Computing devices have made significant contributions toward the advancement of modern society and are utilized in a number of applications to achieve advantageous results. Numerous devices, such as personal computers, laptop computers, tablet computers, smart phones and the like are directed toward specific markets and applications. For example, there are relatively large desktop personal computers for use in home and office. The desktop PCs are generally able to operate with a large number of external peripheral devices, such as monitors, keyboards, pointing devices, printers, cameras, speakers and the like. Desktop PCs are generally adapted to be readily expanded and/or upgraded. Laptop computers, tablet computers and smart phones provide increasing portability but generally are adapted to support fewer external peripheral devices, particularly at any given time and it generally is more difficult to upgrade or expand the devices.
Most conventional computing devices include a plurality of ports for communicating with one or more peripheral device and/or one or more other devices. For example, a conventional laptop computer may include an HDMI port, a DVI port, a plurality of USB ports, an Ethernet port, a WIFI transceiver, and/or the like. A conventional tablet computer may include one HDMI port, one USB port, a WIFI transceiver and/or the like. Typically, the smaller the form fact of the computing device, the less communication ports are included.
Usually one or more peripherals such as a keyboard, a pointing device, speakers, a camera, a storage device and the like are coupled to the computing device through the USB port of the computing device. At times the operation of the computing device or between the computing device and one or more USB coupled peripheral device, and/or software running on the computing device or USB peripheral may experience problems. In a conventional computing device having a plurality of USB ports, one of the ports may be used to debug the problem. In such case, one USB port can be used for normal USB operations while a debug platform can be coupled to another USB port for debugging the software or hardware of the computing device.
The present technology may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the present technology.
Embodiments of the present technology are directed toward multiplexing debug commands and data on a high-definition multimedia interface (HDMI) when a computing device includes a single universal serial bus (USB). In one embodiment, the computing device includes a high-definition multimedia interface (HDMI) port, a high-definition multimedia interface (HDMI) module, and a universal asynchronous receiver and transceiver (UART). The high-definition multimedia interface (HDMI) module is adapted to detect an extended display identification data (EDID) code indicating a debug cable or debug host device coupled to the high-definition multimedia interface (HDMI) port. The high-definition multimedia interface (HDMI) module is also adapted to disable a display data channel (DDC) bus of the high-definition multimedia interface (HDMI) port in response to the extended display identification data (EDID) code indicating the debug cable or debug host device. The universal asynchronous receiver and transceiver (UART) is adapted to transmit and receive debug commands and data on a serial input (RXD) and serial output (TXD) of the high-definition multimedia interface (HDMI) port in response to the extended display identification data (EDID) code indicating the debug cable or debug host device.
In another embodiment, a high-definition multimedia interface (HDMI) controller includes a high-definition multimedia interface (HDMI) module and a universal asynchronous receiver and transceiver (UART). The high-definition multimedia interface (HDMI) module is adapted to detect a hot plug detect signal, to detect an extended display identification data (EDID) code indicating a debug cable or debug host device in response to the hot plug detect signal, and to disable a display data channel (DDC) bus in response to the extended display identification data (EDID) code indicating the debug cable or debug host device. The universal asynchronous receiver and transceiver (UART) is adapted to transmit and receive debug commands and data on a serial input (RXD) and serial output (TXD) in response to the extended display identification data (EDID) code indicating the debug cable or debug host device.
Embodiments of the present technology are illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Reference will now be made in detail to the embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present technology, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, it is understood that the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present technology.
Some embodiments of the present technology which follow are presented in terms of routines, modules, logic blocks, and other symbolic representations of operations on data within one or more electronic devices. The descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. A routine, module, logic block and/or the like, is herein, and generally, conceived to be a self-consistent sequence of processes or instructions leading to a desired result. The processes are those including physical manipulations of physical quantities. Usually, though not necessarily, these physical manipulations take the form of electric or magnetic signals capable of being stored, transferred, compared and otherwise manipulated in an electronic device. For reasons of convenience, and with reference to common usage, these signals are referred to as data, bits, values, elements, symbols, characters, terms, numbers, strings, and/or the like with reference to embodiments of the present technology.
It should be borne in mind, however, that all of these terms are to be interpreted as referencing physical manipulations and quantities and are merely convenient labels and are to be interpreted further in view of terms commonly used in the art. Unless specifically stated otherwise as apparent from the following discussion, it is understood that through discussions of the present technology, discussions utilizing the terms such as “receiving,” and/or the like, refer to the actions and processes of an electronic device such as an electronic computing device that manipulates and transforms data. The data is represented as physical (e.g., electronic) quantities within the electronic device's logic circuits, registers, memories and/or the like, and is transformed into other data similarly represented as physical quantities within the electronic device.
In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” object is intended to denote also one of a possible plurality of such objects. It is also to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Embodiments of the present technology are directed toward using an HDMI port of a device having a single USB port to allow debugging by a second computing device. The techniques multiplex the use of the HDMI port to allow debugging of the device without increasing the number of USB ports.
Referring now to
The computing device-readable media 110, 115, may be characterized as primary memory and secondary memory. Generally, the secondary memory, such as a solid state (e.g., flash memory), magnetic and/or optical mass storage, provides for non-volatile storage of computer-readable instructions and data for use by the computing device. For instance, the flash memory drive 115 may store the operating system (OS) 150, applications (e.g., programs, drivers, routines, utilities) and data 155. The primary memory, such as the system memory 110 and/or graphics memory (not shown), provides for volatile storage of computer-readable instructions and data for use by the computing device. For instance, the system memory 110 may temporarily store all or a portion of the operating system 150′, and all or a portion of one or more applications and associated data 155′ that are currently used by the CPU 105, GPU and the like.
The input/output controller hub 120 may be implemented as an integral sub-circuit (e.g., single IC chip), or as one or more sub-circuits (e.g., a plurality of IC chips, such as a north and south bridge chip set). The input/output controller hub 120 may include a display engine 122, a USB controller 124, memory controllers, other peripheral controllers, and/or the like. The display engine 120 may include a muxed HDMI controller 122. The muxed HDMI controller 122 may be implemented as a single sub-circuit (e.g., system-on-a-chip (SOIC)) or as one or more sub-circuit. Referring now to
In accordance with the applicable standards. the HDMI controller provides connections at the HDMI port 135 that include a consumer electronics control (CEC) line (e.g., serial output (TXD)), a serial input (RXD) (also known as the reserved, utility or HEC- according to the FIDMI standard), ground (not shown) and power lines, a hot plug detect line, a display data channel bus e.g., transition minimized differential signaling (TMDS) lines), and serial clock line (SCL) and serial data lines (SDA). The muxed HDMI controller 210 may transmit and receive display and control commands and data through the HDMI port 135 in accordance with the conventional EIDMI standards.
The muxed HDMI controller 210 is also adapted to transmit and receive debugging commands and data through the HDMI port 135. When the HDMI module 214 detects a hot plug device signal on the HPD line, the HDMI module 214 reads extended display identification data (EDID) across the SCL and SDA lines. If the EDID is a unique code indicating a “debug” cable or host device, the HDMI module 214 disables (e.g., high impedance state) the display data channel bus (e.g., transition minimized differential signaling (TMDS) lines). Thereafter, the debug commands and data are transmitted and received across the serial input (RXD) and output (TXD) lines of the HDMI port 135 by the UART 212 and isolation/level shifter circuit 216.
To conserve power when not debugging, the serial input (RXD) and output (TXD) lines are left in a high impedance state, and the line level is typically used at 1.8V, although any voltage is usable. If another line level is appropriate, the signals on the serial input (RXD) and output (TXD) lines are line leveled with one of the other voltages commonly used by the HDMI connector for these pins. To avoid incompatibility with a conventional HDMI cable assembly that is being inserted into the socket, the outputs of the isolation/level shifter circuit 216 are held in a high impedance state until such time as the muxed HDMI controller 210 enables the debugging state.
Referring, now to
Embodiments of the present technology will be further explained with reference to
In response to the “debug” cable/host device EDID code, the muxed HDMI controller 212-216 disables the TMDS data bus. The muxed HDMI controller 212-216 also enables transmission and receipt of debug commands and data across the consumer electronics control (CEC) line (e.g., serial output (TXD)) and the serial input (RXD) line, in response to the “debug” host mode/device EDID code. In such case the debugging computing device 410 may be acting substantially similar to a USB host and the target computing device 100 may be acting substantially similar to a USB slave/bridge device.
Accordingly, embodiments of the present technology advantageously allow debugging a device without increasing the number of USB ports that are on the chassis or affecting the final height (z) of the chassis.
The foregoing descriptions of specific embodiments of the present technology have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, to thereby enable others skilled in the art to best utilize the present technology and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4524440 | Orsic | Jun 1985 | A |
RE32900 | Orsic | Apr 1989 | E |
5453983 | O'Connell et al. | Sep 1995 | A |
5634069 | Hicok et al. | May 1997 | A |
5703883 | Chen | Dec 1997 | A |
5754957 | Khan | May 1998 | A |
5875190 | Law | Feb 1999 | A |
6005863 | Deng et al. | Dec 1999 | A |
6023732 | Moh et al. | Feb 2000 | A |
6088822 | Warren | Jul 2000 | A |
6199150 | Yoshikawa | Mar 2001 | B1 |
6351725 | Willis et al. | Feb 2002 | B1 |
6480488 | Huang | Nov 2002 | B1 |
6526535 | Warren | Feb 2003 | B1 |
6715023 | Abu-Lebdeh et al. | Mar 2004 | B1 |
6724759 | Chang et al. | Apr 2004 | B1 |
6738881 | Ollivier et al. | May 2004 | B1 |
6741575 | Zhang et al. | May 2004 | B1 |
7039771 | Spaur et al. | May 2006 | B1 |
7050859 | Govindaraj et al. | May 2006 | B1 |
7151893 | Hayashi et al. | Dec 2006 | B2 |
7421518 | Toda | Sep 2008 | B2 |
7441056 | Lee | Oct 2008 | B2 |
7457311 | Hall | Nov 2008 | B2 |
7468975 | Davis | Dec 2008 | B1 |
7917671 | Chilukoor et al. | Mar 2011 | B2 |
8856744 | Overby | Oct 2014 | B2 |
20040027515 | Itakura | Feb 2004 | A1 |
20050182876 | Kim et al. | Aug 2005 | A1 |
20060031611 | Konda | Feb 2006 | A1 |
20060187837 | Warren et al. | Aug 2006 | A1 |
20060277586 | Baba et al. | Dec 2006 | A1 |
20060282567 | Bhesania et al. | Dec 2006 | A1 |
20060288131 | Lee | Dec 2006 | A1 |
20080134237 | Tu et al. | Jun 2008 | A1 |
20080320186 | Lee | Dec 2008 | A1 |
20090213129 | Li | Aug 2009 | A1 |
20100020183 | Kimoto et al. | Jan 2010 | A1 |
20110242427 | Ramsdale | Oct 2011 | A1 |
20120064758 | Grice et al. | Mar 2012 | A1 |
Entry |
---|
Leonard Tsai (Hewlett-Packard Company), “HDMI-based debug module”, Copyright Jan. 2011, Research Disclosure, pp. 1-2. |
ON Semiconductor, “HDMI Receiver Port Protection and Interface Device”, Copyright Jul. 2011—Rev. 7, Semiconductor Components Industries, LLC, pp. 1-12. |
Xilinx, Inc., “XPS 16550 UART (v3.00a)—Product Specification”, Sep. 16, 2009, pp. 1-25. |
Debugging—Wikipedia, the free encyclopedia, Aug. 23, 2011, http://web.archive.org/web/20110913013559/http://en.wikipedia.org/wiki/De- bugging. |
Digital Visual Interface—Wikepedia, the three encyclopedia, Feb. 9, 2010, http://web.archive.org/web/20100209004631/http://en.wikipedia.org/wiki/Di- gital.sub.-Visual.sub.-Interface. |
“Communication interface circuit for on-line emulation and debugging, has set of sending/receiving switching channels in protocol level shifter circuit, and channel's output end connected with serial port's data receiving terminal” CN 200976142 Y, Nov. 14, 2007. |
Number | Date | Country | |
---|---|---|---|
20130054842 A1 | Feb 2013 | US |