The present invention is related to the following commonly-owned, co-pending United States patent applications filed on even date herewith, the entire contents and disclosure of each of which is expressly incorporated by reference herein as if fully set forth herein. U.S. patent application Ser. No. 11/768,777, for “A SHARED PERFORMANCE MONITOR IN A MULTIPROCESSOR SYSTEM”; U.S. patent application Ser. No. 11/768,645, for “OPTIMIZED COLLECTIVES USING A DMA ON A PARALLEL COMPUTER”; U.S. patent application Ser. No. 11/768,781 for “DMA SHARED BYTE COUNTERS IN A PARALLEL COMPUTER”; U.S. patent application Ser. No. 11/768,784, for “MULTIPLE NODE REMOTE MESSAGING”; U.S. patent application Ser. No. 11/768,697, for “A METHOD AND APPARATUS OF PREFETCHING STREAMS OF VARYING PREFETCH DEPTH”; U.S. patent application Ser. No. 11/768,532, for “PROGRAMMABLE PARTITIONING FOR HIGH-PERFORMANCE COHERENCE DOMAINS IN A MULTIPROCESSOR SYSTEM”; U.S. patent application Ser. No. 11/768,857, for “METHOD AND APPARATUS FOR SINGLE-STEPPING COHERENCE EVENTS IN A MULTIPROCESSOR SYSTEM UNDER SOFTWARE CONTROL”; U.S. patent application Ser. No. 11/768,547, for “INSERTION OF COHERENCE REQUESTS FOR DEBUGGING A MULTIPROCESSOR”; U.S. patent application Ser. No. 11/768,791, for “METHOD AND APPARATUS TO DEBUG AN INTEGRATED CIRCUIT CHIP VIA SYNCHRONOUS CLOCK STOP AND SCAN”; U.S. patent application Ser. No. 11/768,795, for “DMA ENGINE FOR REPEATING COMMUNICATION PATTERNS”; U.S. patent application Ser. No. 11/768,799, for “METHOD AND APPARATUS FOR GRANTING PROCESSORS ACCESS TO A RESOURCE”; U.S. patent application Ser. No. 11/768,800, for “METHOD AND APPARATUS FOR EFFICIENTLY TRACKING QUEUE ENTRIES RELATIVE TO A TIMESTAMP”; U.S. patent application Ser. No. 11/768,572, for “BAD DATA PACKET CAPTURE DEVICE”; U.S. patent application Ser. No. 11/768,593, for “EXTENDED WRITE COMBINING USING A WRITE CONTINUATION HINT FLAG”; U.S. patent application Ser. No. 11/768,805, for “A system and method for PROGRAMMABLE BANK SELECTION FOR BANKED MEMORY SUBSYSTEMS”; U.S. patent application Ser. No. 11/768,905, for “AN ULTRASCALABLE PETAFLOP PARALLEL SUPERCOMPUTER”; U.S. patent application Ser. No. 11/768,810, for “DATA EYE MONITOR METHOD AND APPARATUS”; U.S. patent application Ser. No. 11/768,812, for “A CONFIGURABLE MEMORY SYSTEM AND METHOD FOR PROVIDING ATOMIC COUNTING OPERATIONS IN A MEMORY DEVICE”; U.S. patent application Ser. No. 11/768,559, for “ERROR CORRECTING CODE WITH CHIP KILL CAPABILITY AND POWER SAVING ENHANCEMENT”; U.S. patent application Ser. No. 11/768,552, for “STATIC POWER REDUCTION FOR MIDPOINT-TERMINATED BUSSES”; U.S. patent application Ser. No. 11/768,527 for “COMBINED GROUP ECC PROTECTION AND SUBGROUP PARITY PROTECTION”; U.S. patent application Ser. No. 11/768,669, for “A MECHANISM TO SUPPORT GENERIC COLLECTIVE COMMUNICATION ACROSS A VARIETY OF PROGRAMMING MODELS”; U.S. patent application Ser. No. 11/768,813, for “MESSAGE PASSING WITH A LIMITED NUMBER OF DMA BYTE COUNTERS”; U.S. patent application Ser. No. 11/768,619, for “ASYNCRONOUS BROADCAST FOR ORDERED DELIVERY BETWEEN COMPUTE NODES IN A PARALLEL COMPUTING SYSTEM WHERE PACKET HEADER SPACE IS LIMITED”; and U.S. patent application Ser. No. 11/768,752, for “POWER THROTTLING OF COLLECTIONS OF COMPUTING ELEMENTS”.
The present disclosure relates generally to message passing in parallel computers, and more particularly to maintaining high performance for long messages in a parallel computing by having the DMA engine control the number of packets injected into the network, thereby preventing network buffers from filling up.
As is well known, throughput of networks can degrade if internal network buffers fill up. Full buffers in one part of the network can prevent other packets from passing through that part of the network. Algorithms such as TCP/IP use “pacing”, or window flow control algorithms, to limit the number of packets in the network; this can improve throughput. These algorithms use acknowledgement packets to grant a sender permission to send additional packets. However, the software overhead to implement such algorithms is excessive in a scientific parallel computing environment where high throughput and low latency are essential.
Thus, it is desirable to have a pacing mechanism that can be integrated into the hardware that would eliminate software overhead.
Method and system for hardware packet pacing using a direct memory access controller in a parallel computer are provided. The method in one embodiment may comprise establishing a token counter on a direct memory access controller initially set to a first predetermined value and establishing maximum pacing submessage size, the maximum pacing submessage size being a value less than or equal to the first predetermined value. The method may further comprise establishing a remaining bytes count, the remaining bytes count initially set to a message length field value in an original remote get packet and setting a submessage size to the maximum pacing submessage size or the remaining bytes count, whichever is less. The method may also comprise waiting for the token counter to be greater than or equal to the submessage size, injecting a remote get packet of the submessage size to a network when the token counter is greater than or equal to the submessage size and decrementing the token counter and the remaining bytes count by the submessage size. The method may further comprise repeating the steps of setting, waiting and injecting until the remaining bytes count is zero.
Still yet, the method may comprise detecting a put packet received on the direct memory access controller and incrementing the token byte counter by a number of payload bytes specified in the put packet.
In another aspect, a method of hardware packet pacing using a direct memory access controller in a parallel computer may comprise detecting a remote get message descriptor in an injection fifo associated with a direct memory controller and retrieving put descriptor information from information in the remote get message descriptor. The put description information includes at least a message size, an injection offset and a reception offset. The method may also comprise setting a pacing size, setting a token counter to a predetermined value greater than the pacing size, and assembling a new remote get packet using the put description information. The new remote get packet specifies a message size that is at most the pacing size. The method may further comprise, before sending the new remote get packet, waiting until the token counter is greater than or equal to the message size specified in the new remote get packet and sending the new remote get packet. The method may still further comprise decrementing the token counter by the message size specified in the new remote get packet, and incrementing the injection offset and the reception offset by the message size specified in the new remote get packet. The method may further comprise repeating the steps of assembling, waiting, sending, decrementing and incrementing until the message size of the remote get has been processed by all the new remote get packets.
Yet in another aspect, a method of hardware packet pacing using a direct memory access controller in a parallel computer may comprise dividing a remote get packet into a plurality of sub remote get packets, tracking a hardware token counter, the hardware token counter representing a total number of bytes being processed at one time as a result of sending one or more of the sub remote get packets, and controlling the total number of bytes being processed at one time using the hardware token counter. In another aspect, the step of controlling may include controlling sending of the plurality of sub remote get packets based on the hardware token counter.
A system for hardware packet pacing using a direct memory access controller in a parallel computer having multiple processing nodes, in one aspect, may comprise a hardware token counter initially set to a predetermined positive value, a memory, and a direct memory access controller operable to detect a remote get packet in the memory. The direct memory access controller is further operable to assemble a plurality of sub remote get packets using information contained in the remote get packet, and to pace sending of said plurality of sub remote get packets based on the hardware token counter. The direct memory access controller may be further operable to increment the hardware token counter when a put packet is received and to decrement the hardware token when one of the said plurality of sub remote get packets are injected into the memory.
Further features as well as the structure and operation of various embodiments are described in detail below with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.
In one embodiment of the present disclosure, a pacing mechanism is provided that can be integrated into the hardware, for example, hardware of the DMA engine. Software overhead may thus be eliminated. No acknowledgement packets are required. This in one embodiment is enabled by using remote gets. In BLUEGENE™/P, there is a DMA engine that is integrated onto the same chip as the processors, cache memory, memory controller and network logic. This DMA engine injects packets from a message into the network. The system and method of the present disclosure in one embodiment use a DMA engine to control or limit the number of packets in the network without using acknowledgement packets and its accompanying complexity and overhead.
A node 102 shown in
For long messages implemented as puts, sending and receiving nodes agree on which injection counter 130 and reception 134 counter to use, and what base offset from memory location to use for a message being processed. Such agreements may be reached by sending a protocol message(s) in which a short memory Fifo message is put into reception FIFOs of a receiving node such as shown at 120. In another embodiment, software can be constructed so that the counter ids and offsets can be agreed upon without sending protocol messages. Long message transfer may be initiated, for example, as a core processor on the sending node places a “put” message descriptor into an injection FIFO 118, writing the injection counter 130 with base address and counter value via the processor interface 122, and updating the injection FIFO metadata 132 for that message, for instance, advancing a tail pointer indicating the “last” message descriptor in the injection FIFO 118. DMA logic 124 reads the injection FIFO metadata 132 and recognizes which FIFOs 118 have messages to be sent.
The system and method of the present disclosure in one embodiment utilizes types of messages such as remote gets and direct puts or the like. Short memory Fifo messages are used to convey control information between nodes.
Referring to
After DMA 116 puts the packet in the network interface 128, it decrements the counter valued of the specified injection counter 130 by the number of payload bytes in the packet. Upon reaching the destination, the packet is put into the network interface at that compute node (e.g., 104 or 106), and the node's local DMA “recognizes” that the packet is there. Without pacing, for a put packet, the receiving node's DMA reads the reception counter identifier, offset and count from the received packet, looks up the reception counter base address, writes the appropriate number of payload bytes specified in the packet starting at the base plus packet offset, and then decrements the counter value by the payload bytes received.
In one embodiment of the present disclosure, the DMA implements a remote get capability. With remote get, one node (e.g., 104) can inject a short remote get packet into the network destined for another node (e.g., 102) telling node at 102 to send M bytes of data back to node at 104. Thus, if a remote get operation is used, instead of the processor on the sending node injecting a descriptor into the injection fifo 118, the receiving node 104 sends a short get packet, which contains a put descriptor to the sender node and an injection Fifo id on the sender node. Without pacing, the DMA logic 124 at the sender node 102 puts this descriptor into the injection Fifo 118 specified in the short get message, and advances that Fifo's metadata tail pointer 132. As described in more detail in the co-owned patent application entitled MULTIPLE NODE REMOTE MESSAGING U.S. patent application Ser. No. 11/768,784, the payload of this remote get packet is a DMA descriptor that is deposited into an injection fifo 118 on node at 102. This descriptor may be a “put” descriptor that contains information such as the starting address of the buffer to be sent on node at 102 and the starting address of the buffer on node 104 into which the data is to be stored, the injection and reception counter ids to use and the initial offsets from the base addresses of the counter ids. For a long message, a single remote get results in single put message, or a single memory Fifo message, which in turn injects a large number of packets into the network with no flow control. Note that a single remote get, as specified in a message descriptor, results in a single remote get packet being injected into the network.
The above-described operations may be modified to implement pacing to control the packet injection rate of long messages. Pacing is implemented in one embodiment using remote gets with a message pacing option. With pacing, a single remote get for a long message is broken up into many remote gets for shorter submessages. A limit may be set on the number of outstanding bytes that may be requested from the node. This may be represented by a counter maintained in the DMA. The counter herein is referred to as a token_byte counter as an example. Any other name may be given to such counter or an element that provides the similar functionality. The shorter remote gets can only be injected into the network if the current number of outstanding bytes is low enough. When a shorter remote get is injected into the network, the token_byte counter is decremented by the submessage size. For such pacing messages, the resulting put packets contain a packet pacing bit set to 1. The token_byte counter is initialized to an arbitrary positive number, prior to a DMA activity.
Prior to any DMA activity, the token_byte counter is initialized to an arbitrary positive number, for example, token_byte_max. In addition, a maximum pacing submessage size, max_size, is initialized to an arbitrary positive number less than or equal to the token_byte counter's initial value, token_byte_max.
In one embodiment, the number of outstanding bytes of pacing put messages in the network is less than or equal to token_byte_max at all times. Since long messages typically have a fixed packet length equal to the maximum packet size, this limits the number of pacing put packets in the network. However, the number of messages (packets) not subject to pacing is not limited in this way and could grow until all the buffers in the network are full, or nearly full. In one embodiment, software in an arbitrary manner may decide which messages, if any, are subject to pacing. This may be determined by experimentation.
Different implementations for hardware pacing are possible. For example, there may be multiple injection Fifos. The description above would then be modified in such a way that the DMA switches between non-empty injection Fifos. In particular, on such a switch, the method is applied to each injection Fifo, however, maintaining the condition that a remote get for a pacing submessage cannot be issued until the check in step 616 is satisfied.
In another embodiment, there may be multiple token_byte counters. Suppose there are k such counters token_byte_counter(1), . . . , token_byte_counter(k) and multiple max submessage sizes max_size(1), . . . , max_size(k). In one aspect of this embodiment, there may be a control register in the DMA specifying for each injection Fifo, which token_byte_counter(i) should be used for all remote gets using that Fifo. All max_sizes, that is 1 to k may be initialized to a positive value and the max_size(i) is less than the corresponding initial value of token_byte_counter(i). In another aspect of this embodiment, the remote get message descriptor may include the index id i specifying token_byte_count(i) and max_size(i) to be used. In both aspects of the embodiment, step 614 becomes S min (max_size(i), R) and step 316 becomes wait until S<=token_byte_count(i). In addition, the resulting put packets may also specify the index i so that the correct token_byte counter is incremented when the put packets return to the node.
Yet in another embodiment, it may be left up to the software to divide the remote get into sub remote gets and assemble the sub remote get packets. In this embodiment, hardware paces the sub remote get packets by monitoring the token_byte counter and sends a sub remote get when the token_byte counter is greater than equal to message length specified in the put descriptor of the sub remote get. The hardware increments the token_byte counter when a put packet is received and decrements the token_byte counter when a sub remote get packet is sent.
The embodiments described above are illustrative examples and it should not be construed that the present invention is limited to these particular embodiments. For example, while some of the memory structure were shown and described in terms of fifo, any other queuing or structuring mechanism may be used. Thus, various changes and modifications may be effected by one skilled in the art without departing from the spirit or scope of the invention as defined in the appended claims.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract. No. B554331 awarded by the Department of Energy.
Number | Name | Date | Kind |
---|---|---|---|
4777595 | Strecker et al. | Oct 1988 | A |
5063562 | Barzilai et al. | Nov 1991 | A |
5142422 | Zook et al. | Aug 1992 | A |
5349587 | Nadeau-Dostie et al. | Sep 1994 | A |
5353412 | Douglas et al. | Oct 1994 | A |
5452432 | Macachor | Sep 1995 | A |
5524220 | Verma et al. | Jun 1996 | A |
5634007 | Calta et al. | May 1997 | A |
5659710 | Sherman et al. | Aug 1997 | A |
5708779 | Graziano et al. | Jan 1998 | A |
5748613 | Kilk et al. | May 1998 | A |
5761464 | Hopkins | Jun 1998 | A |
5796735 | Miller et al. | Aug 1998 | A |
5809278 | Watanabe et al. | Sep 1998 | A |
5825748 | Barkey et al. | Oct 1998 | A |
5890211 | Sokolov et al. | Mar 1999 | A |
5917828 | Thompson | Jun 1999 | A |
6023732 | Moh et al. | Feb 2000 | A |
6061511 | Marantz et al. | May 2000 | A |
6072781 | Feeney et al. | Jun 2000 | A |
6122715 | Palanca et al. | Sep 2000 | A |
6185214 | Schwartz et al. | Feb 2001 | B1 |
6219300 | Tamaki | Apr 2001 | B1 |
6263397 | Wu et al. | Jul 2001 | B1 |
6295571 | Scardamalia et al. | Sep 2001 | B1 |
6311249 | Min et al. | Oct 2001 | B1 |
6324495 | Steinman | Nov 2001 | B1 |
6356106 | Greeff et al. | Mar 2002 | B1 |
6366984 | Carmean et al. | Apr 2002 | B1 |
6442162 | O'Neill et al. | Aug 2002 | B1 |
6466227 | Pfister et al. | Oct 2002 | B1 |
6564331 | Joshi | May 2003 | B1 |
6594234 | Chard et al. | Jul 2003 | B1 |
6598123 | Anderson et al. | Jul 2003 | B1 |
6601144 | Arimilli et al. | Jul 2003 | B1 |
6631447 | Morioka et al. | Oct 2003 | B1 |
6647428 | Bannai et al. | Nov 2003 | B1 |
6662305 | Salmon et al. | Dec 2003 | B1 |
6735174 | Hefty et al. | May 2004 | B1 |
6775693 | Adams | Aug 2004 | B1 |
6799232 | Wang | Sep 2004 | B1 |
6874054 | Clayton et al. | Mar 2005 | B2 |
6880028 | Kurth | Apr 2005 | B2 |
6889266 | Stadler | May 2005 | B1 |
6894978 | Hashimoto | May 2005 | B1 |
6954887 | Wang et al. | Oct 2005 | B2 |
6986026 | Roth et al. | Jan 2006 | B2 |
7007123 | Golla et al. | Feb 2006 | B2 |
7058826 | Fung | Jun 2006 | B2 |
7065594 | Ripy et al. | Jun 2006 | B2 |
7143219 | Chaudhari et al. | Nov 2006 | B1 |
7191373 | Wang et al. | Mar 2007 | B2 |
7239565 | Liu | Jul 2007 | B2 |
7280477 | Jeffries et al. | Oct 2007 | B2 |
7298746 | De La Iglesia et al. | Nov 2007 | B1 |
7363629 | Springer et al. | Apr 2008 | B2 |
7373420 | Lyon | May 2008 | B1 |
7401245 | Fischer et al. | Jul 2008 | B2 |
7454640 | Wong | Nov 2008 | B1 |
7454641 | Connor et al. | Nov 2008 | B2 |
7461236 | Wentzlaff | Dec 2008 | B1 |
7463529 | Matsubara | Dec 2008 | B2 |
7502474 | Kaniz et al. | Mar 2009 | B2 |
7539845 | Wentzlaff et al. | May 2009 | B1 |
7613971 | Asaka | Nov 2009 | B2 |
7620791 | Wentzlaff et al. | Nov 2009 | B1 |
7698581 | Oh | Apr 2010 | B2 |
7898956 | Semrad et al. | Mar 2011 | B2 |
8169901 | Scholte et al. | May 2012 | B1 |
8194690 | Steele et al. | Jun 2012 | B1 |
20010055323 | Rowett et al. | Dec 2001 | A1 |
20020078420 | Roth et al. | Jun 2002 | A1 |
20020087801 | Bogin et al. | Jul 2002 | A1 |
20020100020 | Hunter et al. | Jul 2002 | A1 |
20020129086 | Garcia-Luna-Aceves et al. | Sep 2002 | A1 |
20020138801 | Wang et al. | Sep 2002 | A1 |
20020156979 | Rodriguez | Oct 2002 | A1 |
20020184159 | Tadayon et al. | Dec 2002 | A1 |
20030007457 | Farrell et al. | Jan 2003 | A1 |
20030028749 | Ishikawa et al. | Feb 2003 | A1 |
20030050714 | Tymchenko | Mar 2003 | A1 |
20030050954 | Tayyar et al. | Mar 2003 | A1 |
20030074616 | Dorsey | Apr 2003 | A1 |
20030105799 | Khan et al. | Jun 2003 | A1 |
20030163649 | Kapur et al. | Aug 2003 | A1 |
20030177335 | Luick | Sep 2003 | A1 |
20030188053 | Tsai | Oct 2003 | A1 |
20030235202 | Van Der Zee et al. | Dec 2003 | A1 |
20040003184 | Safranek et al. | Jan 2004 | A1 |
20040019730 | Walker et al. | Jan 2004 | A1 |
20040024925 | Cypher et al. | Feb 2004 | A1 |
20040073780 | Roth et al. | Apr 2004 | A1 |
20040103218 | Blumrich et al. | May 2004 | A1 |
20040210694 | Shenderovich | Oct 2004 | A1 |
20040243739 | Spencer | Dec 2004 | A1 |
20050007986 | Malladi et al. | Jan 2005 | A1 |
20050053057 | Deneroff et al. | Mar 2005 | A1 |
20050076163 | Malalur | Apr 2005 | A1 |
20050160238 | Steely et al. | Jul 2005 | A1 |
20050216613 | Ganapathy et al. | Sep 2005 | A1 |
20050251613 | Kissell | Nov 2005 | A1 |
20050270886 | Takashima | Dec 2005 | A1 |
20050273564 | Lakshmanamurthy et al. | Dec 2005 | A1 |
20060050737 | Hsu | Mar 2006 | A1 |
20060080513 | Beukema et al. | Apr 2006 | A1 |
20060206635 | Alexander et al. | Sep 2006 | A1 |
20060248367 | Fischer et al. | Nov 2006 | A1 |
20070055832 | Beat | Mar 2007 | A1 |
20070133536 | Kim et al. | Jun 2007 | A1 |
20070168803 | Wang et al. | Jul 2007 | A1 |
20070174529 | Rodriguez et al. | Jul 2007 | A1 |
20070195774 | Sherman et al. | Aug 2007 | A1 |
Entry |
---|
Definition of “mechanism”, Oxford English Dictionary, http://dictionary.oed.com/cgi/entry/00304337?query—type=word&queryword=mechanism&first=1&max—to—show=10&sort—type=alpha&result—place=2&search—id=y2atEIGc-11603&hilite+00304337. |
Almasi, et al., “MPI on BlueGene/L: Designing an Efficient General Purpose Messaging Solution for a Large Cellular System,” IBM Research Report RC22851 (W037-150) Jul. 22, 2003. |
Almasi, et al.,“Optimization of MPI Collective Communication on BlueGene/L Systems,” ICS'05, Jun. 20-22, 2005, Boston, MA. |
Gara, et al., “Overview of the Blue Gene/L system architecture,” IBM J. Res. & Dev., vol. 49, No. 2/3, Mar./May 2005, pp. 195-212. |
Huang, et al., “Performance Evaluation of Adaptive MPI,” PPoPP'06, Mar. 29-31, 2006, New York, New York. |
MPI (Message Passing Interface) standards documents, errata, and archives http://www.mpi-forum.org visited Jun. 16, 2007 (Sections 4.2, 4.4 and 10.4). |
David Chaiken, Craig Fields, Kiyoshi Kurihara, Anant Agarwal, Directory-Based Cache Coherence in Large-Scale Multiprocessors, Computer, v.23 n.6, p. 49-58, Jun. 1990. |
Michel, Dubois, Christoph Scheurich, Faye A. Briggs, Synchronization, Coherence, and Event Ordering in Multiprocessors, Computer, v.21 n.2, p. 9-21, Feb. 1988. |
Giampapa, et al., “Blue Gene/L advanced diagnostics environment,” IBM J. Res. & Dev., vol. 49, No. 2/3, Mar./May 2005, pp. 319-331. |
IBM Journal of Research and Development, Special Double Issue on Blue Gene, vol. 49, Nos. 2/3, Mar./May 2005 (“Preface”). |
IBM Journal of Research and Development, Special Double Issue on Blue Gene, vol. 49, Nos. 2/3, Mar./May 2005 (“Intro”). |
“Intel 870: A Building Block for Cost-Effective, Scalable Servers”, Faye Briggs, Michel et al., pp. 36-47, Mar.-Apr. 2002. |
Pande, et al., Performance Evaluation and Design Trade-Offs for Network-On-Chip Interconnect Architectures, 2005, IEEE, pp. 1025-1040. |
Number | Date | Country | |
---|---|---|---|
20090003203 A1 | Jan 2009 | US |