two points in a transfer function of the DAC, and thus is inherently linear. The function of a sigma-delta modulator with a one-bit quantizer is to approximate a high resolution low frequency signal with a high frequency two-level signal. The drawback here is this produces large amounts of out-of-band, for example, high frequency, noise.




One solution is to use more than two levels of quantization. For example, 17 levels may be used. However, now the linearity requirements apply to the fall resolution of the DAC. That is, for a 16-bit DAC, the transfer function of the DAC with these quantization levels must be collinear to 1 part in 2


16


, which is 1 part in 65,536. Such linearity is difficult to achieve with raw parameter matching of the single-bit DACs. Thus, there is need to achieve such linearity in a multi-level DAC using an alternative to raw parameter matching.




Multi-bit DACs have the advantage of significantly increasing the precision limit of the single-bit converter. The major drawback of the multi-bit DAC is the non-linearity presented by the imperfect analog circuit mismatches. Specifically, the non-linearity stems from the mismatching between the unit DAC elements, and causes significant performance degradation. Since the multi-bit DAC is outside the Δ-Σ modulator, its error cannot be eliminated by the noise-shaping loop of the Δ-Σ modulator, while the quantization noise inside the Δ-Σ modulator can be noise-shaped by the Δ-Σ modulator feedback loop.




There has been a lot of literatures discussing about ways to noise-shape the mismatching error. See,. e.g., I. Galton, “Spectral Shaping of Circuit Errors in Digital-to-Analog Converters”,


IEEE Trans. on Circuits and Systems


-


II: Analog and Digital Signal Processing


, pp. 808-817, vol. 44, no. 10, October 1997; J. Grilo et al., “A 12-mW ADC Delta-Sigma Modulator with 80dB of Dynamic Range Integrated in a Single-Chip Bluetooth Transceiver”,


IEEE Journal of Solid-State Circuits


, pp. 271-278, vol. 37, March 2002; J. Welz, I. Galton, and E. Fogleman, “Simplified Logic for First-Order and Second-Order Mismatch-Shaping Digital-to-Analog Converters”,


IEEE Trans. on Circuits and Systems


-


II: Analog and Digital Signal Processing


, pp, 1014-1027, vol. 48, no. 11, November 2001; R. Adams et al., “A 113-dB SNR Oversampling DAC with Segmented Noise-Shaped Scrambling”,


IEEE Journal of Solid


-


State Circuits


, pp. 1871-1878, vol. 33, no. 12, December 1998; T. Kwan et al., “A Stereo Multibit ΣΔ DAC with Asynchronous Master-Clock Interface”,


IEEE Journal of Solid


-


State Circuits


, pp. 1881-1887, vol. 31, no. 12, December 1996; A. Yasuda et al., “A Third-Order Δ-Σ Modulator Using Second-Order Noise-Shaping Dynamic Element Matching”,


IEEE Journal of Solid


-


State Circuits


, pp. 1879-1886, vol. 33, no. 12, December 1998; R. Radke et al., “A Spurious-Free Delta-Sigma DAC Using Rotated Data Weighted Averaging”,


IEEE Custom Integrated Circuits Conference,


1999, pp.125-128; R. Radke and T. S. Fiez, “Improved ΣΔ DAC linearity using data weighted averaging”,


IEEE International Symposium


, vol.1, pp. 13-16, 1995; R. Radke et al., “A 14-bit Current-Mode ΣΔ DAC Based Upon Rotated Data Weighted Averaging”,


IEEE Journal of Solid


-


State Circuits


, vol. 35, no. 8, August 2000. The tree-structure (see I. Galton; J. Grilo et al.; and J. Welz et al., cited above) is one of the best noise-shaping structure, in which the input thermometer code is split into two numbers, which then into four numbers, and so on. The swapping cells is controlled by the Parity Detector outputs, and internally performing arithmetic operations to switch the inputs. The tree-structure results in controlled spectral shaping of the DAC mismatch errors. However, some residual non-linearity due to the DEM remains.




SUMMARY OF THE INVENTION




The present invention is directed to a hardware-efficient implementation of dynamic element matching in sigma-delta DAC's, that substantially obviates one or more of the problems and disadvantages of the related art.




There is provided a data shuffler apparatus for shuffling input bits including a plurality of bit shufflers each inputting corresponding two bits x


0


and x


1


of the input bits and outputting a vector {x


0


′, x


1


} such that
























Vector







Current State




Input Bits




Next State




{x


0


′, x


1


′}













S


0


(0)




x


0


= x


1






S


0


(0)




{x


0


, x


1


}







S


0


(0)




x


0


≠ x


1






S


1


(1)




{x


1


, x


0


}







S


1


(1)




x


0


= x


1






S


1


(1)




{x


0


, x


1


}







S


1


(1)




x


0


≠ x


1






S


0


(0)




{x


0


, x


1


}















At least two 4-bit vector shufflers input the vectors {x


0


′, x


1


′} and output 4-bit vectors each corresponding to a combination of two vectors {x


0


′, x


1


′}, such that the 4-bit vector shufflers operate on the vectors {x


0


′, x


1


′} in the same manner as the bit shufflers operate on the bits x


0


and x


1


. The current state of the bit shufflers is updated based on a next state of the 4-bit vector shufflers.




In another aspect there is provided a data shuffler apparatus for shuffling input bits including a plurality of bit shufflers each inputting corresponding two bits x


0


and x


1


of the input bits and outputting a vector {x


0


′, x


1


′} such that a number of 1's at bit x


0


′ over time is within ±1 of a number of 1's at bit x


1


′. At least two 4-bit vector shufflers input the vectors {x


0


, x


1


}, and output 4-bit vectors, each 4-bit vector corresponding to a combination of corresponding two vectors {x


0


′, x


1


′} produced by the bit shufflers, such that the 4bit vector shufflers operate on the vectors {x


0


′, x


1


′} in the same manner as the bit shufflers operate on the bits x


0


and x


1


. The current state of the bit shufflers is updated based on a next state of the 4-bit vector shufflers.




In another aspect there is provided a digital to analog converter including an interpolation filter receiving an N-bit digital input. A delta-sigma modulator receiving an output of the interpolation filter. A dynamic element matching encoder receives N bits from the delta-sigma modulator, and outputs an analog signal corresponding the digital input. The dynamic element matching encoder includes a plurality of bit shufflers each inputting two bits x


0


and x


1


of the N bits, and outputting a vector {x


0


′, x


1


′} such that a number of 1's at bit x


0


′ over time is within ±1 of a number of 1's at bit x


1


′. A plurality of vector shufflers arranged both in parallel and in successive levels input the vectors {x


0


, x


1


′} and output vectors each corresponding to a combination of vectors produced by a previous set of shufflers. The vector shufflers operate on their respective input vectors in the same manner as the bit shufflers operate on the bits x


0


and x


1


. The current state of the bit shufflers is updated based on a next state of the last level of the vector shufflers.




In another aspect there is provided a method of shuffling a plurality of input bits including converting each set of bits x


0


and x


1


into a vector {x


0


′, x


1


′} such that
























Vector







Current State




Input Bits




Next State




{x


0


′, x


1


′}













S


0


(0)




x


0


= x


1






S


0


(0)




{x


0


, x


1


}







S


0


(0)




x


0


≠ x


1






S


1


(1)




{x


1


, x


0


}







S


1


(1)




x


0


= x


1






S


1


(1)




{x


0


, x


1


}







S


1


(1)




x


0


≠ x


1






S


0


(0)




{x


0


, x


1


}















, inputting the vectors {x


0


′, x


1


′} and outputting 4-bit vectors each corresponding to a shuffled combination of two vectors {x


0


′, x


1


′}, in the same manner as the bits x


0


and x


1


are shuffled, updating the current state and for shuffling the bits x


0


and x


1


based on a next state corresponding to the 4-bit vectors; and continuously repeating the previous steps.




In another aspect there is provided a method of converting a digital signal to an analog signal including filtering the digital signal with an interpolation filter, modulating an output of the interpolation filter with a delta-sigma modulator to produce an N bit signal, receiving the N bits from the delta-sigma modulator, shuffling each set of bits x


0


and x


1


of the N bits and outputting a vector {x


0


′, x


1


′} such that a number of 1's at x


0


′ over time is within ±1 of a number of 1's at bit x


1


′, converting the vectors {x


0


′, x


1


′} into 4-bit vectors each corresponding to a combination of two vectors {x


0


′, x


1


′}, such that the 4-bit vectors are shuffled in the same manner as the bits x


0


and x


1


, updating a current state and for shuffling the bits x


0


and x


1


based on a next state used for shuffling the 4-bit vectors, and outputting an analog signal corresponding to the digital signal.




Additional features and advantages of the invention will be set forth in the description that follows. Yet further features and advantages will be apparent to a person skilled in the art based on the description set forth herein or may be learned by practice of the invention. The advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.




It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.











BRIEF DESCRIPTION OF THE DRAWINGS




The accompanying drawings, which are included to provide a further understanding of the exemplary embodiments of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:





FIG. 1

shows a block diagram of a conventional 4-bit Σ-Δ digital to analog converter.





FIG. 2

shows a 4-bit digital to analog converter structure.





FIG. 3

shows a conversion of a thermometer code to a balanced code.





FIG. 4A

shows connection of swapper cells.





FIG. 4B

shows an equivalent representation of

FIG. 4A

using buses.





FIG. 5

shows a state transition diagram for a shuffler unit of FIG.


4


A.





FIG. 6

shows a hardware implementation of the shuffler of FIG.


4


A.





FIG. 7

shows a sequencing example for a dynamic element matching encoder.





FIGS. 8A-8C

show a spectrum of a digital to analog converter output with DAC mismatch and DEM.





FIG. 9

shows performance comparison for 1% DAC mismatch error.





FIG. 10

shows the use of the present invention in an analog to digital converter.











DETAILED DESCRIPTION OF THE INVENTION




Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings.




As used herein, the terms “logic bits,” “logic signals,” and “bits” are used interchangeably to refer to the same signals. Also, the terms “high-level bit,” “logic ‘1’”, and “logic-one,” are interchangeable, as are the terms “low-level bit,” “logic ‘0’”, and “logic-zero.”




The Σ-Δ digital-to-analog converters are widely used in high-precision, low-bandwidth applications such as digital audio processing.

FIG. 1

shows the block diagram of a conventional 4-bit Σ-Δ DAC with preceding and post filtering. As shown in

FIG. 1

, the 4-bit Σ-Δ DAC includes a Sinc interpolation filter


101


(for example, a 4


th


order Sinc filter that takes the digital input). The Sinc interpolation filter


101


outputs filtered data to a Δ-Σ modulator


102


. The Δ-Σ modulator


102


outputs the data to a DEM encoder


103


. The output of the DEM encoder


103


is then low pass filtered by filter


104


. The DEM (Dynamic Element Matching) Encoder block preceding the 9-level DAC noise-shapes the DAC mismatching error.




This disclosure describes a more hardware-efficient implementation than the tree-structure implementation. A balanced code is introduced. Modulation of the mismatch error is explained. The detailed implementation of the swapping cell is presented, along with the simulation results.





FIG. 2

illustrates a 4-bit Σ-Δ DAC structure. A unit DAC element


201


operates according to










x
0


=

{





1
+

e
ho


,





if






x
0







(
n
)


=
1







e
lo

,





if






x
0







(
n
)


=
0









Eq
.





(
1
)














where e


h






0




and e


l






0




are the analog output errors for one and zero input, respectively.




Eq. (1) can be rewritten as








x′




0


=(1


+e




h






0






−e




l






0




)


x




0




+e




l






0




  Eq. (2)






and the output of the unit DAC element


201


A y


0


(n) in

FIG. 2

can be written as














y
0







(
n
)


=





(

1
+

e

h
0


-

e

l
0



)







x
0







(
n
)


+

e

l
0


+












(

1
+

e

h
1


-

e

l
1



)







x
1







(
n
)


+

e

l
1









=





(

1
+

e

h
0


-

e

l
0


+
1
+

e

h
1


-

e

l
1



)










x
0







(
n
)


+


x
1







(
n
)



2


+












(


e

h
0


-

e

l
0


-

(


e

h
1


-

e

l
1



)


)










x
0







(
n
)


-


x
1







(
n
)



2


+

e

l
0


+

e

l
1










(

Eq
.





(
3
)


)













Note that the Eq. (3) also applies to y


1


(n) and z


0


(n) with the appropriate inputs, due to the recursive nature of the structure in FIG.


2


. For the same reason, the discussion will focus on the building block B


0


(


201




a


) in

FIG. 2

, the results are applicable to the blocks B


1


(


201




b


) and B


2


(


201




c


). The second term in Eq. (3) represents the mismatch error between the two elements, and is defined as










Δ






(
n
)


=



(


e

h
0


-

e

l
0


-

(


e

h
1


-

e

l
1



)


)










x
0







(
n
)


-


x
1







(
n
)



2


=


ε
01







(



x
0







(
n
)


-


x
1







(
n
)



)







Eq
.





(
4
)














where







ε
01

=



e

h
0


-

e

l
0


-

(


e

h
1


-

e

l
1



)


2











is the mismatch coefficient between unit DAC elements 0 and 1. There are four possible combinations for x


0


(n)x


1


(n): “00”, “01”, “10”, “11”. The first and the last combinations have no contributions to Δ(n) since the input pair x


0


(n) and x


1


(n) are equal. Only combinations x


0


(n)x


1


(n)=“01” and “10” contribute mismatching errors to Δ(n).




There are quite a few techniques of implementing the first-order noise-shaping of the DAC errors. To preserve the first-order noise-shaping, the DAC elements


201


must be selected such that the mismatching error, Δ(n), quickly sums to zero. To this end, it is the best to make the opposite polarity for the subsequent occurrence of the “01” or “10”, so that the mismatch error cancelled out quickly. For example, to represent four consecutive 1's in the DAC output, the noise shaping requires x


0


(n)x


1


(n) to sequence through {“01”, “10”, “01”, “10”}, as oppose to {“01”, “10,”, “10”, “01”}, because the latter sequence cancels the error in four cycles while the former sequence cancels the error in just two cycles.




Since the order of “10” and “01” are important to the Δ(n), it would be best to confine the input to just one pattern, such as “10” only, to facilitate the subsequent DEM Encoder


103


switching rules for noise-shaping. The balanced code is proposed, as shown in the Table 1 below. This code is the input (instead of the conventional thermometer code) to the proposed DEM Encoder


103


.

FIG. 3

shows the conversion between the thermometer code and the balanced code, with no logic but wire-routing only. This conversion is necessary for DAC application whose output is thermometer code.












TABLE 1











Balanced code vs. thermometer code













Input




Balanced code




Thermometer code






decimal




[B


0


B


1


B


2


B


3


B


4


B


5


B


6


B


7


]




[T


0


T


1


T


2


T


3


T


4


T


5


T


6


T


7


]









8




QA = 8′b1111_1111;




8′b1111_1111;






7




QA = 8′b1111_1110;




8′b1111_1110;






6




QA = 8′b1110_1110;




8′b1111_1100;






5




QA = 8′b1110_1010;




8′b1111_1000;






4




QA = 8′b1010_1010;




8′b1111_0000;






3




QA = 8′b1010_1000;




8′b1110_0000;






2




QA = 8′b1000_1000;




8′b1100_0000;






1




QA = 8′b1000_0000;




8′b1000_0000;






0




QA = 8′b0000_0000;




8′b0000_0000;














As shown in Table 1, there are two properties for the balanced code:




1) the balanced code is maximally balanced with respect to the centerlines of the entire code, half codes, and quadruple codes, and 2) the order of “1” and “0” are consistent throughout the code. For example, the code for decimal 3 in the Table 1 cannot be 8′b1000





1010, because the rest of the codes, such as 7, 5 and 1 always have a “1” that appears on the left-hand-side first. Both properties make the DEM Encoder


103


easy to implement.




With the balanced code as illustrated in Table 1, the combinations of x


0


(n)x


1


(n) are reduced to “00”, “11”, “10”, and the first two contribute no errors to Δ(n). A simple way to noise-shape the mismatching error Δ(n) associated with the input x


0


(n)x


1


(n)=“10” is modulating the x


0


(n)−x


1


(n). In another words, the input {x


0


(n),x


1


(n)} is swapped for every even occurrence of “10”. For example, assume the input is a constant, with repeated strings of “10”. For the first “10”, its order is kept, and the output Δ(1) in Eq. (4) is ε


01


. For the second “10”, its order is swapped, and Δ(2) is −ε


01


, so the output Δ(n) sequence is {ε


01


, −ε


01


, ε


01


, −


01


, . . . }, which is a high-frequency modulated noise. It does not matter whether the input sequence of “00” and “11”, is swapped or not, because the associated Δ(n) is zero, as shown in Eq. (4). In the actual implementation, the order for the equal inputs is kept as is.





FIG. 4A

is the diagram of the swap-cell connections. As shown in

FIG. 4A

, for an 8-bit digital analog converter, the first level of conversion uses 4 shufflers, or swapper cells,


201


, which were illustrated in FIG.


2


. Each swapper cell, or shuffler, takes 2 bits as input, and outputs 2 bits (swapped, or not swapped, as described above) to the next level, i.e., Level 2. There are two Level 2 swappers


402


, each of which takes four inputs, that are grouped into vectors. x


0


and x


1


form one vector, and x


2


and X


3


form a second vector, for the first Level 2 swapper


402




a


; similarly, for the second Level 2 swapper


402




b,


x


4


and x


5


form a first vector, and x


6


and x


7


form a second vector. Note that both swappers


402




a,




402




b


operate on the vectors, rather than on the individual bits, although the swapping operation is the same conceptually as that for the single-bit swappers


201


.




A Level 3 swapper


403


operates on the vectors outputted by Level 2 swappers


402




a


and


402




b,


as shown in FIG.


4


A. Conceptually, the swapping operation is the same as for the swappers


201


.





FIG. 4B

is an equivalent representation grouping the associated bits into buses. The swapper


403


permutes depending upon its current state and the current input {x


0


, x


1


, . . . , x


7


}. Seven registers are used as the state registers corresponding to the seven swappers of

FIG. 4B

, with states S


0


and S


1


, to track the states of the seven swappers. Current state of S


1


indicates the swapper has switched, and it will not switch next time. Current state of S


0


indicates the swapper has not switched this time, and it will (or not) switch if the current input is {overscore (EQ)} (or EQ ). These state registers track the permutation history of the swappers throughout the three levels.




A state transition diagram is shown in

FIG. 5

, where EQ asserts for the symmetric input code with respect to the code's centerline, such as “00” and “11” for Level 1, and {overscore (EQ)} asserts for the “10” input for Level 1. The state diagram in

FIG. 5

applies to all three levels of FIG.


4


A. For Level 2, the inputs “00





00”, “10





10”, and “11





11” are considered as EQ , while the others are considered as {overscore (EQ)}. For example, assume an input code of {x


0


,x


1


, . . . , x


7}={


11





10





10





10}, then we have EQ, {overscore (EQ)}, {overscore (EQ)}, {overscore (EQ)}, {overscore (EQ)}, EQ ,and {overscore (EQ)} assert for swappers


201


,


402


and


403


(ouputs S


10


, S


11


, S


12


, S


13


, S


20


, S


21


, and S


30


), respectively.




Table 2 below gives the truth table of the finite-state-machine in FIG.


5


.












TABLE 2











Truth Table for the finite-state-machine and swapper-cell control.














Current









State






Swap Control






(SC)




Input Pair Equal




Next State (SN)




(CTRL)









S


0


(0)




EQ(0)(x


0


= x


1


)




S


0


(0)




0






S


0


(0)




{overscore (EQ)}(1)(x


0


≠ x


1


)




S


1


(1)




1






S


1


(1)




EQ(0)(x


0


= x


1


)




S


1


(1)




0






S


1


(1)




{overscore (EQ)}(1)(x


0


≠ x


1


)




S


1


(0)




0














The logic for the Next State (SN) and the swapper control (CTRL) are respectively: SN=XOR(SC, XOR(IN)), CTRL=AND(NOT(SC), XOR(IN)). The circuit implementation of the switching box is shown in FIG.


6


. As shown in

FIG. 6

, a swapper cell


201


includes an XOR gate


601


taking as inputs x


0


and x


1


. The output of the XOR gate


601


is fed into another XOR gate


602


, and an AND gate


604


. A multiplexer


605


is controlled by the output of the AND gate


604


. The output of the XOR gate


602


is fed into a DQ flip flop


606


and also represents the Next State SN. The Q output of the DQ flip flop


606


, which also represents the Current State SC is fed back into the XOR gate


602


, and through an inverter


603


to the AND gate


604


. The outputs of the multiplexer


605


, which is controlled by the output of the AND gate


604


, represent x′


0


and x′


1


, and are fed in vector form to the Level 2 swapper


402


. The circuit of

FIG. 6

also represents each of swappers


402


and


403


, except that x


0


and x


1


and x′


0


and x′


1


are replaced by appropriate multiple-bit vectors.




Table 2 is similar to the control logic of the scrambler in R. Adams, K. Nguyen, and K. Sweetland, “A 113-dB SNR Oversampling DAC with Segmented Noise-Shaped Scrambling”,


IEEE Journal of Solid


-


State Circuits


, pp. 1871-1878, vol. 33, no. 12, December 1998 and T. Kwan, R. Adams, and R. Libert, “A Stereo Multibit ΣΔ DAC with Asynchronous Master-Clock Interface”,


IEEE Journal of Solid


-


State Circuits


, pp. 1881-1887, vol. 31, no. 12, December 1996, however, the logic in

FIG. 6

is applied at all the three levels. In other words, the inputs x


0


and x


1


in

FIG. 6

are 1-bit, 2-bit and 4-bit at Level 1, 2 and 3, respectively. However, in the scrambler of Adams et al., the inputs x


0


and x


1


are always 1-bit, with its optimized routings between different levels.





FIG. 7

shows an example of the switching sequence for the two consecutive inputs of QA=“1110





1010”. The state S


ij


, with its value inside the parenthesis, corresponds to the swapper states S


ij


in

FIG. 4B

, QB, QC, and QD are the output at the Level 1, 2, and 3, respectively. QD is also the final output. The shaded states are the initial states. The states besides the QD are the final states, whose values are inherited by the initial states for the next input.




For the first input QA=“11





10





10





10”, the states are:




State_QA={S


10


, S


11


, S


12


, S


13


, S


20


, S


21


, S


30


} with a value of {0, 0, 0, 0, 0,0,0}.




For the Level 1 swapper cells S


10


, S


11


, S


12


, and S


13


, the inputs “11”, “10”, “10”, and “10” are considered as EQ, {overscore (EQ)}, {overscore (EQ)}, {overscore (EQ)}, respectively. Therefore the


201




a


(S


10


) state cell passes through, while the other cells permute as shown. After the level 1 permutation, the states become:




State_QB={S


10


, S


11


, S


12


, S


13


, S


20


, S


21


, S


30


} with a value of {0, 1, 1, 1, 0,0,0}.




For the Level 2 swapper cells


402


(S


20


and S


21


states), the QA inputs 11





10” and “10





10” are {overscore (EQ)} and EQ , respectively. Therefore the cell


402




a


permutes, and the


402




b


cell passes through. When the


402




a


cell permutes, its sub-cells


201




a


and


201




b


follow its permutation. After the Level 2 permutation, the states become:




State_QC={S


11


, S10, S


12


, S


13


, S


20


, S


21


, S


30


} with a value of {1, 0, 1, 1, 1,0,0}.




For the Level 3 swapper cell


403


, the QA input “1110





1010” is {overscore (EQ)}, therefore the swapper cell


403


permutes, and the sub-cells


201


and


402


follow its permutation. After the Level 3 permutation, the states are:




State_QD={S


12


, S


13


, S


11


, S


10


, S


21


, S


20


, S


30


} with value of {1, 1, 1, 0, 0, 1, 1}.




Thus, the first output of QD=“01





01





01





11” is obtained with the associated state value of {1, 1, 1, 0, 0, 1, 1}, which is to be inherited as the initial state value of the second input. In the actual implementation, State_QA and State_QB need only 4 bits, and 6 bits to carry all the information.




For the second sample QA=“1110





1010” (lower half of FIG.


7


), the states are:




State_QA={S


10


, S


11


, S


12


, S


13


, S


20


, S


21


, S


30


} with value of {1, 1, 1, 0, 0, 1, 1}.




After the Level 1 permutation, the states become:




State_QB ={S


10


, S


11


, S


12


, S


13


, S


20


, S


21


, S


30


} with value of {1, 0, 0, 1, 0, 1, 1}.




After the Level 2 permutation, the states become:




State_QC={S


11


, S


10


, S


12


, S


13


, S


20


, S


21


, S


30


} with value of {0, 1, 0, 1, 1, 1, 1}.




After the Level 3 permutation, the states become:




State_QD={S


11


, S


10


, S


12


, S


13


, S


20


, S


21


, S


30


} with value of {0, 1, 0, 1, 1, 1, 0}.




It will also be appreciated that while the discussion above has been primarily in terms of an 8-bit and digital to analog converter, the invention is not limited to an 8-bit implementation, but is equally applicable to 16-bits, 32-bits, 64-bits, or 2


N


converter.





FIGS. 8A-8C

show a spectrum of the DAC output with and without the proposed implementation. The DAC signal-to-noise plus distortion ratio (SNDR) is 57.5 dB and 71.4 dB for 5% and 1% mismatch error. With the proposed implementation, the SNDR goes up to 88.5 dB, almost the same as the SNDR when the DAC has no mismatching error.




The differences between the proposed method and the tree-structure in I. Galton; J. Grilo et al., and J. Welz et al. are the followings:




1) A balanced code is being used, as oppose to the thermometer code.




2) No tree-structure in the proposed implementation, and connections of swapper cell are different.




3) Swapping cell logic is simpler.




4) The parity detector in

FIG. 8

in Grilo et al. is done a posteriori to the cell switching, therefore there is a loop involved in the tree-structure in

FIG. 8

in Grilo et al. The mechanism to reduce the loop latency (

FIG. 9

in Grilo et al.) and strict timing (

FIG. 10

in Grilo et al.) is not necessary. In the description herein, the input pair equality check in done prior to the cell switching, no feedback loop involved, therefore the implementation is simpler and has no special timing requirements.




5) No random bit generator is needed. In the described structure, the implicit randomness of the input pair being equal or not perform the same function of random bit used in Grilo et al.




6) The described structure has no divided-by-two arithmetic operations involved, while these operations are necessary in the tree-structure as shown in

FIG. 5

of Welz et al., and

FIG. 6

of Galton.




7) The proposed implementation is much simpler than the tree-structure.





FIG. 9

shows the performance comparison between the proposed method and the scramble for 1% DAC mismatch error. The noise level is higher for the scramble, and the SNDR is 77.5 dB, while the proposed approach gives 88.5 dB.




3) There are seven and twelve switching blocks for the proposed method and the scrarhbler, respectively. Since each switching block requires one state-register, there are seven and twelve state registers required for the proposed approach and the scrarnbler, respectively. Therefore the proposed approach is more hardware-efficient.





FIG. 10

illustrates the use of the present invention in an analog to digital converter. As shown in

FIG. 10

, an analog input is fed into a summer


1001


. It is then inputted into an integrator


1002


and then to a second summer


1003


. The signal then is inputted into a second integrator


1004


, and then into a flash converter


1005


. From the flash converter


1005


, the digital signal is fed into a dither circuit


1008


, and is then inputted to a first 2-bit digital to analog converter


1007


, the DEM encoder


103


as described previously, and is outputted in the form of four bits (in this example). From the DEM encoder


103


, the signal is fed into a second 2-bit digital to analog converter


1006


. The outputs of the digital to analog converter


1006


and


1007


are fed to the summers


1001


and


1003


, respectively.




Conclusion




While various embodiments of the present invention have been described above, it should be understood that they have been prcsented by way of example, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention.




The present invention has been described above with the aid of functional building blocks and method steps illustrating the performance of specified functions and relationships thereof. The boundaries of these functional building blocks and method steps have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed. Also, the order of method steps may be rearranged. Any such alternate boundaries are thus within the scope and spirit of the claimed invention. One skilled in the art will recognize that these functional building blocks can be implemented by discrete components, application specific integrated circuits, processors executing appropriate software and the like or any combination thereof. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.



Claims
  • 1. A data shuffler apparatus for shuffling input bits comprising:a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a 2-bit vector {x0′, x1′} such that Current StateNext StateVectorof Bit ShufflerInput Bitsof Bit Shuffler{x0′, x1′}S0 (0)x0 = x1S0 (0){x0, x1}S0 (0)x0 ≠ x1S1 (1){x1, x0}S1 (1)x0 = x1S1 (1){x0, x1}S1 (1)x0 ≠ x1S0 (0){x0, x1} and a number of 1's at x0′ over time is within a predetermined number of 1's at x1′; and two 2-bit vector shufflers each inputting two of the 2-bit vectors {x0′, x1′} and outputting 4-bit vectors each corresponding to a combination of two vectors {x0′, x1′}, such that the 2-bit vector shufflers operate on the vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1, wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shufflers.
  • 2. The apparatus of claim 1, further comprising at least one 4-bit vector shuffler taking as an input two 4-bit vectors produced by the two 4-bit vector shufflers, and outputting an 8-bit vector,wherein the 4-bit vector shuffler operates on the two 4-bit vectors in the same manner as each bit shuffler operates on the bits x0 and x1, and wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shuffler.
  • 3. A data shuffler apparatus for shuffling input bits comprising:a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a vector {x0′, x1′} such that Current StateNext StateVectorof Bit ShufflerInput Bitsof Bit Shuffler{x0′, x1′}S0 (0)x0 = x1S0 (0){x0, x1}S0 (0)x0 ≠ x1S1 (1){x1, x0}S1 (1)x0 = x1S1 (1){x0, x1}S1 (1)x0 ≠ x1S0 (0){x0, x1}and a number of 1's at x0′ over time is within a predetermined number of 1's at x1′; and two 4-bit vector shufflers each inputting two of the vectors {x0′, x1′} and outputting 4-bit vectors each corresponding to a combination of two vectors {x0′, x1′}, such that the 4-bit vector shufflers operate on the vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1, wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shufflers, wherein the input bits are maximally balanced with respect to centerlines of all the input bits, each half of the input bits, and each quarter of the input bits, and wherein an order of 1's and 0's is consistent throughout the input bits.
  • 4. A data shuffler apparatus for shuffling input bits comprising:a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a vector {x0′, x1′} such that a number of 1's at bit x0′ over time is within +/−1 of a number of 1's at bit x1′; two 2-bit vector shufflers inputting the vectors {x0′, x1′}, and outputting 4-bit vectors, each 4-bit vector corresponding to a combination of corresponding two 2-bit vectors {x0′, x1′} produced by the bit shufflers, such that the 2-bit vector shufflers operate on the 2-bit vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1, wherein the current state of the bit shufflers is updated based on a previous state of the 2-bit vector shufflers.
  • 5. The apparatus of claim 4, further comprising at least one 4-bit vector shuffler inputting two 4-bit vectors produced by the two 2-bit vector shufflers, and outputting an 8-bit vector,wherein the 4-bit vector shuffler operates on the 4-bit vectors in the same manner as each bit shuffler operates on the bits x0 and x1, and wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shuffler.
  • 6. A data shuffler apparatus for shuffling input bits comprising:a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a vector {x0, x1′} such that a number of 1's at bit x0′ over time is within +/−1 of a number of 1's at bit x1′; two 4-bit vector shufflers inputting the vectors {x0′, x1′}, and outputting 4-bit vectors, each 4-bit vector corresponding to a combination of corresponding two vectors {x0′, x1′} produced by the bit shufflers, such that the 4-bit vector shufflers operate on the vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1, wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shufflers, wherein the input bits are maximally balanced with respect to the centerlines of all the input bits, each half of the input bits, and each quarter of the input bits, and wherein an order of 1's and 0's is consistent throughout the input bits.
  • 7. A digital to analog converter comprising:an interpolation filter receiving an N-bit digital input; a delta-sigma modulator receiving an output of the interpolation filter; and a dynamic element matching encoder receiving N bits from the delta-sigma modulator, and outputting an analog signal corresponding to the digital input, wherein the dynamic element matching encoder includes: a plurality of bit shufflers each inputting two bits x0 and x1 of the N bits, and outputting a vector {x0′, x1′} such that a number of 1's at bit x0′ over time is within +/−1 of a number of 1's at bit x1′; and a plurality of vector shufflers arranged both in parallel and in successive levels, inputting the vectors {x0′, x1′} and outputting vectors each corresponding to a combination of vectors produced by a previous set of shufflers, wherein the vector shufflers operate on their respective input vectors in the same manner as the bit shufflers operate on the bits x0 and x1, and wherein the current state of the bit shufflers is updated based on a previous state of the last level of the vector shufflers.
  • 8. The digital to analog converter of claim 7, further comprising a low pass filter for filtering the analog signal.
  • 9. A digital to analog converter comprising:an interpolation filter receiving an N-bit digital input; a delta-sigma modulator receiving an output of the interpolation filter; and a dynamic element matching encoder receiving N bits from the delta-sigma modulator, and outputting an analog signal corresponding to the digital input, wherein the dynamic element matching encoder includes: a plurality of bit shufflers each inputting two bits x0 and x1 of the N bits, and outputting a vector {x0′, x1′} such that a number of 1's at bit x0′ over time is within +/−1 of a number of 1's at bit x1′; and a plurality of vector shufflers arranged both in parallel and in successive levels, inputting the vectors {x0′, x1′} and outputting vectors each corresponding to a combination of vectors produced by a previous set of shufflers, wherein the vector shufflers operate on their respective input vectors in the same manner as the bit shufflers operate on the bits x0 and x1, and wherein the current state of the bit shufflers is updated based on a previous state of the last level of the vector shufflers, wherein the input bits are maximally balanced with respect to the centerlines of all the N bits, each half of the N bits, and each quarter of the N bits, and wherein an order of 1's and 0's is consistent throughout the input bits.
  • 10. A data shuffler apparatus for shuffling input bits comprising:a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a 2-bit vector {x0′, x1′} such that Current StateNext StateVectorof Bit ShufflerInput Bitsof Bit Shuffler{x0′, x1′}S0 (0)x0 = x1S0 (0){x0, x1}S0 (0)x0 ≠ x1S1 (1){x1, x0}S1 (1)x0 = x1S1 (1){x0, x1}S1 (1)x0 ≠ x1S0 (0){x0, x1} and wherein an order of 1's and 0's is consistent throughout the input bits; and two 2-bit vector shufflers each inputting two of the 2-bit vectors {x0′, x1′} and outputting 4-bit vectors each corresponding to a combination of two of the vectors {x0′, x1′}, such that the 4-bit vector shufflers operate on the vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1, wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shufflers.
  • 11. The apparatus of claim 10, wherein the input bits are maximally balanced with respect to centerlines of all the input bits, each half of the input bits, and each quarter of the input bits.
  • 12. The apparatus of claim 11, further comprising at least one 4-bit vector shuffler taking as an input two 4-bit vectors produced by the two 4-bit vector shufflers, and outputting an 8-bit vector,wherein the 4-bit vector shuffler operates on the two 4-bit vectors in the same manner as each bit shuffler operates on the bits x0 and x1, and wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shuffler.
  • 13. A data shuffler apparatus for shuffling input bits comprising:a plurality of bit shufflers each inputting corresponding two bits x0 and x1 of the input bits and outputting a 2-bit vector {x0′, x1′} such that Current StateNext StateVectorof Bit ShufflerInput Bitsof Bit Shuffler{x0′, x1′}S0 (0)x0 = x1S0 (0){x0, x1}S0 (0)x0 ≠ x1S1 (1){x1, x0}S1 (1)x0 = x1S1 (1){x0, x1}S1 (1)x0 ≠ x1S0 (0){x0, x1} and wherein the input bits are maximally balanced with respect to centerlines of all the input bits, each half of the input bits, and each quarter of the input bits; and two 2-bit vector shufflers each inputting two of the 2-bit vectors {x0′, x1′} and outputting 4-bit vectors each corresponding to a combination of two of the 2-bit vectors {x0′, x1′}, such that the 2-bit vector shufflers operate on the 2-bit vectors {x0′, x1′} in the same manner as the bit shufflers operate on the bits x0 and x1, wherein the current state of the bit shufflers is updated based on a previous state of the 2-bit vector shufflers.
  • 14. The apparatus of claim 13, wherein an order of 1's and 0's is consistent throughout the input bits.
  • 15. The apparatus of claim 13, further comprising at least one 4-bit vector shuffler taking as an input the two 4-bit vectors produced by the two 4-bit vector shufflers, and outputting an 8-bit vector,wherein the 4-bit vector shuffler operates on the 4-bit vectors in the same manner as each bit shuffler operates on the bits x0 and x1, and wherein the current state of the bit shufflers is updated based on a previous state of the 4-bit vector shuffler.
  • 16. A method of shuffling a plurality of input bits comprising:(a) shuffling each set of bits x0 and x1 into a 2-bit vector {x0′, x1′} such that VectorCurrent StateInput BitsNext State{x0′, x1′}S0(0)x0 = x1S0(0){x0, x1}S0(0)x0 ≠ x1S1(1){x1, x0}S1(1)x0 = x1S1(1){x0, x1}S1(1)x0 ≠ x1S0(0){x0, x1} and a number of 1's at x0′ over time is within a predetermined number of 1's at x1′; (b) inputting the 2-bit vectors {x0′, x1′} and outputting 4-bit vectors each corresponding to a shuffled combination of two 2-bit vectors {x0′, x1′}, in the same manner as the bits x0 and x1 are shuffled; (c) updating the current state and shuffling the bits x0 and x1 based on a previous state corresponding to the 2-bit vectors; and (d) continuously repeating steps (a), (b) and (c).
  • 17. The method of claim 16, further comprising the steps of:(e) shuffling the 4-bit vectors into an 8-bit vector, wherein the 4-bit vectors are shuffled in the same manner as the bits x0 and x1 to produce the 8-bit vector; (f) updating a current state and for shuffling the bits x0 and x1 based on a previous state corresponding to the 4-bit vectors; and (g) continuously repeating steps (a) through (f).
  • 18. A method of shuffling a plurality of input bits comprising:(a) shuffling each set of bits x0 and x1 into a vector {x0′, x1′} such that VectorCurrent StateInput BitsNext State{x0′, x1′}S0(0)x0 = x1S0(0){x0, x1}S0(0)x0 ≠ x1S1(1){x1, x0}S1(1)x0 = x1S1(1){x0, x1}S1(1)x0 ≠ x1S0(0){x0, x1} and a number of 1's at x0′ over time is within a predetermined number of 1's at x1′; (d) inputting the vectors {x0′, x1′} and outputting 4-bit vectors each corresponding to a shuffled combination of two vectors {x0′, x1′}, in the same manner as the bits x0 and x1 are shuffled; (c) updating the current state and for shuffling the bits x0 and x1 based on a previous state corresponding to the 4-bit vectors; and (d) continuously repeating steps (a), (b) and (c), wherein the input bits are maximally balanced with respect to the centerlines of all the input bits, each half of the input bits, and each quarter of the input bits, and wherein an order of 1's and 0's is consistent throughout the input bits.
  • 19. A method of shuffling a plurality of input bits comprising:shuffling each set of two bits x0 and x1 of the input bits into corresponding vectors {x0′, x1′} such that a number of 1's at bit x0′ over time is within +/−1 of the number of 1's at bit x1′; shuffling the 2-bit vectors {x0′, x1′} into 4-bit vectors each corresponding to a shuffled combination of two 2-bit vectors {x0′, x1′}, such that the 4-bit vectors are shuffled in the same manner as the bits x0 and x1 are shuffled; and updating a current state based on a previous state resulting from shuffling the 4-bit vectors.
  • 20. The method of claim 19, further comprising the steps of:inputting the 4-bit vectors, and outputting an 8-bit vector, wherein the 4-bit vectors are shuffled in the same manner as the bit inputs x0 and x1; and updating the current state used for shuffling the bits x0 and x1 based on a previous state resulting from shuffling the 4-bit vectors.
  • 21. A method of shuffling a plurality of input bits comprising:shuffling each set of two bits x0 and x1 of the input bits into corresponding vectors {x0′, x1′} such that a number of 1's at bit x0′ over time is within +/−1 of the number of 1's at bit x1′; shuffling the vectors {x0′, x1′} into 4-bit vectors each corresponding to a shuffled combination of two vectors {x0′, x1′}, such that the 4-bit vectors are shuffled in the same manner as the bits x0 and x1; and updating a current state based on a previous state resulting from shuffling the 4-bit vectors, wherein the input bits are fed into the bit shufflers such that the maximally balanced with respect to the centerlines of all the input bits, each half of the input bits, and each quarter of the input bits, and wherein an order of 1's and 0's are consistent throughout the input bits.
  • 22. A method of converting a digital signal to an analog signal comprising:filtering the digital signal with an interpolation filter; modulating an output of the interpolation filter with a delta-sigma modulator to produce an N bit signal; receiving the N bits from the delta-sigma modulator; shuffling each set of bits x0 and x1 of the N bits and outputting a 2-bit vector {x0′, x1′} such that a number of 1's at x0′ over time is within +/1 of a number of 1's at bit x1′; shuffling the 2-bit vectors {x0′, x1′} into 4-bit vectors each corresponding to a combination of two 2-bit vectors {x0′, x1′}, such that the 2-bit vectors are shuffled in the same manner as the bits x0 and x1; updating a current state and for shuffling the bits x0 and x1 based on a previous state used for shuffling the 2-bit vectors; and outputting an analog signal corresponding to the digital signal.
  • 23. The method of claim 22, further comprising the step of low pass filtering the analog signal.
  • 24. A method of converting a digital signal to an analog signal comprising:filtering the digital signal with an interpolation filter; modulating an output of the interpolation filter with a delta-sigma modulator to produce an N bit signal; receiving the N bits from the delta-sigma modulator; shuffling each set of bits x0 and x1 of the N bits and outputting a vector {x0′, x1′} such that a number of 1's at x0′ over time is within +/1 of a number of 1's at bit x1′; shuffling the vectors {x0′, x1′} into 4-bit vectors each corresponding to a combination of two vectors {x0′, x1′}, such that the 4-bit vectors are shuffled in the same manner as the bits x0 and x1; updating a current state and for shuffling the bits x0 and x1 based on a previous state used for shuffling the 4-bit vectors; and outputting an analog signal corresponding to the digital signal, wherein the input bits are maximally balanced with respect to the centerlines of all the input bits, each half of the input bits, and each quarter of the input bits, and wherein an order of 1's and 0's is consistent throughout the input bits.
Parent Case Info

CROSS-REFERENCE TO RELATED APPLICATIONS This application is related to U.S. Provisional Application No. 60/350,386, filed Jan. 24, 2002, entitled Dynamic Element Matching Technique for Linearization of Unit-Element Digital-To-Analog Converters, and to U.S. patent application Ser. No. 10/255,353, filed Aug. 22, 2002, entitled Shuffler Apparatus and Related Dynamic Element Matching Technique for Linearization of Unit-Element Digital-To-Analog Converters, both of which are incorporated herein by reference in their entirety.

US Referenced Citations (7)
Number Name Date Kind
5305004 Fattaruso Apr 1994 A
5404142 Adams et al. Apr 1995 A
6124813 Robertson et al. Sep 2000 A
6366228 Nagata Apr 2002 B2
6570521 Schofield May 2003 B1
6577261 Ho et al. Jun 2003 B2
6614377 Adams et al. Sep 2003 B1
Non-Patent Literature Citations (19)
Entry
Adams, R. et al., “A 113-dB SNR Oversampling DAC with Segmented Noise-Shaped Scrambling,” IEEE Journal of Solid-State Circuits 33:12:1879-1886 (Dec. 1998).
Annovazzi, M. et al., “A Low-Power 98-dB Multibit Audio DAC in a Standard 3.3-V 0.35-μm CMOS Technology,” IEEE Journal of Solid-State Circuits 37:7:825-834 (Jul. 2002).
Baird, R. and Fiez, T., “Improved ΔΕ DAC Linearity Using Data Weighted Averaging,” IEEE, pp. 13-16 (1995).
Chen, F. and Leung, B., “Some Observations on Tone Behavior in Data Weighted Averaging,” Proceedings of the IEEE 1998 International Symposium on Circuits and System, 1-500 through 1-503 (May 31-Jun. 3, 1998).
Chen, K. and Kuo, T., “An Improved Technique for Reducing Basedband Tones in Sigma-Delta Modulators Employing Data Weighted Averaging Algorithm Without Adding Dither,” IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing 46:1:63-68 (Jan. 1999).
Fishov, A. et al., “Segmented Mismatch-Shaping D/A Conversion,” IEEE, pp., IV-679 through IV-682 (2002).
Folgeman, E. and Galton, I., “A Digital Common-Mode Rejection Technique for Differential Analog-to-Digital Conversion,” IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing 48:3:255-271 (Mar. 2001).
Galton, I., “Spectral Shaping of Circuit Errors in Digital-to-Analog Converters,” IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing 44:10:808-817 (Oct. 1997).
Grilo, J. et al., “A 12-mW ADC Delta-Sigma Modulator With 80 dB of Dynamic Range Integrated in a Single-Chip Bluetooth Transceiver,” IEEE Journal of Solid-State Circuits 37:3:271-278 (Mar. 2002).
Jensen, H. and Galton, L., “A Low-Complexity Dynamic Element Matching DAC for Direct Digital Synthesis,” IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing 45:1:13-27 (Jan. 1998).
Kwan, T. et al., “A Stereo Multibit ΕΔ DAC with Asynchronous Master-Clock Interface,” IEEE Journal of Solid-State Circuits 31:12:1881-1887 (Dec. 1996).
Norsworthy, S.R. et al., eds., “Practical Measures for Preventing Idle Tones” in Delta-Sigma Data Converters: Theory, Design and Simulation, IEEE Press, pp. 185-186 (1997).
Radke, R. et al., “A Spurious-Free Delta-Sigma DAC Using Rotated Data Weighted Averaging,” Proceedings of the IEEE 1999 Custom Integrated Circuits Conference, pp. 125-128 (May 16-19, 1999).
Radke, R. et al., “A 14-Bit Current-Mode ΕΔ DAC Based Upon Rotated Data Weighted Averaging,” IEEE Journal of Solid-State Circuits 35:8:1074-1084 (Aug. 2000).
Vadipour, M. “Techniques for Preventing Tonal Behavior of Data Weighted Averaging Algorithm in Ε-Δ Modulators,” IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing, Transactions on Circuits and Systems- II: Analog and Digital Signal Processing 47:11:1137-1144 (Nov. 2000).
Welz, J. et al., “Simplified Logic for First-Order and Second-Order Mismatch-Shaping Digital-to-Analog Converters,” IEEE Transactions on Circuits and Systems- II: Analog and Digital Signal Processing 48:11:1014-1027 (Nov. 2001).
Welz, J. and Galton, I., “A Necessary and Sufficient Condition for Mismatch Shaping in Multi-bit Dacs,” IEEE, pp. I-105 through 108 (2002).
Yasuda, A. et al., “A Third-Order Δ-Ε Modulator Using Second-Order Noise-Shaping Dynamic Element Matching,” IEEE Journal of Solid-State Circuits 33:12:1879-1886 (Dec. 1998).
Zelniker, G. and Taylor, F., “Chapter 7: Multirate Signal Processing” in Advance Digital Signal Processing: Theory and Applications, Marcel Dekker, Inc., New York, NY, pp. 343-361 (1994).