This disclosure relates generally to the field of geophysical prospecting and, more particularly, to seismic data processing. Specifically, the disclosure is related to a deterministic method for selecting encoding weights for encoding individual source gathers of seismic data so that multiple encoded gathers can be simulated in a single simulation operation and used to efficiently invert the seismic data to infer a subsurface model of velocity or other physical property.
Full-wavefield seismic inversion (FWI) estimates a subsurface model by iteratively minimizing the difference between observed and simulated data.
Godwin and Sava review a number of ways to produce encoding weights, including orthogonal weight vectors, in “A comparison of shot-encoding schemes for wave-equation migration,” Geophysical Prospecting, 1-18 (2013). However, they do not disclose the methods of selecting orthogonal weights that are disclosed in the following invention description. Moreover, their encoding is used for migration, which is not iterative and which does not improve the model.
There is a need for a method of choosing the weights deterministically so that realizations approximate the sequential FWI behavior as quickly as possible. The present invention satisfies this need.
In one embodiment, with reference to the flow chart of
(a) selecting a plurality of individual source gathers of the seismic data; (step 81)
(b) in a first iteration, encoding the selected gathers with weights, said weights forming components of a weight vector, and summing the encoded gathers to form a composite gather; (step 83)
(c) generating at least one realization of predicted data for the entire composite gather, wherein the predicted data are computer-simulated, using a current model, in a single forward-modeling operation, a different realization being characterized by a different weight vector; (step 84)
(d) updating the current model using the composite gather and the simulated composite gather from each of the at least one realization; (step 87)
(e) in a second iteration, repeating (b)-(d), using the updated model from the first iteration as the current model for the second iteration, resulting in a further updated model;
wherein, (i) each iteration has a plurality of realizations, and the weight vectors for each realization are orthogonal to one another; or (ii) the weight vector or weight vectors for the first iteration are orthogonal to the weight vector or weight vectors for the second iteration; or both (i) and (ii). (82)
The orthogonal weight vectors are generated using a smoothly varying periodic function of the seismic shot location or a related variable. Examples include sine or cosine functions, eigenvectors of a Laplacian matrix, and Chebyshev nodes as given by the roots of Chebyshev polynomials.
As indicated in
Simultaneous encoded source inversion assumes that every receiver is listening, i.e. is in place and recording data, for every source shot included in the super gather. Where this is not true, as for example in marine streamer surveys, the cost function will overestimate the misfit between simulated and actual data, causing the model update to be incorrect. See, for example, Routh et al., U.S. Pat. No. 8,437,998, for a discussion of the fixed-receiver assumption. This publication is incorporated herein in all jurisdictions that allow it. For a single shot gather, a computational mask may be developed that forces the simulated data to zero at non-listening receivers. As disclosed herein, an approximate mask for the composite gather may be generated from the masks for the individual source gathers. The masks are then encoded before simulation, amounting to a double encoding, and multiple mask encoding realizations may be generated using the same harmonic encoding technique as in the fixed spread case to generate sets of orthogonal encoding functions.
The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings in which:
The invention will be described in connection with example embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.
Fixed-Spread Acquisition Geometry.
The above-referenced simultaneous encoded-source method disclosed by Krebs et al. uses weights (Krebs called them encoding functions) that are, in a preferred embodiment of his invention, randomly chosen. By contrast, the present disclosure gives several ways to modify how these weights are chosen. In embodiments of the present invention, the weights (also called scaling constants herein) are obtained deterministically, not randomly or arbitrarily, and the weights are orthogonal relative to each other according to some inner product definition, including roots of orthogonal polynomials. Stated more precisely, a set of weights, one for each source gather in the super gather, form the components of a weight vector, and the weight vector, according to the present invention, must be orthogonal to weight vectors for other realizations of the super gather, or to weight vectors in other iteration cycles of the inversion, or both. Deterministic weights are weights that are generated according to a prescribed procedure that produces an orthogonal set, or converts a set of weights into an orthogonal set. Generating deterministic weights does not involve use of a random number generator. Specific embodiments include: eigenvectors of a graph Laplacian matrix, sine/cosine pairs, and roots of orthogonal polynomials (i.e. Chebyshev nodes as given by the roots of Chebyshev polynomials). Each of these is a deterministic choice of weights and a key to observed improvements in inversion behavior.
In many embodiments of the invention, the weight (encoding) vectors are smoothly varying, almost periodic functions of source location or some other source identification parameter. This applies to a single vector of weights, one weight for each source gather in a composite gather, selected for a single realization. Preferably, the weights assigned to individual source gathers in a composite source gather are unique, although good results may be obtained when vectors are repeated. Selecting/constructing suitable weights is described further below, including
Unless adjustments are made to the basic method, simultaneous encoded-source inversion assumes a fixed spread of receivers, i.e. that all receivers are “listening” to all shots. This is often not the case in actual surveys, particularly marine streamer surveys. In addition to the deterministic method for improving the multiple realization approach described briefly above (and in more detail below) for fixed-receiver geometry, the present disclosure extends this concept to non-fixed spread geometries (see
It should be noted that the benefits of orthogonal weight vectors in simultaneous encoded source inversion can be obtained with as few as one realization per iteration cycle. In this case, it is the single weight vector from each iteration cycle that must be orthogonal to the weight vectors from the other iteration cycles.
The deterministic approach of the present disclosure may be derived by generalizing the following example.
Let there be only two sources, and define the vector of weights as a=(a1, a2). Denote by u1, w1 the forward and adjoint wavefields (the inner product of the two at each spatial location gives the gradient) due to source 1 and u2, w2 the respective wavefields due to source 2. Much of the inversion procedure in FWI may be reduced to quadratic forms of such wavefields. Specifically, the gradient used in iterative methods for conventional sequential-source inversion requires the sum of the inner products (u1, w1)+(u2, w2), each obtained by an independent simulation. By contrast, the simultaneous source simulation will produce the inner product
A second realization using weights b=(b1, b2) will produce a similar inner product where only the weights are different.
Applying [Eq. 1] to a and b, one obtains
Therefore, the sum of the two simultaneous source inner products is completely described by the sum of the matrices A and B:
Observe that the sequential approach is captured here also: pick a=(1,0) and b=(0,1) and
In general, when there are n sources and k realizations, one has k weight vectors denoted a(i)=(a1(i), . . . , an(i)) the effect of each of which may be described with a matrix A(i). The effect of summing all k realizations is therefore described by the matrix Ak which, in turn, approximates the identity matrix (i.e. the sequential approach). In symbols:
The following formalizes the preceding discussion and is a direct consequence of singular value decomposition theory.
Proposition 1: Let the a(i) form an orthonormal set, i.e.
Then,
It can be shown that the cross-talk (noise) due to simultaneously simulating nearby sources is larger than the cross-talk due to sources that are far apart. In other words, the inner products corresponding to off-diagonal entries that are close to the diagonal are the most problematic. Thus, if we can afford k realizations, then we can group shots into clusters of k and to each cluster apply orthogonal weights vectors of length k. For example, we could pick the canonical basis for dimension k (b(i)=(0, . . . , 1, . . . , 0) where the 1 is at position i). Another approach is to apply the procedure of Method 1 to a problem of size k. Thus, the final vectors for the full problem of size n≥k consists of concatenating n/k times the vectors for the problem of size k, i.e. a(i)=(b(i), . . . , b(i)). After k realizations there will be no cross-talk due to sources that are closer than k units apart. This “optimal-k” encoding may be randomly perturbed from iteration to iteration by multiplying the bs above by 1 or −1 chosen at random for each group. Alternatively, the perturbation may be achieved with an orthogonal set vectors with dimension equal to n/k. Additionally, the location of the 1 in the optimal-k vectors may be randomly perturbed to improve the inversion results.
Method 3: Design a Matrix of Rank N and Non-Repeating Singular Values that Approximates the Identity Matrix.
A matrix M can be designed that approximates a desired behavior. For example, the identity matrix (because it represents the sequential approach) can be approximated by defining Mi,j=exp(−|loc(i)−loc(j)|). Applying SVD on M, one obtains an orthonormal set of weights. This choice seems to give the best results in 2D inversion tests that were run. See
It may be noted that the eigenvectors of the example matrix given in the preceding paragraph are related to harmonic functions, i.e. eigenvectors of a Laplace operator. In some special geometries, e.g. a line graph, these eigenvectors may be obtained as sine and cosine functions as described below. In other words, the analytical expression of the eigenvectors above is given by sine and cosine functions, and so similar results are obtained by defining the weights analytically as given by sine and cosine functions. For example, if n is the number of shots along a spatial dimension, then the weights may be given by
or by the cosine of the same arguments. Here, the argument x is an integer between 1 and n, and k is a spatial (i.e. reference) frequency for this weight. Note that it is by varying this k that different weight vectors are obtained, i.e. the ones used for independent realizations. This is a 1-D example (i.e. there is a single line of shots), but the same idea applies in 2-D: simply multiply two 1-D weight vectors. (The 2-D case needs two spatial frequencies—frequencies in space—and so we can take two 1-D vectors and then their outer product to get a matrix—i.e. 2-D distribution of weights.)
Using the above sinusoidal function as an example, experience has shown that it may be preferred to use lower frequency vectors for the first iteration of the inversion process, then progressively higher frequency vectors for each succeeding iteration. In other words, the range of k-values used for the different realizations in the first iteration would be a low range, and a progressively higher range would be used for each succeeding iteration. The next section discloses other schemes for varying (or not varying) the weights from one iteration to the next.
Using the Set of Weights in an Inversion
Given a set of weights, one can choose k vectors (one vector for each of the k realizations) to use for each iteration, but how to vary these vectors from one iteration to another decision that remains. Following are a few of the possible choices (some of which may be applied in conjunction with others). Regarding nomenclature, each vector will have n components, where each component is a weight for one of the n shots in the super (composite) gather.
Mask encoding, as disclosed herein, is a deterministic method that allows encoding multiple shots and simulating them simultaneously even for a non-fixed spread acquisition geometry.
If Mi is the hard mask for the ith source gather Gi, and CMk is the desired composite mask for the kth composite gather CGk, then the composite mask may be created such that
ΣiMi*Gi≈ΣkCMk*CGk,
where the sum on the left is over all gathers in the composite gather, and the sum on the right is over all realizations the user may elect to have.
For simulation of simultaneous sources, the masks may then be encoded (61 in
In the aforementioned adjoint method, the gradient of the objective (cost) function may be computed by correlating a forward simulation time series at each model location with a backward simulation time series at the same location. The forward simulation ensues from simulating an encoded source signature (wavelet); the backward simulation ensues from an adjoint source (instead of the signature) computed in a way that depends on the choice of objective function. For example, the adjoint source for the L2 norm objective function is simply the difference between recorded data and forward simulated data, but each objective function may produce a different backward simulation source term.
Hermann and Haber (PCT Patent Application Publication WO 2011/160201) describe a method that, like the method of Krebs et al. for a fixed spread geometry, may greatly reduce the number of gradient calculations during an inversion. The key to their method is a stochastic (i.e. random choice of samples) inversion that utilizes randomly chosen weights to encode multiple shots into one together with a method that corrects for simulated data at receiver locations that do not record any data (this is the key difference between fixed spread—in which all receivers record data from all sources—and non-fixed spread—in which some receivers do not record data from some sources). By contrast, the present inventive method is totally deterministic and proceeds uses double encoding: to encode masks that perform the necessary correction as in Hermann and Haber's approach, and to encode the shots as taught herein for the fixed-spread case.
The foregoing description is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application 62/031,096, filed Jul. 30, 2014, entitled HARMONIC ENCODING FOR FWI, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3812457 | Weller | May 1974 | A |
3864667 | Bahjat | Feb 1975 | A |
4159463 | Silverman | Jun 1979 | A |
4168485 | Payton et al. | Sep 1979 | A |
4545039 | Savit | Oct 1985 | A |
4562650 | Nagasawa et al. | Jan 1986 | A |
4575830 | Ingram et al. | Mar 1986 | A |
4594662 | Devaney | Jun 1986 | A |
4636957 | Vannier et al. | Jan 1987 | A |
4675851 | Savit et al. | Jun 1987 | A |
4686654 | Savit | Aug 1987 | A |
4707812 | Martinez | Nov 1987 | A |
4715020 | Landrum, Jr. | Dec 1987 | A |
4766574 | Whitmore et al. | Aug 1988 | A |
4780856 | Becquey | Oct 1988 | A |
4823326 | Ward | Apr 1989 | A |
4924390 | Parsons et al. | May 1990 | A |
4953657 | Edington | Sep 1990 | A |
4969129 | Currie | Nov 1990 | A |
4982374 | Edington et al. | Jan 1991 | A |
5260911 | Mason et al. | Nov 1993 | A |
5469062 | Meyer, Jr. | Nov 1995 | A |
5583825 | Carrazzone et al. | Dec 1996 | A |
5677893 | de Hoop et al. | Oct 1997 | A |
5715213 | Allen | Feb 1998 | A |
5717655 | Beasley | Feb 1998 | A |
5719821 | Sallas et al. | Feb 1998 | A |
5721710 | Sallas et al. | Feb 1998 | A |
5790473 | Allen | Aug 1998 | A |
5798982 | He et al. | Aug 1998 | A |
5822269 | Allen | Oct 1998 | A |
5838634 | Jones et al. | Nov 1998 | A |
5852588 | de Hoop et al. | Dec 1998 | A |
5878372 | Tabarovsky et al. | Mar 1999 | A |
5920838 | Norris et al. | Jul 1999 | A |
5924049 | Beasley et al. | Jul 1999 | A |
5999488 | Smith | Dec 1999 | A |
5999489 | Lazaratos | Dec 1999 | A |
6014342 | Lazaratos | Jan 2000 | A |
6021094 | Ober et al. | Feb 2000 | A |
6028818 | Jeffryes | Feb 2000 | A |
6058073 | VerWest | May 2000 | A |
6125330 | Robertson et al. | Sep 2000 | A |
6219621 | Hornbostel | Apr 2001 | B1 |
6225803 | Chen | May 2001 | B1 |
6311133 | Lailly et al. | Oct 2001 | B1 |
6317695 | Zhou et al. | Nov 2001 | B1 |
6327537 | Ikelle | Dec 2001 | B1 |
6374201 | Grizon et al. | Apr 2002 | B1 |
6381543 | Guerillot et al. | Apr 2002 | B1 |
6388947 | Washbourne et al. | May 2002 | B1 |
6480790 | Calvert et al. | Nov 2002 | B1 |
6522973 | Tonellot et al. | Feb 2003 | B1 |
6545944 | de Kok | Apr 2003 | B2 |
6549854 | Malinverno et al. | Apr 2003 | B1 |
6574564 | Lailly et al. | Jun 2003 | B2 |
6593746 | Stolarczyk | Jul 2003 | B2 |
6662147 | Fournier et al. | Dec 2003 | B1 |
6665615 | Van Riel et al. | Dec 2003 | B2 |
6687619 | Moerig et al. | Feb 2004 | B2 |
6687659 | Shen | Feb 2004 | B1 |
6704245 | Becquey | Mar 2004 | B2 |
6714867 | Meunier | Mar 2004 | B2 |
6735527 | Levin | May 2004 | B1 |
6754590 | Moldoveanu | Jun 2004 | B1 |
6766256 | Jeffryes | Jul 2004 | B2 |
6826486 | Malinverno | Nov 2004 | B1 |
6836448 | Robertsson et al. | Dec 2004 | B2 |
6842701 | Moerig et al. | Jan 2005 | B2 |
6859734 | Bednar | Feb 2005 | B2 |
6865487 | Charron | Mar 2005 | B2 |
6865488 | Moerig et al. | Mar 2005 | B2 |
6876928 | Van Riel et al. | Apr 2005 | B2 |
6882938 | Vaage et al. | Apr 2005 | B2 |
6882958 | Schmidt et al. | Apr 2005 | B2 |
6901333 | Van Riel et al. | May 2005 | B2 |
6903999 | Curtis et al. | Jun 2005 | B2 |
6905916 | Bartsch et al. | Jun 2005 | B2 |
6906981 | Vauge | Jun 2005 | B2 |
6927698 | Stolarczyk | Aug 2005 | B2 |
6944546 | Xiao et al. | Sep 2005 | B2 |
6947843 | Fisher et al. | Sep 2005 | B2 |
6970397 | Castagna et al. | Nov 2005 | B2 |
6977866 | Huffman et al. | Dec 2005 | B2 |
6999880 | Lee | Feb 2006 | B2 |
7046581 | Calvert | May 2006 | B2 |
7050356 | Jeffryes | May 2006 | B2 |
7069149 | Goff et al. | Jun 2006 | B2 |
7027927 | Routh et al. | Jul 2006 | B2 |
7072767 | Routh et al. | Jul 2006 | B2 |
7092823 | Lailly et al. | Aug 2006 | B2 |
7110900 | Adler et al. | Sep 2006 | B2 |
7184367 | Yin | Feb 2007 | B2 |
7230879 | Herkenoff et al. | Jun 2007 | B2 |
7271747 | Baraniuk et al. | Sep 2007 | B2 |
7330799 | Lefebvre et al. | Feb 2008 | B2 |
7337069 | Masson et al. | Feb 2008 | B2 |
7373251 | Hamman et al. | May 2008 | B2 |
7373252 | Sherrill et al. | May 2008 | B2 |
7376046 | Jeffryes | May 2008 | B2 |
7376539 | Lecomte | May 2008 | B2 |
7400978 | Langlais et al. | Jul 2008 | B2 |
7436734 | Krohn | Oct 2008 | B2 |
7480206 | Hill | Jan 2009 | B2 |
7584056 | Koren | Sep 2009 | B2 |
7599798 | Beasley et al. | Oct 2009 | B2 |
7602670 | Jeffryes | Oct 2009 | B2 |
7616523 | Tabti et al. | Nov 2009 | B1 |
7620534 | Pita et al. | Nov 2009 | B2 |
7620536 | Chow | Nov 2009 | B2 |
7646924 | Donoho | Jan 2010 | B2 |
7672194 | Jeffryes | Mar 2010 | B2 |
7672824 | Dutta et al. | Mar 2010 | B2 |
7675815 | Saenger et al. | Mar 2010 | B2 |
7679990 | Herkenhoff et al. | Mar 2010 | B2 |
7684281 | Vaage et al. | Mar 2010 | B2 |
7710821 | Robertsson et al. | May 2010 | B2 |
7715985 | Van Manen et al. | May 2010 | B2 |
7715986 | Nemeth et al. | May 2010 | B2 |
7725266 | Sirgue et al. | May 2010 | B2 |
7791980 | Robertsson et al. | Sep 2010 | B2 |
7835072 | Izumi | Nov 2010 | B2 |
7840625 | Candes et al. | Nov 2010 | B2 |
7940601 | Ghosh | May 2011 | B2 |
8121823 | Krebs et al. | Feb 2012 | B2 |
8248886 | Neelamani et al. | Aug 2012 | B2 |
8428925 | Krebs et al. | Apr 2013 | B2 |
8437998 | Routh et al. | May 2013 | B2 |
8547794 | Gulati et al. | Oct 2013 | B2 |
8688381 | Routh et al. | Apr 2014 | B2 |
8781748 | Laddoch et al. | Jul 2014 | B2 |
20020099504 | Cross et al. | Jul 2002 | A1 |
20020120429 | Ortoleva | Aug 2002 | A1 |
20020183980 | Guillaume | Dec 2002 | A1 |
20040199330 | Routh et al. | Oct 2004 | A1 |
20040225438 | Okoniewski et al. | Nov 2004 | A1 |
20060235666 | Assa et al. | Oct 2006 | A1 |
20070036030 | Baumel et al. | Feb 2007 | A1 |
20070038691 | Candes et al. | Feb 2007 | A1 |
20070274155 | Ikelle | Nov 2007 | A1 |
20080175101 | Saenger et al. | Jul 2008 | A1 |
20080306692 | Singer et al. | Dec 2008 | A1 |
20090006054 | Song | Jan 2009 | A1 |
20090067041 | Krauklis et al. | Mar 2009 | A1 |
20090070042 | Birchwood et al. | Mar 2009 | A1 |
20090083006 | Mackie | Mar 2009 | A1 |
20090164186 | Haase et al. | Jun 2009 | A1 |
20090164756 | Dokken et al. | Jun 2009 | A1 |
20090187391 | Wendt et al. | Jul 2009 | A1 |
20090248308 | Luling | Oct 2009 | A1 |
20090254320 | Lovatini et al. | Oct 2009 | A1 |
20090259406 | Khadhraoui et al. | Oct 2009 | A1 |
20100008184 | Hegna et al. | Jan 2010 | A1 |
20100018718 | Krebs | Jan 2010 | A1 |
20100039894 | Abma et al. | Feb 2010 | A1 |
20100054082 | McGarry et al. | Mar 2010 | A1 |
20100088035 | Etgen et al. | Apr 2010 | A1 |
20100103772 | Eick et al. | Apr 2010 | A1 |
20100118651 | Liu et al. | May 2010 | A1 |
20100142316 | Keers et al. | Jun 2010 | A1 |
20100161233 | Saenger et al. | Jun 2010 | A1 |
20100161234 | Saenger et al. | Jun 2010 | A1 |
20100185422 | Hoversten | Jul 2010 | A1 |
20100208554 | Chiu et al. | Aug 2010 | A1 |
20100212902 | Baumstein et al. | Aug 2010 | A1 |
20100246324 | Dragoset, Jr. et al. | Sep 2010 | A1 |
20100265797 | Robertsson et al. | Oct 2010 | A1 |
20100270026 | Lazaratos et al. | Oct 2010 | A1 |
20100286919 | Lee et al. | Nov 2010 | A1 |
20100299070 | Abma | Nov 2010 | A1 |
20110000678 | Krebs | Jan 2011 | A1 |
20110040926 | Donderici et al. | Feb 2011 | A1 |
20110051553 | Scott et al. | Mar 2011 | A1 |
20110090760 | Rickett et al. | Apr 2011 | A1 |
20110131020 | Meng | Jun 2011 | A1 |
20110134722 | Virgilio et al. | Jun 2011 | A1 |
20110182141 | Zhamikov et al. | Jul 2011 | A1 |
20110182144 | Gray | Jul 2011 | A1 |
20110191032 | Moore | Aug 2011 | A1 |
20110194379 | Lee et al. | Aug 2011 | A1 |
20110222370 | Downton et al. | Sep 2011 | A1 |
20110227577 | Zhang et al. | Sep 2011 | A1 |
20110235464 | Brittan et al. | Sep 2011 | A1 |
20110238390 | Krebs | Sep 2011 | A1 |
20110246140 | Abubakar et al. | Oct 2011 | A1 |
20110267921 | Mortel et al. | Nov 2011 | A1 |
20110267923 | Shin | Nov 2011 | A1 |
20110276320 | Krebs et al. | Nov 2011 | A1 |
20110288831 | Tan | Nov 2011 | A1 |
20110299361 | Shin | Dec 2011 | A1 |
20110320180 | Al-Saleh | Dec 2011 | A1 |
20120010862 | Costen | Jan 2012 | A1 |
20120014215 | Saenger et al. | Jan 2012 | A1 |
20120014216 | Saenger et al. | Jan 2012 | A1 |
20120051176 | Liu | Mar 2012 | A1 |
20120073824 | Routh | Mar 2012 | A1 |
20120073825 | Routh | Mar 2012 | A1 |
20120082344 | Donoho | Apr 2012 | A1 |
20120143506 | Routh | Jun 2012 | A1 |
20120143575 | Imhof | Jun 2012 | A1 |
20120215506 | Rickett et al. | Aug 2012 | A1 |
20120218859 | Soubaras | Aug 2012 | A1 |
20120275264 | Kostov et al. | Nov 2012 | A1 |
20120275267 | Neelamani et al. | Nov 2012 | A1 |
20120290214 | Huo et al. | Nov 2012 | A1 |
20120314538 | Washbourne et al. | Dec 2012 | A1 |
20120316790 | Washbourne et al. | Dec 2012 | A1 |
20120316844 | Shah et al. | Dec 2012 | A1 |
20130060539 | Baumstein | Mar 2013 | A1 |
20130081752 | Kurimura et al. | Apr 2013 | A1 |
20130238246 | Krebs | Sep 2013 | A1 |
20130279290 | Poole | Oct 2013 | A1 |
20130282292 | Wang et al. | Oct 2013 | A1 |
20130311149 | Tang | Nov 2013 | A1 |
20130311151 | Plessix | Nov 2013 | A1 |
20140350861 | Wang et al. | Nov 2014 | A1 |
20140358504 | Baumstein et al. | Dec 2014 | A1 |
20140372043 | Hu et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2 796 631 | Nov 2011 | CA |
1 094 338 | Apr 2001 | EP |
1 746 443 | Jan 2007 | EP |
2 390 712 | Jan 2004 | GB |
2 391 665 | Feb 2004 | GB |
WO 2006037815 | Apr 2006 | WO |
WO 2007046711 | Apr 2007 | WO |
WO 2008042081 | Apr 2008 | WO |
WO 2008123920 | Oct 2008 | WO |
WO 2009067041 | May 2009 | WO |
WO 2009117174 | Sep 2009 | WO |
WO 2010085822 | Jul 2010 | WO |
WO 2011040926 | Apr 2011 | WO |
WO 2011091216 | Jul 2011 | WO |
WO 2011093945 | Aug 2011 | WO |
WO 2011160201 | Dec 2011 | WO |
WO 2012024025 | Feb 2012 | WO |
WO 2012041834 | Apr 2012 | WO |
WO 2012083234 | Jun 2012 | WO |
WO 2012134621 | Oct 2012 | WO |
WO 2012170201 | Dec 2012 | WO |
WO 2013081752 | Jun 2013 | WO |
Entry |
---|
Krebs et al, Fast full-wavefield seismic inversion using encoded sources, Geophysics. vol. 74, No. 6 Nov.-Dec. 2009 p. 177-188. |
Yang et al, Quasi-Orthogonal sequences for code-division multiple access systems, IEEE transactions of information theory, vol. 16, No. 3, May 2000. p. 982-993. |
Godwin, Jeff, and Paul Sava. “A comparison of shot-encoding schemes for wave-equation migration.” Geophysical Prospecting 61, No. s1 (2013): 391-408.4. |
Jim Lambers, MAT lecture 3 note, Fall 2013-2014 p. 1-5. |
Math111_ Linear Algebra, Fall 2006 https://www.math.ust.hk/˜mabfchen/Math111/Week13-14.pdf (Year: 2006). |
ResearchGate Discussion, Mehdi Delkhosh https://www.researchgate.net/post/If_the_inner_product_of_two_matrices_is_zero_what_does_that_mean (Year: 2015). |
K. Abed-Meraim, S. Attallah, A. Chkeif, and Y. Hua, Orthogonal Oja Algorithm, IEEE Signal Processing Letters, vol. 7, No. 5, May 2000 (Year: 2000). |
U.S. Appl. No. 14/329,431, filed Jul. 11, 2014, Krohn et al. |
U.S. Appl. No. 14/330,767, filed Jul. 14, 2014, Tang et al. |
Godwin, J. et al., “A comparison of shot-encoding schemes for wave-equation migration,” Geophysical Propsecting 61(Supp. 1), pp. 391-408, 2013. |
Krebs, J.R. et al., “Fast full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188, Nov.-Dec. 2009. |
Tarantola, A., “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49(8), pp. 1259-1266, Aug. 1984. |
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J. Geophys. Res., 24 pgs. |
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th SEG Annual International Meeting, Expanded Abstracts, pp. 2801-2805. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods Volume I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318. |
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods Volume I,” W.H. Freeman and Co., p. 173. |
Aki et al. (1980), “Quantitative Seismology, Theory and Methods,” Chapter 5.20, W.H. Freeman & Co., pp. 133-155. |
Amundsen, L. (2001), “Elimination of free-surface related multiples without need of the source wavelet,” Geophysics 60(1), pp. 327-341. |
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs. |
Barr, F.J. et al. (1989), “Attenuation of Water-Column Reverberations Using Pressure and Velocity Detectors in a Water-Bottom Cable,” 59th Annual SEG meeting, Expanded Abstracts, pp. 653-656. |
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 224-2247. |
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917. |
Beasley, C. (2012), “A 3D simultaneous source field test processed using alternating projections: a new active separation method,” Geophsyical Prospecting 60, pp. 591-601. |
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790. |
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631. |
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs. |
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded Abstracts, pp. 2288-2292. |
Ben-Hadj-Ali, H. et al. (2011), “An efficient frequency-domain full waveform inversion method using simultaneous encoded sources,” Geophysics 76(4), pp. R109-R124. |
Benitez, D. et al. (2001), “The use of the Hilbert transform in ECG signal analysis,” Computers in Biology and Medicine 31, pp. 399-406. |
Berenger, J-P. (1994), “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. of Computational Physics 114, pp. 185-200. |
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142. |
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264. |
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938. |
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108. |
Biondi, B. (1992), “Velocity estimation by beam stack,” Geophysics 57(8), pp. 1034-1047. |
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514. |
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 1044-1049. |
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473. |
Burstedde, G. et al. (2009), “Algorithmic strategies for full waveform inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46. |
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515. |
Choi, Y. et al. (2011), “Application of encoded multisource waveform inversion to marine-streamer acquisition based on the global correlation,” 73rd EAGE Conference, Abstract, pp. F026. |
Choi, Y et al. (2012), “Application of multi-source waveform inversion to marine stream data using the global correlation norm,” Geophysical Prospecting 60, pp. 748-758. |
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813. |
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124. |
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14. |
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113. |
Donerici, B. et al. (1005), “Improved FDTD Subgridding Algorithms Via Digital Filtering and Domain Overriding,” IEEE Transactions on Antennas and Propagation 53(9), pp. 2938-2951. |
Downey, N. et al. (2011), “Random-Beam Full-Wavefield Inversion,” 2011 San Antonio Annual Meeting, pp. 2423-2427. |
Dunkin, J.W. et al. (1973), “Effect of Normal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642. |
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356. |
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116. |
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248. |
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50. |
Etgen, J.T. et al. (2007), “Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial,” Geophysics 72(5), pp. SM223-SM230. |
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230. |
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104. |
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734. |
Gao, H. et al. (2008), “Implementation of perfectly matched layers in an arbitrary geometrical boundary for leastic wave modeling,” Geophysics J. Int. 174, pp. 1029-1036. |
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397. |
Godfrey, R. J. et al. (1998), “Imaging the Foiaven Ghost,” SEG Expanded Abstracts, 4 pgs. |
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54. |
Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 49 pgs. |
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45. |
Griewank, A. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167. |
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf. |
Hampson, D.P. et al. (2005), “Simultaneous inversion of pre-stack seismic data,” SEG 75th Annual Int'l. Meeting, Expanded Abstracts, pp. 1633-1637. |
Heinkenschloss, M. (2008), :“Numerical Solution of Implicity Constrained Optimization Problems,” CAAM Technical Report TR08-05, 25 pgs. |
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194. |
Herrmann, F.J. (2010), “Randomized dimensionality reduction for full-waveform inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs. |
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transforms,” Geophys. J. Int. 163, pp. 463-478. |
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321. |
Huang, Y. et al. (2012), “Multisource least-squares migration of marine streamer and land data with frequency-division encoding,” Geophysical Prospecting 60, pp. 663-680. |
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J. Int. 124, pp. 363-371. |
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70. |
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181. |
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789. |
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163. |
Kennett, B.L.N. et al. (1988), “Subspace methods for large inverse problems with multiple parameter classes,” Geophysical J. 94, pp. 237-247. |
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731. |
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs. |
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270. |
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575. |
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,” 2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387. |
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1459. |
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432. |
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663. |
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069. |
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whiley & Sons, New York, pp. 1-18. |
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059. |
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174. |
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39. |
Maharramov, M. et al. (2007) , “Localized image-difference wave-equation tomography,” SEG Annual Meeting, Expanded Abstracts, pp. 3009-3013. |
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16. |
Marcinkovich, C. et al. (2003), “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” J. of Geophysical Research 108(B5), 2276. |
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166. |
Meier, M.A. et al. (2009), “Converted wave resolution,” Geophysics, 74(2):doi:10.1190/1.3074303, pp. Q1-Q16. |
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982. |
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228. |
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903. |
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399. |
Tarantola, A. (2005), “Inverse Problem Theory and Methods for Model Parameter Estimation,” SIAM, pp. 79. |
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894. |
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8. |
Valenciano, A.A. (2008), “Imaging by Wave-Equation Inversion,” A Dissertation, Stanford University, 138 pgs. |
Van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28. |
Van Manen, D.J. (2005), “Making wave by time reversal,” SEG International Exposition and 75th Annual Meeting, Expanded Abstracts, pp. 1763-1766. |
Verschuur, D.J. (2009), Target-oriented, least-squares imaging of blended data, 79th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2889-2893. |
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177. |
Verschuur, D.J. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132. |
Versteeg, R. (1994), “The Marmousi experience: Velocity model determination on a synthetic complex data set,” The Leading Edge, pp. 927-936. |
Vigh, D. et al. (2008), “3D prestack plane-wave, full-waveform inversion,” Geophysics 73(5), pp. VE135-VE144. |
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39. |
Wang, K. et al. (2009), “Simultaneous full-waveform inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541. |
Weglein, A.B. (2003), “Inverse scattering series and seismic exploration,” Inverse Problems 19, pp. R27-R83. |
Wong, M. et al. (2010), “Joint least-squares inversion of up- and down-going signal for ocean bottom data sets,” SEG Expanded Abstracts 29, pp. 2752-2756. |
Wu R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159. |
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759. |
Xie, X. et al. (2002), “Extracting angle domain infoimation from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363. |
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177. |
Yang, K. et al. (2000), “Quasi-Orthogonal Sequences for Code-Division Multiple-Access Systems,” IEEE Transactions on Information Theory 46(3), pp. 982-993. |
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060. |
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs. |
Zhang, Y. (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28. |
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201. |
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25. |
Mora, P. (1989), “Inversion = migration + tomography,” Geophysics 64, pp. 888-901. |
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45. |
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l. Conf. and Exh., EAGE, 5 pgs. |
Neelamani, R. (2009), “Efficient seismic forward modeling using simultaneous sources and sparsity,” SEG Expanded Abstracts, pp. 2107-2111. |
Nocedal, J. et al. (2006), “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176. |
Nocedal, J. et al. (2000), “Numerical Optimization-Calculating Derivatives,” Chapter 8, Springer Verlag, pp. 194-199. |
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs. |
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808. |
Park, C.B. et al. (2007), “Multichannel analysis of surface waves (MASW)—active and passive methods,” The Leading Edge, pp. 60-64. |
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083. |
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration,” Geophys. J. Int. 157, pp. 975-987. |
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” In E. Wolf, editor. Progress in Optics XXVII, Elsevier, pp. 317-397. |
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362. |
Pratt, R.G. (1999), “Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model,” Geophysics 64, pp. 888-901. |
Rawlinson, N. et al. (2008), “A dynamic objective function technique for generating multiple solution models in seismic tomography,” Geophys. J. Int. 178, pp. 295-308. |
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384. |
Romero, L.A. et al. (2000), Phase encoding of shot records in prestack migration, Geophysics 65, pp. 426-436. |
Ronen S. et al. (2005), “Imaging Downgoing waves from Ocean Bottom Stations,” SEG Expanded Abstracts, pp. 963-967. |
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438. |
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58. |
Sambridge, M.S. et al. (1991), “An Alternative Strategy for Non-Linear Inversion of Seismic Waveforms,” Geophysical Prospecting 39, pp. 723-736. |
Schoenberg, M. et al. (1989), “A calculus for finely layered anisotropic media,” Geophysics 54, pp. 581-589. |
Schuster, G.T. et al. (2010), “Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics,” SEG Denver 2010 Ann. Meeting, pp. 3110-3114. |
Sears, T.J. et al. (2008), “Elastic full waveform inversion of multi-component OBC seismic data,” Geophysical Prospecting 56, pp. 843-862. |
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384. |
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs. |
Sheng, J. et al. (2006), “Early arrival waveform tomography on near-surface refraction data,” Geophysics 71, pp. U47-U57. |
Sheriff, R.E.et al. (1982), “Exploration Seismology”, pp. 134-135. |
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158. |
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefield,” Geophysics 49, pp. 592-606. |
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385. |
Sirgue, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248. |
Soubaras, R. et al. (2007), “Velocity model building by semblance maximization of modulated-shot gathers,” Geophysics 72(5), pp. U67-U73. |
Spitz, S. (2008), “Simultaneous source separation: a prediction-subtraction approach,” 78th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2811-2815. |
Stefani, J. (2007), “Acquisition using simultaneous sources,” 69th Annual Conf. and Exh., EAGE Extended Abstracts, 5 pgs. |
Symes, W.W. (2007), “Reverse time migration with optimal checkpointing,” Geophysics 72(5), pp. p. SM213-SM221. |
Symes, W.W. (2009), “Interface error analysis for numerical wave propagation,” Compu. Geosci. 13, pp. 363-371. |
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-2205. |
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107. |
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037. |
Number | Date | Country | |
---|---|---|---|
20160033661 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62031096 | Jul 2014 | US |