The increasing use of wireless communication links between a large variety of devices has led to numerous advancements in antenna design. Mobile devices such as mobile phones communicate wirelessly in a number of different frequency bands that are specified in various industry standards. Various antenna designs are incorporated in wireless devices such as mobile phones to facilitate communication on one or more appropriate frequency bands, in accordance with the standards. Mobile devices may include multiband antenna configurations that facilitate communication on more than one frequency band. However, it has been challenging to design multiband antennas that may provide acceptable performance in space constrained applications such as mobile phones and other mobile communication devices.
For a more complete understanding of the present disclosure, reference is now made to the following description taken in conjunction with the accompanying drawings.
The close proximity between a high band antenna and a low band antenna in a multiband antenna structure can cause mutual electromagnetic coupling between the low band antenna and the high band antenna. Low band antennas which are designed to operate in a predetermined low frequency band can also resonate at harmonic frequencies above the low frequency band. The harmonic resonation of the low band antenna in the operating band of the nearby high band antenna detrimentally affects performance of both the high band antenna and the low band antenna and can substantially reduce efficiency of the multiband antenna structure.
Aspects of the present disclosure include a multiband antenna structure including a low band antenna configured with a high band antenna. The low band antenna and the high band antenna are both configured as wide band antennas. The low band antenna is configured to reduce resonances in the band of the high band antenna. The high band antenna is configured to reduce resonances in the band of the low band antenna. Thus harmonic interference between the antennas may be reduced.
In one aspect of the disclosure, the low band antenna is a harmonic suppressed patch coupled folded monopole antenna. The high band antenna may also be a harmonic suppressed patch coupled folded monopole antenna. However, in certain aspects of the present disclosure the high band antenna may naturally avoid creating resonances in the band of the low band antenna, so particular configurations of the high band antenna for harmonic suppression may be optional.
A multiband antenna structure 100 according to aspects of the present disclosure is described with reference to
According to one aspect of the present disclosure, the patch portion 108 is non-folded. For example, in one aspect, the patch portion 108 does not include a second arm portion extending back in the direction of the ground arm portion 118.
The high band antenna 104 includes a folded feed portion 122 and a patch portion 124 and is configured to operate in the high frequency band between about 1.7 GHz and 2.2 GHz. The patch portion 124 is electromagnetically coupled to the folded feed portion 122 via a patch gap 126 and edge coupled to a ground feed via a ground strip 128. The folded feed portion 122 includes a first arm 130 and a second arm 132 parallel to the first arm 130.
According to aspects of the present disclosure, high band resonances of the low band antenna 102 are suppressed by parasitic coupling of the grounded patch portion 108. The patch portion 108 also provides lower resonance mode matching for the low band antenna 102. According to further aspects of the present disclosure, the patch portion 108 is configured with a large area at the end of the parasitic ground strip 112. The large area suppresses high band resonances by allowing the patch portion to be constructed without a folding arm, which would create one or more high band resonances.
Other sources of harmonic resonances that can be suppressed according to the aspects of the present disclosure include slot mode resonances. Slot mode resonances can occur when an antenna element includes a narrow slot in an element or between two elements. The slot may resonate electromagnetic waves in the manner of a di-pole antenna, for example. According to an aspect of the present disclosure, the ground arm portion 118 is configured as a thin strip with a comparatively wide separation 120 from the first arm 114. The separation 102 may be sufficiently large to avoid creating a narrow slot between the folded feed portion 106 and the patch portion 108 that could create slot mode high frequency resonances, for example. Thus slot mode resonances may be reduced.
The patch portion 124 of the high band antenna 104 provides high frequency resonance mode matching for the high band antenna 104. The high band antenna 104 may be configured using the same harmonic suppression techniques described above with regard to the low band antenna 102 in structures where it could be desirable to suppress harmonics above the range of the high band antenna 104. However, persons having ordinary skill in the art should appreciate that the described harmonic suppression structure including wide separation between the folded feed portion 122 and the patch portion 124 is optional in the high band antenna 104 as it may not affect lower frequency harmonics in the band of the low band antenna 102, for example.
Referring to
A method for configuring a multiband antenna structure according to one aspect of the present disclosure is described with reference to the process flow diagram 200 shown in
At block 208, the method includes configuring a second folded monopole antenna element proximate with the first folded monopole antenna element. At block 210, the method includes configuring a second patch element for electromagnetic coupling with the second folded monopole antenna element to generate a primary resonance with the second folded monopole antenna element in a high band.
A method for configuring a multiband antenna structure such as the method described above with reference to
Performance of a multiband antenna structure according to aspects of the present disclosure is described with reference to the multiband antenna structure 100 shown in
Mutual coupling between multiband antenna elements may significantly reduce antenna efficiency. However, according to aspects of the present disclosure, isolation between the low band antenna 102 and the low band antenna 104 of the multiband antenna structure 100 prevents significant loss of efficiency. The efficiency of a multiband antenna structure according to aspects of the present disclosure is described with reference to the multiband antenna structure 100 shown in
In some circumstances it may be useful to configure a low band antenna with suppressed harmonics to avoid mutual coupling with other or interference with other components in an environment. A suppressed harmonic low band antenna may be constructed as described in
According to an aspect of the present disclosure that is described with reference to
According to one aspect of the present disclosure, the patch portion 508 is non-folded. In other words, the patch portion 508 does not include a second arm portion extending back in the direction of the ground arm portion 518.
In some circumstances it may be useful to configure the high band antenna in a multiband antenna structure to suppress harmonics from the high band antenna structure above the high band, for example.
A multiband antenna structure 600 that is configured to suppress harmonics both the low band antenna and the high band antenna according to aspects of the present disclosure is described with reference to
According to one aspect of the present disclosure, the patch portion 608 is non-folded. In other words, the patch portion 608 does not include a second arm portion extending back in the direction of the ground arm portion 618.
The high band antenna 604 includes a folded feed portion 622 and a patch portion 624. The patch portion 624 is electromagnetically coupled to the folded feed portion 622 via a patch gap 626 and edge coupled to ground feed via a ground strip 628. The folded feed portion 622 includes a first arm 630 and a second arm 632 parallel to the first arm 628.
According to aspects of the present disclosure, high band resonances of the low band antenna 602 are suppressed by parasitic coupling of the grounded patch portion 608. The patch portion 608 also provides lower resonance mode matching for the low band antenna 602. According to further aspects of the present disclosure, the patch portion 608 is configured with a large area at the end of the parasitic ground strip 612. The large area suppresses high band resonances by allowing the patch portion to be constructed without a folding arm, which would create one or more high band resonances. According to yet another aspect of the present disclosure, the ground arm portion 618 is configured as a thin strip with a comparatively wide separation 620 from the first arm 614. The separation 602 is sufficiently large to avoid creating a narrow slot between the folded feed portion 606 and the patch portion 608 that could create slot mode high frequency resonances, for example.
According to aspects of the present disclosure, high band resonances of the high band antenna 604 are suppressed by parasitic coupling of the grounded patch portion 624. The patch portion 624 of the high band antenna 604 also provides high frequency resonance mode matching for the high band antenna 604. The high band antenna 604 is configured using the same harmonic suppression techniques described above with regard to the low band antenna 602. According to further aspects of the present disclosure, the patch portion 624 is configured with a large area at the end of the ground strip 628. The large area suppresses high band resonances by allowing the patch portion 624 to be constructed without a folding arm, which would create one or more high band resonances. According to yet another aspect of the present disclosure, the ground strip 628 is configured with a comparatively wide separation 634 from the folded feed portion 622. The separation 634 may be sufficiently large to avoid creating a narrow slot between the folded feed portion 622 and the ground strip 628 that could create slot mode high frequency resonances, for example.
As discussed above, the various aspects of the present disclosure may be implemented in a wide variety of operating environments, which in some cases may include one or more mobile devices, user computers, computing devices, or processing devices which may be used to operate any of a number of applications. Mobile devices may include any of a number of cellular wireless and handheld devices such as mobile phones, smart phones and tablet computers running mobile software and capable of supporting a number of networking and messaging protocols. User computers and computing devices may include laptop computers and general purpose personal computers running a standard operating system, for example Such a system also may include a number of workstations running any of a variety of commercially-available operating systems and other known applications for purposes such as development and database management. These devices also may include other electronic devices, such as dummy terminals, thin-clients, gaming systems, and other devices capable of communicating via a network.
The environment may include a variety of data stores and other memory and storage media as discussed above. These may reside in a variety of locations, such as on a storage medium local to (and/or resident in) one or more of the computers or remote from any or all of the computers across the network. In a particular set of embodiments, the information may reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to the computers, servers, or other network devices may be stored locally and/or remotely, as appropriate. Where a system includes computerized devices, each such device may include hardware elements that may be electrically coupled via a bus, the elements including, for example, at least one central processing unit (CPU), at least one input device (e.g., a mouse, keyboard, controller, touch screen, or keypad), and at least one output device (e.g., a display device, printer, or speaker). Such a system may also include one or more storage devices, such as disk drives, optical storage devices, and solid-state storage devices such as random access memory (“RAM”) or read-only memory (“ROM”), as well as removable media devices, memory cards, flash cards, etc.
Such devices also may include a computer-readable storage media reader, a communications device (e.g., a modem, a network card (wireless or wired), an infrared communication device, etc.), and working memory as described above. The computer-readable storage media reader may be connected with, or configured to receive, a computer-readable storage medium, representing remote, local, fixed, and/or removable storage devices as well as storage media for temporarily and/or more permanently containing, storing, transmitting, and retrieving computer-readable information. The system and various devices also typically will include a number of software applications, modules, services, or other elements located within at least one working memory device, including an operating system and application programs, such as a client application or Web browser. It should be appreciated that alternate embodiments may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.
Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the various aspects and embodiments. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the disclosure as set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
7268730 | Park et al. | Sep 2007 | B2 |
7791546 | Hotta et al. | Sep 2010 | B2 |
8111195 | Hung et al. | Feb 2012 | B2 |
20090256771 | Onaka et al. | Oct 2009 | A1 |
20090273531 | Ishizuka et al. | Nov 2009 | A1 |
20110223858 | Wong et al. | Sep 2011 | A1 |
20120001815 | Wong et al. | Jan 2012 | A1 |