1. Field of the Invention
This invention generally relates to a harmonic mixer and a radio communication device having the same, and more particularly, to transmission technology suitable for a high frequency range of 30 GHz or more.
2. Description of the Related Art
Recently, there has been considerable activity in the research and development of communication technology using the submillimeter-wave frequency range or millimeter-wave frequency range as high as 30 GHz or more. In the above-mentioned high frequency range, it is difficult to generate the stabilized local oscillation frequency. The high-quality radio communication cannot be realized unless the stabilized local oscillation frequency is available on both the transmitter and receiver.
Japanese Patent Application Publication No. 2001-53640 (hereinafter referred to as Document 1) describes a technique for transmitting an unmodulated carrier having a local oscillation frequency together with a modulated radio signal. On the receiver, the received unmodulated carrier is used as the local oscillation frequency to demodulate the modulated radio signal. It is not necessary to provide a high-accuracy local oscillator on the receiver. It is thus possible to simplify the structure of the receiver. In the case where the unmodulated carrier and the modulated radio carrier are affected by the same environmental factor such as temperature change, the affect of the environmental factor (fluctuations due to the temperature change) can be cancelled by demodulating with the received unmodulated carrier, and an excellent communication quality can be thus provided.
The invention disclosed in Document 1, however, employs a local oscillator that generates the oscillation frequency identical to that of the unmodulated carrier to be output from an antenna. There is a problem in that the stable modulated radio carrier cannot be generated. In order to obtain the local oscillator capable of stably generating the oscillation frequency of at least 30 GHz, there are still drawbacks to be solved even with the use of current technology. In particular, an extremely advanced technology and a considerable cost are required for producing the local oscillator having a frequency range as high as 60 GHz in order to realize the millimeter-wave radio communication with a frequency range of 60 GHz, which is considered attractive these days.
It is a general object of the present invention to provide a harmonic mixer and a radio communication device having the same.
A more specific object of the present invention is to realize the radio communication with the use of a high frequency range at least 30 GHz at a low cost and with a simple configuration of the harmonic mixer and the radio communication device having the same, although it is considered hard to generate the stable local oscillation frequency for the radio communication of at least 30 GHz.
According to one aspect of the present invention, preferably, there is provided a harmonic mixer comprising an anti-parallel diode having two diodes connected in parallel in reverse directions between first and second ends, the first end receiving a local oscillation signal, and the second end receiving an information signal and a DC bias, an output signal of the harmonic mixer being available at the second end.
According to another aspect of the present invention, preferably, there is provided a radio communication device includes a local oscillator that outputs a local oscillation signal, a terminal that receives a DC bias, and a harmonic mixer including an anti-parallel diode having two diodes connected in parallel in reverse directions between first and second ends, the first end receiving the local oscillation signal, and the second end receiving an information signal and the DC bias, an output signal of the harmonic mixer being available at the second end.
Preferred embodiments of the present invention will be described in detail with reference to the following drawings, wherein:
A description will now be given, with reference to the accompanying drawings, of embodiments of the present invention.
Here, in the case where there is not a DC bias, which will be described later, a double harmonic wave component is cancelled in the APDP 202 in the above-mentioned operation, and does not appear at the external connection terminal 212 that serves as the output terminal. In contrast, a DC voltage supply 10 is connected to the other end of the APDP 202 through a terminal 214 in accordance with the first embodiment of the present invention. The DC voltage supply 10 serves as a bias supply to apply the DC voltage to the other end of the APDP 202. Thus, the APDP 202 is biased and the operation characteristics of the APDP 202 are offset. As a result, the double harmonic wave component 2·fLO of the local oscillation frequency is not cancelled in the APDP 202, and is output. In another point of view, this output is a result of mixing the unmodulated signal having a zero frequency, namely, the DC voltage, with the local oscillation signals fLO. In the case where fLO is 30 GHz, 60 GHz of signal is output to the external connection terminal 212 through the capacitor C4.
As described, the harmonic mixer 20 is capable of generating the signals of the frequencies n·fLO±fIF (55 GHz and 65 GHz in the above-mentioned example), and the signal of the frequency n·fLO (60 GHz in the above-mentioned example), as shown in
The capacitors C4 and C5 shown in
A description will be given of a radio communication device having the harmonic mixer 20 in accordance with a second embodiment of the present invention.
An open stub 204 and a short stub 206 are provided for suppressing a signal loss and improving the efficiency. The open stub 204 is connected to the output side of the APDP 202, and has a length equal to ¼ of the wavelength corresponding to the local oscillation frequency fLO generated by the local oscillator 22. Thus, the open end of the open stub 204 serves as ground, with respect to the signal of the local oscillation frequency fLO (30 GHz in the above-mentioned example). It is thus possible to apply the signals of 30 GHz effectively across the APDP 202. The open stub 204 does not function with respect to the signal of 60 GHz at all. The short stub 206 is connected to the input side of the APDP 202, and has a length equal to ¼ of the wavelength corresponding to either one of the modulated radio signals 2·fLO±fIF (one of 55 GHz and 65 GHz in the above-mentioned example). For example, in the case where the short stub 206 has a length equal to ¼ of the wavelength corresponding to the modulated radio signal of 65 GHz, the modulated radio signal of 65 GHz is effectively applied between the input side of the APDP 202 and the ground. Thus, the modulated radio signal of 65 GHz can be returned to the APDP 202. The short stub 206 may have a length equal to ¼ of the wavelength corresponding to the modulated radio signal of 55 GHz. The modulated radio signal may transmit both sidebands or either sideband. In the case where only one of the sidebands is transmitted, one short stub 206 may be provided. In the case where both sidebands are transmitted, preferably, another short stub 208 is provided as shown in
It is thus possible to realize the radio communication with the use of the radio communication device 100 at a low cost and with a simple configuration for utilizing the high frequency range of at least 30 GHz.
The present invention is not limited to the above-mentioned embodiments, and other embodiments, variations and modifications may be made without departing from the scope of the present invention.
The present invention is based on Japanese Patent Application No. 2004-105684 filed on Mar. 31, 2004, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2004-105684 | Mar 2004 | JP | national |