The subject matter disclosed herein relates generally to a component within a control system. More particularly, the present disclosure related to a channel interface component including redundancy within a control system with highway addressable remote transfer (HART) channels.
A HART device is generally a sensor or an actuator that may be used, for example, to control or monitor a system, such as a steam turbine or a gas turbine. The HART device facilitates communication within the control system using the well-known HART protocol. A HART sensor device controls current flowing in a wire, while a HART actuator device is controlled by the current flowing in the wire. In accordance with HART protocol, these functions are performed over the current loop carrying a 4 to 20 milliampere (mA) signal that is superimposed with HART data tones.
HART devices are interfaced to the control system along a HART channel using modules that perform current loop measurements and current loop driving. However, if a fault occurs along the HART channel, then communication between the HART device and the control system will be interrupted in order to repair the channel and control of the HART device is delayed.
Aspects of the invention provide for a HART channel interface component including redundancy. In one embodiment, aspects of the invention include a circuit, comprising: at least two highway addressable remote transfer (HART) channels, each HART channel including an input terminal and an output terminal configured to connect with a HART device via a current loop; an channel interface component coupled to each HART channel that is configured to support HART protocol signals for communications with the HART device, wherein the channel interface component includes a suicide relay switch for connecting or disconnecting each HART channel from the HART device; and a programmable logic device coupled to the channel interface component that is configured to perform modulation and demodulation of HART protocol signals for communications with the HART device
A first aspect of the invention provides a circuit, comprising: at least two highway addressable remote transfer (HART) channels, each HART channel including an input terminal and an output terminal configured to connect with a HART device via a current loop; an channel interface component coupled to each HART channel that is configured to support HART protocol signals for communications with the HART device, wherein the channel interface component includes a suicide relay switch for connecting or disconnecting each HART channel from the HART device; and a programmable logic device coupled to the channel interface component that is configured to perform modulation and demodulation of HART protocol signals for communications with the HART device
A second aspect of the invention provides a current loop interface circuit, comprising: at least two highway addressable remote transfer (HART) channel, each HART channel including an input terminal and an output terminal configured to connect with a HART device via a current loop; an channel interface component coupled to each HART channel that is configured to support HART protocol signals for communications with the HART device, wherein the channel interface component includes a suicide relay switch for connecting or disconnecting each HART channel from the HART device; a programmable logic device coupled to the channel interface component that is configured to perform modulation and demodulation of HART protocol signals for communications with the HART device; and an isolation barrier configured to isolate the channel interface component from the programmable logic device.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:
It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
Various embodiments of the present invention are directed to a highway addressable remote transfer (HART) channel interface component that supports HART protocol signals for use in controlling and/monitoring a HART device. In these embodiments, each HART channel interface component includes a suicide relay switch to connect or disconnect the HART channel interface from the HART device. Technical effects associated with the various embodiments of the present invention allow for redundancy of the HART channel interface component and for uninterrupted communication between a control system and the HART device.
Referring now to the drawings,
In one embodiment, HART device 25 may be a sensor or an actuator that is used in the control of a turbine. HART device 25 is embedded with the “smarts” to facilitate communication with each channel interface component 30 (
Although system 10 of
Further, although system 10 of
Referring now to
As shown in
Suicide relay switch 35 is controlled by programmable channel control logic 80 and, according to the instructions of programmable channel control logic 80, closes or opens contacts 37, 39. If contacts 37, 39 are closed, then HART channel 100 is connected to HART device 25 (i.e., HART channel 100 is considered the “master”). If contacts 37, 39 are open, then HART channel 100 is disconnected from HART device 25 (i.e., HART channel 100 is considered the “slave”). This suicide relay switch 35 provides the redundancy of HART channel 100. If there is a fault along HART channel 100 (i.e., the “master”), programmable channel control logic 80 may send instructions for suicide relay switch 35 to disconnect HART channel 100 from HART device 25. Further, programmable channel control logic 80 may send instructions for suicide relay switch 35 to connect HART channel 200 to HART device 25 (i.e., the new “master’).
Referring back to
In the case that HART device 25 (
Channel interface component 30 also includes a current regulator 55. However, in the case of HART device 25 (
In the case that HART device 25 (
In either case of a sensor or an actuator for HART device 25 (
Turning now to
At process P1, whether a failed unit is being replaced is determined. If “no”, for example, with HART channel 100, programmable channel control logic 80 instructs suicide relay switch 35 of channel interface component 30 to close contacts 37, 39 to connect HART channel 100, by terminals 105, 110, to HART device 25. HART channel 100 is now the “master”. If “yes”, for example, with HART channel 200, programmable channel control logic 80 instructs suicide relay switch 35 of channel interface component 30 to leave contacts 37, 39 open so that HART channel 200 is disconnected from HART device 25 and HART channel 100 is now the “slave”.
Following along with the example of HART channel 100 as the “master” channel, at process P3, HART channel 100 is continually checked to determine if HART channel 100 is running properly. If “no”, at process P4, a changeover message is sent to HART channel 200 (i.e., the “slave” channel). At process P5, the changeover message is received by HART channel 200. At process P6 and P7, programmable channel control logic 80 will instruct suicide relay switch 35 of HART channel 100 (i.e., the “master” channel) to open contacts 37, 39 to disconnect HART channel 100 from HART device 25, and also instruct suicide relay switch 35 of HART channel 200 (i.e., the “slave” channel) to close contacts 37, 39 to connect HART channel 200 to HART device 25. In this way, HART channel 200 becomes the “master” channel and HART channel 100 can be replaced and become the “slave” channel.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.