The disclosure relates generally to control of a harvester. More specifically, the present disclosure relates to a harvester with a tilted top beam.
A harvester may be used to harvest agricultural crops, such as barley, beans, beets, carrots, corn, cotton, flax, oats, potatoes, rye, soybeans, wheat, or other plant crops. Moreover, a harvester (e.g., combine harvester) is a type of harvester generally used to harvest certain crops that include grain (e.g., barley, corn, flax, oats, rye, wheat, etc.). During operation of a harvester, the harvesting process may begin by removing a plant from a field, such as by using a header. The header may cut the agricultural crops and transport the cut crops to a processing system of the harvester.
Generally, the harvester may be driven through a field to collect and process crops. As the harvester encounters agricultural crops in the field, the header, which is positioned at a front of the harvester, cuts a portion of each crop. Certain components of the harvester, such as the header, may be adjustable to enhance performance of the harvester. Unfortunately, when operating the header certain components may not be as visible. It would be beneficial to improve visibility of header components.
Certain embodiments commensurate in scope with the originally claimed subject matter are summarized below. These embodiments are not intended to limit the scope of the claimed subject matter, but rather these embodiments are intended only to provide a brief summary of possible forms of the disclosure. Indeed, the disclosure may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In certain embodiments, a header system includes a first header segment comprising a cutter bar configured to cut crops, and a first portion of a conveyor assembly. The header system further includes a center section comprising a center section tilted top beam and a second portion of the conveyor assembly, wherein the center section is configured to receive cut crops from the first header segment via the first portion of the conveyor assembly, wherein the center section tilted top beam is disposed at a first angle tilted relative to ground when the header system is in use.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
The process of farming typically begins with planting seeds within a field. Over time, the seeds grow and eventually become harvestable crops. Typically, only a portion of each crop is commercially valuable, so each crop is harvested to separate the usable material from the remainder of the crop. For example, a harvester may cut agricultural crops within a field via a header. The header may also gather the cut agricultural crops into a processing system of the harvester for further processing. The processing system may include a threshing machine configured to thresh the agricultural crops, thereby separating the crops into certain desired agricultural materials, such as grain, and material other than grain (MOG). The desired agricultural materials may be sifted and then accumulated into a tank. When the tank fills to capacity, the materials may be collected from the tank. The MOG may be discarded from the harvester (e.g., via a spreader).
The header may cut crops from the field that are encompassed within the width of the header. The header may include a cutter bar assembly that extends a portion of the width of the header, and the cutter bar assembly may use blades to cut the crops. The cut crops may fall onto the header, and the cut crops may be gathered together, such as via conveyors that run across the header. The gathered agricultural crops may then be transported into the processing system of the harvester.
The header may include certain components, such as conveyors, draper cutter bars, and so on, that would benefit from observation by the operator of the harvester. Accordingly, the techniques described herein include a tilted top beam system that provides for enhanced operator views during header operations. The tilted top beam also serves as a reservoir for certain fluid, such as hydraulic system fluid, e.g., oil. The tilted top beam provides for more surface area contact such that heat generated during operations of the hydraulic system may be more efficiently dissipated.
Turning now to the drawings,
In the illustrated embodiment, the header 112 includes a center section 211, as well as a first header segment 212 and a second header segment 214 that are each pivotally coupled to opposite ends of the center section 211. The first header segment 212 and the second header segment 214 are independently adjustable. In other words, a position of the first header segment 212 is adjustable independent of a position of the second header segment 214. Likewise, a position of the second header segment 214 is adjustable independent of a position of the first header segment 212.
The cutter bar assembly 202 of the header 112 is flexible to enable the cutter bar assembly 202 to bend in response to adjustment of the first header segment 212 and/or adjustment of the second header segment 214. The cutter bar assembly 202 extends along the center section 211, the first header segment 212, and the second header segment 214. The first header segment 212 includes a first conveyor section 216 of the conveyor assembly 208, and the second header segment 214 includes a second conveyor section 218 of the conveyor assembly 208. The first conveyor section 216 extends a portion of the width 203 of the header 112, and the second conveyor section 218 extends another portion of the width 203 of the header 112. The first conveyor section 216 may direct the crops in a first direction 220 toward the center section 211 and the second conveyor section 218 may direct the crops in a second direction 222 towards the center section 211. The center section 211 may then direct the crops to the inlet 210 in a third direction 224 via another conveyor section of the conveyor assembly 208 toward the crop processing system 120. In certain embodiments, the third direction 224 may be transverse to the first direction 220 and the second direction 222.
The header 112 may include wheels 226 to facilitate movement of the header 112 when the harvester 100 is in operation. The wheels 226 may engage with the ground to control the header height. For example, the wheels 226 may be positioned to control a height of the cutter bar assembly 202 with respect to the ground to control where crops are cut. Specifically, the wheels 226 may enable the cutter bar assembly 202 to contact the ground, in which the position of the header segments 212, 214 adjust to follow the contour of the ground. The wheels 226 may additionally or alternatively be retracted such that the header 112 is in a raised position. In the raised position of the header 112, the cutter bar assembly 202 may not be in contact with the ground and instead, may be a distance (i.e., a cutting height) above the ground. Thus, the position of the header segments 212, 214 may be independently controlled to match the contour of the cutter bar assembly 202 with the contour of the ground and maintain a substantially constant cutting height across the width 203 of the cutter bar assembly 202.
The figure also illustrates three tilted top beams, a first tilted top beam 240, a second tilted top beam 242, and a center section tilted top beam 244. More specifically, the first tilted top beam 240 may be used as support for and to move the entire first header segment or wing section 212 with respect to the center section tilted top beam 244. Likewise, the second tilted top beam 242 may be used as support for and to move the entire second header segment or wing section 214 with respect to the center section tilted top beam 244. Further, the center section tilted top beam 244 may be placed at the center of the frame 200 and used to support certain components of the center section 211 as well as to provide for a platform to move the first and second tilted top beams 240, 242 with respect to the center section 211. For example, the wing section 212 and/or the wing section 214 may be raised or lowered in an upwards direction 246 with respect to ground and in a downwards direction 248 with respect to ground as described further below. Also shown is a 3-dimensional (3D) axis 252.
The first section tilted top beam 240 and the second section tilted top beam 242 may each have a beam end proximal to the center section tilted top beam 244. The beam end is pivotably coupled to the center section tilted top beam 244 by hinged mechanisms 250 disposed at both ends of the center section top beam 244, as shown in more detail with respect to
In use, the hinged mechanism 250 may include a cylinder system 260 suitable for actuation (e.g., hydraulic actuation), for example, to move the first tilted top beam 240 with respect to the center tilted top beam 244. In some embodiments, the center tilted top beam 244, the first tilted top beam 240, and/or the second tilted top beam 242 may be used as a repository (e.g., tank) for hydraulic fluid (e.g., oil) used by the hydraulic system to actuate the cylinder system 260. For example, hydraulic fluid conduits 262 may be connected to the center tilted top beam 244, the first tilted top beam 240, and/or the second tilted top beam 242.
Indeed, the first header segment 212 may pivot about the hinge system 264 to provide for improved ground following capabilities in terrain that may not be level. During operations of the hydraulic system, the hydraulic fluid may experience an increase in temperature. It would be beneficial to provide for heat dissipation, for example, to cool down the hydraulic fluid. Certain geometries and/or positioning of the first tilted top beam 240, the second tilted top beam 242, and/or the central section tilted top beam 244, may provide for increased surface contact for the hydraulic fluid and/or improved operator visibility. For example, tilting the beams 240, 242, and/or 244, as shown in more detail in
In some embodiments, each of the first tilted top beam 240, the second tilted top beam 242, and the center tilted top beam 244 may all include the same angle or tilt. In other embodiments, one or all of the first tilted top beam 240, the second tilted top beam 242, and the center tilted top beam 244 may include a different angle or tilt. For example, certain components in one of the sections 210, 211, 212 may benefit from improved visibility at a certain angle or tilt and so the corresponding beam 240, 242, or 244 may be angled based on its respective section 210, 211, 212.
In the depicted embodiment, the line-of-sight 300 is depicted as having an angle 302 when measured against an axis such as the X axis. Based on the angle 302, the first tilted top beam 240, the second tilted top beam 242, and the center tilted top beam 244 may then be tilted during manufacturing to accommodate an improved operator view during header 112 operations. For example, the angle 302 may be equal to the operator line-of-sight angle 150 suitable for viewing desired components of the header 112 during operations of the vehicle 100 (e.g., harvesting operations).
In comparison, the tilted top beams 240, 242, and/or 244 shown in an embodiment of
A variety of shapes, such as shapes that that include a tilted top side or end may be used, as shown in
As illustrated, the first location 504 and the second location 508 are each disposed on an inner side 526 of the header segment 502. However, the first location 504 is disposed at a first end 528 of the inner side 526, opposite a second end 530 of the inner side 526 where the second location 508 is disposed. As a result, when the piston 514 moves within the body 516, the rod 512 drives the second end 530 to move generally in the first piston direction 518 or the second piston direction 519. However, since the first end 528 is rotatably coupled to the pivot 506, the header segment 502 rotates in a first rotational direction 532 or a second rotational direction 533 about the pivot 506 in response to movement of the second end 530. In this manner, as the piston 514 is moved within the body 516, an angle 534 between a bottom side 536 of the header segment 502 and a bottom side 538 of the center section 500 is adjusted. Further, a position of an outer end 540 of the header segment (e.g., a third end) is adjusted, such as in a first vertical direction 542 and a second vertical direction 544. As described in this disclosure, when the piston 514 is moved in the first piston direction 518, the header segment 502 rotates in the first rotational direction 532 and the outer end 540 is moved in the first vertical direction 542 (i.e., the angle 534 increases) to raise the header segment 502. Furthermore, when the piston 514 is moved in the second piston direction 519, the header segment 502 rotates in the second rotational direction 533 and the outer end 540 is moved in the second vertical direction 544 (i.e., the angle 534 is decreases) to lower the header segment 502. Since the outer end 540 is lower than the bottom side 538 of the center section 500, the header segment 502 is considered to be in a lowered position.
Also show are a tilted top bar 550 (e.g., beam 240 or 242) disposed in the section 502 and a center section tilted top bar 552 (e.g., beam 244) disposed in the section 500. The rod 512 may be mechanically coupled to the tilted top bar 550 so that movement of the rod 512 may result in movement of the entire section 502. That is, the tilted top bar 550 may be mechanically coupled to supports and so on so that the tilted top bar 550 may be used to move (e.g., raise or lower) the section 502.
In certain embodiments, incompressible fluid (e.g., a hydraulic fluid 404) may be used to move the piston 514. A certain amount of the fluid may be disposed in the first section 520 and in the second section 522 of the lift cylinder 510, and each section 520, 522 may be connected to a fluid reservoir. When the forces caused by the fluid pressure in the first section 520 and the forces caused by the fluid pressure in the second section 522 are equal, the piston 514 may not move, since the equal forces counteract against one another. To move the piston 514 in the first piston direction 518, the pressure in the first section 520 may be increased, and the increased pressure exerts a force against the piston 514 to move the piston 514 in the first piston direction 518. As the piston 514 moves in the first piston direction 518, fluid from the second section 522 is transferred into the fluid reservoir connected to the second section 522. Similarly, fluid may be removed from the first section 520 to the fluid reservoir connected to the first section 520 to decrease forces caused by the fluid pressure in the first section 520. For example, gravitational forces may drive the piston 514 in the second piston direction 519 and remove fluid from the first section 520. Additionally or alternatively, fluid may be added to the second section 522 to increase the forces caused by the fluid pressure in the second section 522. When the force against the piston 514 in the first section 520 falls below the force against the piston in the second section 522, the piston may move in the second piston direction 519 opposite the first piston direction 518 and as a result, fluid from the fluid reservoir connected to the second section 522 may flow into the second section 522. In this manner, an amount of fluid may be added and/or removed from the first section 520 and/or the second section 522 to control movement of the piston 514 and thus, position adjustment of the header segment 502 via the beam 550.
The header 112 depicted in
The process 600 may then determine (block 604) a beam tilt angle for any one or all of the first tilted top beam 240, the second tilted top beam 242, and the center section tilted top beam 244. For example, based on the desired line-of-sight angle the beams 240, 242, and/or 244 may be tilted at a desired tilt angle so that the operator may look over the beam 240, 242, and/or 244 and see desired components of the header 112 and or crops being harvested, such as crop being moved by the conveyors 216, 218, and conveyor in the center section 211. The process 600 may then manufacture (block 606) the beams 240, 242, and/or 244. For example, the beams may be manufactured using rectangular stock, square stock, or in any one or more of the shapes shown in
In embodiments where the manufactured beams 240, 242, and/or 244 may be used as reservoirs for hydraulic fluid, the process 600 may manufacture (block 610) on or more fluid couplings on the manufactured beams 240, 242, and/or 244. That is, certain openings (e.g., inlets, outlets, and so forth) may be manufactured on the manufactured beams 240, 242, and/or 244 to receive or otherwise couple with fluid conduits such as the conduits 262.
While only certain features of the disclosure have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the essence of the disclosure.
The techniques presented and claimed herein are referenced and applied to material objects and concrete examples of a practical nature that demonstrably improve the present technical field and, as such, are not abstract, intangible or purely theoretical. Further, if any claims appended to the end of this specification contain one or more elements designated as “means for [perform]ing [a function] . . . ” or “step for [perform]ing [a function] . . . ”, it is intended that such elements are to be interpreted under 35 U.S.C. 112(f). However, for any claims containing elements designated in any other manner, it is intended that such elements are not to be interpreted under 35 U.S.C. 112(f).
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/059782 | 11/5/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62768245 | Nov 2018 | US |