This relates generally to a system for generating power and, more particularly, to a system for harvesting energy from vehicular vibrations utilizing piezoelectric devices.
Increasing demands for better fuel economy have lead to improvements and developments in hybrid vehicles, electric vehicles, and vehicles powered by fuel cells or diesel fuel. Efforts on the part of the automotive industry to increase fuel economy have included, but are not limited to, reductions in mass, improved aerodynamics, active fuel management, direct injection engines, homogeneous charge compression ignition engines, and hybrid engines. Still, other mechanisms, techniques, and energy sources that will improve fuel economy are continually being sought. To this end, the use of piezoelectric materials to harvest energy has received a great deal of attention in recent years. As is well known, the piezoelectric effect involves the conversion of mechanical strain into electric current or voltage. Many different sources could provide the requisite strain; e.g. human motion, seismic activity, vibrations, etc.
It is generally known that vehicles are subjected to vibrations, especially while being driven. These vibrations have typically been considered undesirable. In fact, a great deal of effort has gone into the development of suspension systems that include springs, dampers, shock absorbers, and the like, that provide vehicular stability and insulate the vehicle's passenger compartment from vibration caused by, for example, driving on bumpy or otherwise tortuous roadways. For example, resilient bumpers such as elastomeric jounce bumpers are typically used in vehicular suspension systems for cushioning impacts between two metallic members such as frame member and control arm. The jounce bumper is used to stiffen the suspension gradually as it approaches the end of its jounce travel. This cushions the impact, thus reducing noise and other undesirable consequences of the impact.
Currently, the energy associated with these vibrations is lost. However, harvesting and utilizing this energy would provide an additional source of energy that could be used to increase fuel economy. The ability to tap this additional source of energy while not compromising the benefits of modern vehicular suspension systems would greatly benefit both the automotive industry and their customers.
In accordance with an embodiment, an energy harvesting apparatus is provided for deployment on a vehicle. The apparatus comprises a shock absorber including a dust tube assembly, a jounce bumper assembly mounted within the dust tube assembly at a first end thereof, and a damper tube assembly mounted for telescopic movement within the dust tube assembly and through a second end thereof, the jounce bumper assembly configured to be impacted by the damper tube assembly. A piezoelectric device coupled to the jounce bumper assembly.
The embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and:
The following detailed description is merely illustrative in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. The invention may be described herein in terms of functional and/or logical block components and various processing steps. It should be appreciated that such block components may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For the purposes of conciseness, conventional techniques and systems related to semiconductor processing, transistor theory, packaging, and power modules are not described in detail herein.
The following description refers to elements or nodes or features being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “connected” means that one element/node/feature is directly joined to (or directly communicates with) another element, node or other feature in mechanical, logical, electrical or other appropriate sense. Likewise, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature in a mechanical, logical, electrical or other appropriate sense. The term “exemplary” is used in the sense of “example,” rather than “model.” Further, although the figures may depict example arrangements of elements, additional intervening elements, devices, features, or components may be present in a practical embodiment of the invention.
Piezoelectricity is a characteristic of certain materials to generate an electric potential when they are subjected to a mechanical stress. Known piezoelectric materials include, but are not limited to, naturally occurring crystals, man-made crystals, and certain ceramics. More recently, piezoelectric fiber composite two-terminal transducers have been developed that have certain advantages over bulk piezoelectric ceramics. For example, they are lighter, more flexible, and more robust. Higher piezoelectric voltage coefficients can be obtained from piezoelectric fiber composites resulting in more generated power. Furthermore, piezoelectric fiber composites can be created inexpensively to user defined shapes. They provide increased strength over monolithic materials as a result of fiber lead sharing, and may be laminated with durable polyethylene sheets for additional toughness. Piezoelectric fiber composites may be used singly, or multiply in parallel, to accumulate power for an extended period of time. Such devices are well known and commercially available from Advanced Cerametrics, Inc., located in Lambertville, N.J.
A jounce bumper 152 is comprised of, for example, an elastomeric material such as polyurethane, is coupled to a jounce bumper bracket 154 and is disposed concentrically about piston rod 128. Dust tube 126 is coupled to upper mount assembly 136 (and thus to the sprung vehicle mass), and extends concentrically around damper tube 124. Thus, damper tube 124 and dust tube 126 are configured for telescopic movement with respect to each other. That is, damper tube 124 is free to move or vibrate into and out of dust tube 126 as the vehicle encounters perturbations such as bumps and the like in the roadway.
Typically, piston 130 is provided with a plurality of channels 131 therethrough; e.g. low speed bleed holes, a compression port, and a rebound port. Piston 130 is sealed at the inner sidewalls of damper tube assembly 124 forcing all fluid to flow throughout the bleed holes and/or rebound port and compression port, and valves associated therewith (nor shown), to provide the required damping force.
If the surface of a travelled roadway that is rough (i.e. contains bumps, pot-holes, and the like), damper tube assembly 124 will often be forced into dust tube 126, causing jounce bumper stopper 132 to impact and compress jounce bumper assembly 152.
Referring to
Thus, there has been presented an apparatus that harvests energy created when a vehicle's suspension system is acted upon by perturbations (bumps, pot-holes, etc.) in a roadway. Stress and strain on the jounce bumper assemblies are converted to AC electrical energy in a piezoelectric device (e.g. a piezoelectric fiber composite disk). The resultant induced AC energy is then converted to a form suitable for storage and/or use by or storage in the vehicle's electrical system.
While at least one exemplary embodiment has been presented in the foregoing summary and detailed description, it should be appreciated that a vast number of variations exist. For example, the battery or capacitor could be packaged with the rectifier or packaged separately. The rectifier assembly could be mounted remotely from the shock absorber on a separate structure. If desired, a sensor may likewise be mounted on the shock absorber itself and powered by the rectifier. Alternatively, the sensor may be remotely located. It should also be appreciated that the jounce bumper could reside outside the shock absorber, either within or outside a coil spring.
The exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment or embodiments of the invention, it being understood that various changes may be made in the function and arrangement of described elements without departing from the scope as set forth in the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4297609 | Hirao et al. | Oct 1981 | A |
4757315 | Lichtenberg et al. | Jul 1988 | A |
4817922 | Hovance | Apr 1989 | A |
4822063 | Yopp et al. | Apr 1989 | A |
4836578 | Soltis | Jun 1989 | A |
5009450 | Herberg et al. | Apr 1991 | A |
5218308 | Bosebeck et al. | Jun 1993 | A |
5251729 | Nehl et al. | Oct 1993 | A |
5267466 | Morris | Dec 1993 | A |
5373445 | Yopp | Dec 1994 | A |
5461564 | Collins et al. | Oct 1995 | A |
5638927 | Cheatham et al. | Jun 1997 | A |
5990441 | Zaenglein et al. | Nov 1999 | A |
6069581 | Bell et al. | May 2000 | A |
6209691 | Fehring et al. | Apr 2001 | B1 |
6427812 | Crawley et al. | Aug 2002 | B2 |
7420462 | Nordmeyer | Sep 2008 | B2 |
7733239 | Nordmeyer | Jun 2010 | B2 |
7777396 | Rastegar et al. | Aug 2010 | B2 |
20060186586 | Soles et al. | Aug 2006 | A1 |
20060271678 | Jessup et al. | Nov 2006 | A1 |
20070205881 | Breed | Sep 2007 | A1 |
20070251776 | Braun | Nov 2007 | A1 |
20080116849 | Johnston | May 2008 | A1 |
20080252174 | Mohammadi et al. | Oct 2008 | A1 |
20090021720 | Hecker | Jan 2009 | A1 |
20090045698 | Genis et al. | Feb 2009 | A1 |
20100052475 | Lee | Mar 2010 | A1 |
20100094503 | Li et al. | Apr 2010 | A1 |
20100123568 | Namuduri et al. | May 2010 | A1 |
20100125389 | Talty et al. | May 2010 | A1 |
20100219641 | Namuduri et al. | Sep 2010 | A1 |
20100219720 | Namuduri et al. | Sep 2010 | A1 |
20100219798 | Namuduri et al. | Sep 2010 | A1 |
20100225527 | Talty et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2594755 | Aug 1987 | FR |
60-101425 | Nov 1983 | JP |
4359901 | Nov 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20100219721 A1 | Sep 2010 | US |