Sleep disordered breathing, including snoring and obstructive sleep apnea, affects tens of millions of adults in the United States. It is associated with substantial cardiovascular morbidity and mortality, endocrine disturbances, excessive daytime sleepiness, quality of life and performance deficits, and motor vehicle crashes.
Multiple factors contribute to sleep disordered breathing, including the loss of muscle tone that occurs with sleep onset. The breathing passages of the upper airway, including the nose, oral cavity, and pharynx, are surrounded by muscles and other soft tissues of the head and neck. This loss of muscle tone enables collapse or vibration of these soft tissues, particularly in the oral cavity and pharynx, contributing to sleep disordered breathing. Treatment of sleep disordered breathing includes approaches that directly or indirectly enlarge or stabilize the breathing passages of the upper airway. Treatment options include behavioral measures such as weight loss, positive airway pressure therapy, surgery, and oral appliances. All treatments have strengths and weaknesses, whether limited compliance, risks of complications, or outcomes that can vary widely.
Head and neck exercises have been proposed as an alternative treatment for sleep disordered breathing. These isotonic and/or isometric exercises can involve muscles within and surrounding the oral cavity and/or pharynx. A number of the exercises include the generation of positive or negative pressure within the oral cavity and/or pharynx.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to employ variously the present invention.
Referring to all Figures and embodiments described in this application, similarly-numbered parts (e.g., 118, 218, 418, etc.) may have similar descriptions, designs, and embodiments.
Referring to
The head and neck exercise apparatus 110 may include a mouthpiece 112 that cooperates with a proximal portion 122 of a member 114. In this embodiment, the member 114 is cylindrically-shaped and defines a passageway or proximal portion 122 there through. In this embodiment, the member 114 also defines a passageway or distal portion 124 there through. A valve mechanism 118 may be operatively arranged with (e.g., disposed within, connected to, etc.) the member 114. The valve mechanism 118 may separate the proximal portion 122 and distal portion 124 when in the closed position. In certain embodiments, the valve mechanism 118 is biased towards the closed position (
The valve mechanism 118 is presented as of the deflection valve type, but other valve mechanism types such as reed valve, leaf valve, duckbill valve, ball valve, check valve, gate valve, plug valve, and diaphragm valve, are possible. In other embodiments, the valve mechanism 118 may open if the pressure in the proximal portion 122 rises above the threshold pressure but then remains open if the pressure in the proximal portion 122 subsequently falls below the threshold pressure. The valve mechanism may include some means to return the valve to the closed position (e.g., reset lever, etc.). In other embodiments, the valve mechanism 118 may be biased towards the open position unless it is closed when the positive pressure in the proximal portion 122 is greater than a threshold pressure, with all other potential configurations described elsewhere in this application. In other embodiments, the valve mechanism 118 may be biased towards the closed position and open only if negative pressure in the proximal portion 122 has an absolute pressure greater than a threshold negative pressure (i.e., is less than a threshold negative pressure). All other embodiments described for positive pressure in the proximal portion could be configured for negative pressure. In this application, an absolute pressure greater than a threshold absolute pressure represents a positive pressure greater than a threshold pressure or a negative pressure less than a threshold negative pressure.
Apparatuses for head and neck exercises for sleep disordered breathing ideally provide feedback regarding proper performance of the exercises. As opposed to traditional muscle strength training exercises where gross body movements enable monitoring of the exercise, a user does not easily visualize many head and neck muscles during movement or contraction. Feedback from an apparatus for head and neck exercises for sleep disordered breathing may indicate correct movements or muscle contractions through a number of means, including those that depend on generation of positive or negative pressure within the oral cavity and/or pharynx of a sufficient magnitude or duration.
When the valve mechanism 118 is open, the proximal portion 122 is fluidly connected to the distal portion 124, and airflow may occur between the proximal portion 122 and the distal portion 124. This airflow (from the proximal portion 122 to distal portion 124 with an open valve mechanism 118) could provide simple and immediate user feedback to indicate that there was positive pressure above the threshold pressure.
User feedback could be based on airflow through an apparatus or any sensory signal (visual, auditory, or tactile). The simplicity of the valve mechanism 118 avoids the need for a pressure transducer or other means that may be complex or expensive, as in many medical apparatuses that may emphasize precision over simplicity and low cost. Simplicity and low cost are much more important for head and neck exercises for sleep disordered breathing than in most medical applications. For example, a user may perform these exercises in a wide range of settings over a period of time, where inexpensive and easily portable apparatuses would be favored.
A number of respiratory apparatuses used in medical environments are capable of monitoring positive or negative pressure, but these may not be well-suited to the performance of these head and neck exercises for sleep disordered breathing. Respiratory apparatuses are often developed for disorders affecting the lungs rather than the oral cavity and/or pharynx. This leads to features, such as freely permitting airflow through the apparatus (in order to monitor airflow without disturbance), that may be unfavorable for some head and neck exercises for sleep disordered breathing. These apparatuses or their feedback mechanisms may be expensive or complex, require electrical parts, or be designed to offer precision in measurements of pressure or airflow. These features may not be necessary with exercises for sleep disordered breathing. These and other limitations may have prevented the use of respiratory apparatuses in head and neck exercises for sleep disordered breathing and treatment of many other conditions.
Exercise apparatuses used in other areas of the body (for example, including weights) have been adapted for use in the head and neck region, but their uses have been limited to strengthening muscles for chewing or teeth clenching that may not be suited to exercises for sleep disordered breathing. The unique nature of head and neck exercises for sleep disordered breathing requires different apparatus designs.
Three types of apparatuses have been proposed for head and neck exercises for sleep disordered breathing: (1) brushes or apparatuses with a roughly linear, solid design that can stroke or brush the tongue; (2) tubes designed for drawing liquid from a container connected to a pressure transducer; and (3) positive end-expiratory pressure relief valves utilizing a coil spring mechanism. There are a number of limitations of these apparatuses. The first type is not designed for resistance training exercises and does not provide meaningful feedback regarding many of these exercises. The second is unnecessarily complex and expensive, which may not be favorable for many reasons, including those outlined above.
Positive end expiratory pressure relief valves have been proposed for expiratory muscle training, primarily for disorders affecting the lungs such as chronic obstructive pulmonary disease. These apparatuses provide resistance training for the chest wall muscles relevant to these pulmonary disorders, with the threshold pressure level determined with a coil spring mechanism that enables adjustment over a wide (and continuous) range. These apparatuses have a number of limitations for the treatment of sleep disordered breathing. First, they have been used solely in expiration, which involves the generation of positive pressure within the body only. In addition, the end-expiratory pressure relief valve apparatuses have solely relied on airflow (e.g., air flows through the apparatus when the expiratory pressure exceeds the threshold pressure) to provide user feedback.
For some exercises and exercise programs, requiring airflow may not be favorable (airflow can only be maintained for a limited duration, airflow may distract the user from any additional movements that are required, etc.). A coil spring mechanism may have technical drawbacks compared to other designs. The wide range of adjustment may be well-suited to chronic obstructive pulmonary disease in which an exercise program generally consists of a single exercise, but exercises for sleep disordered breathing typically involve a number of exercises in which complexity (e.g., an apparatus with a threshold pressure that must be adjusted) may not be favorable. In contrast, a selected range of similar apparatuses with different threshold pressures is more straightforward and enables the construction of simpler apparatuses. There are other limitations and drawbacks of apparatuses that are available currently.
The valve mechanism 118 may have any design that performs the functions as specified. In other embodiments, the valve mechanism 118 may have a means of adjustment to alter its properties (e.g., dimensions, resistance to opening, etc.). In other embodiments, the valve mechanism 118 may be dependent on either positive or negative pressure. In other embodiments, the head and neck exercise apparatus 110 may be configured to allow substitution of the valve mechanism 118. In other embodiments, the member 114 may have no distal portion 124, enabling the proximal portion 122 to communicate directly to the external environment when the valve mechanism 118 is open.
The mouthpiece 112 may be placed between the lips such that it extends inside the oral cavity to assist with maintaining the apparatus position or achieving an airtight communication with the oral cavity. The mouthpiece 112 may be of any configuration or placement (to the lips, between the lips, inside the cheeks, between the teeth, above the tongue, etc.). The mouthpiece 112 may be configured to favor an orientation of at least one structure of the face or oral cavity. Such an orientation could be desirable in the performance of head and neck exercises for sleep disordered breathing.
The mouthpiece 112 may be separable from the member 114 and may include a coupling element 120 that cooperates with the member 114. In this embodiment, the coupling element 120 defines a passageway there through. The coupling element 120 and the remainder of the mouthpiece 112 may be separable. In other embodiments, the mouthpiece 112 may not be separable from the member 114 or may be manufactured in continuity with the member 114. In other embodiments, any suitable mouthpiece 112 or design of the member 114 may be used as an interface between the user and apparatus. A locking or snap mechanism may enhance the cooperation between at least two of the mouthpiece 112, coupling element 120, and member 114.
Referring to
In this embodiment, the valve mechanisms 218 are distinct from the proximal housing 226 and distal housing 227, but in other embodiments any component of the valve mechanism may be manufactured in continuity with any part of the members 214 or housing. In this embodiment, the at least two members 214 each define a proximal portion 222 but do not define a distal portion. In other embodiments, at least one member 214 may define a distal portion.
A mouthpiece 212 may include a coupling element 220 to enable connection to the proximal portion 222 of the at least two members 214. Connection of the mouthpiece 212 to the at least two members 214 may allow the user to perform exercises according to the properties of the at least two members 214. This configuration could provide a range of threshold pressures that could be desirable in the performance of head and neck exercises for sleep disordered breathing. An exercise program may incorporate exercises that require different threshold pressures, and an apparatus with a range of threshold pressures or multiple apparatuses would reduce the need for adjustment or calibration of any single apparatus 210 with a single member 214. Adjustment and calibration can introduce cost, complexity, and expenditure of time and effort, any of which may be undesirable.
In other embodiments, the head and neck exercise apparatus 210 may include at least two mouthpieces 212. In other embodiments, the head and neck exercise apparatus 210 may include a mechanism for substitution of at least one of the member 214 or valve mechanism 218.
Referring to
Referring to
In this embodiment, the valve mechanisms 418 are distinct from the proximal housing 426 and distal housing 427, but in other embodiments any component of the valve mechanism may be manufactured in continuity with any part of the members 414 or housing. In this embodiment, the at least two members 414 each define a proximal portion 422 but do not define a distal portion. In other embodiments, at least one member 414 may define a distal portion.
Referring to
A sealing element 534 may be disposed within at least one member 514 to function with a spring element 516. The sealing element 534 may separate a proximal portion 522 and a distal portion 524 of the member 514 when in the closed position (
The threshold pressure levels of the members 514 may be differentiated by at least one characteristic (dimensions, rigidity, etc.) of any portion of the member 514, including the sealing element 534 or spring element 536. The sealing elements 534 can be fashioned together (shown in the Figures), individually, or in continuity with other parts. The spring elements 536 can be fashioned together (shown in the Figures), individually, or in continuity with other parts. Other designs that function similarly to a valve mechanism are possible.
In this embodiment, the head and neck exercise system 510 may include a superior housing 538 that may include at least one of the proximal portion 522 or distal portion 524 of the member 514. An inferior housing 539 may also include at least one of the proximal portion 522 or distal portion 524 of the member 514. In this embodiment, the superior housing 538 and inferior housing 539 define passageways that are the proximal portion 522 and distal portion 524 of the member 514. Other configurations described elsewhere are possible. The superior housing 538 and inferior housing 539 may interface with the use of at least one securing element 544 to assemble as a combined housing 540. Other embodiments may include other numbers and/or configuration of housings. The securing element 544 may be of any form (locking, screw, snap, rivet, etc.).
The distal portion 524 of at least one member 514 may be in communication with at least one other distal portion 524 of another member 514. The head and neck exercise apparatus 510 may include a boss 542 that is contoured for a user to place directly against their lips or a portion of their oral cavity. Other embodiments may include the use of a mouthpiece 512 that may include one or more parts. The boss 542 or mouthpiece 512 may be placed between the lips such that it extends inside the oral cavity to assist with maintaining the apparatus position or achieving an airtight communication with the oral cavity. The boss 542 or mouthpiece 512 may be of any configuration or placement (to the lips, between the lips, inside the cheeks, between the teeth, above the tongue, etc.). The boss 542 or mouthpiece 512 may be configured to favor an orientation of at least one structure of the face or oral cavity. Such an orientation could be desirable in the performance of head and neck exercises for sleep disordered breathing.
Referring to
The head and neck exercise apparatus 610 may include at least one member 614 that does not include the valve mechanism 618. The head and neck exercise system 610 may include at least one member 614 with an open area that may be covered by a membrane 630. All configurations described elsewhere are applicable.
The head and neck exercise system 610 may include a superior housing 638 that may include at least one of a proximal portion 622 or distal portion 624 of the at least two members 614. An inferior housing 639 may also include at least one of a proximal portion 622 or distal portion 624 of the at least two members 614. The superior housing 638 and inferior housing 639 may interface to assemble as a combined housing 640. The interface between inferior housing 638 and superior housing 639 may include at least one securing element 644 (e.g., locking screw, snap, rivet, etc.) that may help to maintain their physical relationship. At least one member 614 may include a boss 642 or a mouthpiece 612, with all configurations described elsewhere in this application. Other embodiments may include other numbers and/or configuration of housings.
Referring to
Referring to
The acoustic apparatus 850 may be capable of generating an acoustic signal (e.g., whistle, reed, vibrating mechanism, etc.). The acoustic apparatus 850 could therefore provide an acoustic signal as feedback to the user when the valve mechanism 818 is open (
In other embodiments, the member 814 could include the acoustic apparatus 850 without a valve mechanism 818. In other embodiments, the acoustic apparatus 850 could be configured to generate an acoustic signal in response to specific positive and/or negative pressures (including configuration with a threshold pressure) within the member 814. In other embodiments, the member 814 could incorporate at least one air passage opening (not shown) and a resistance adjustor (not shown), with all configurations described elsewhere in this application.
Referring to
The moveable element 952 may be configured such that it may be displaced when the valve mechanism 918 is open (
In other embodiments, the member 914 could incorporate at least one air passage opening (not shown) and a resistance adjustor (not shown), with all configurations described elsewhere in this application.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Moreover, certain embodiments may be used in head and neck exercises for other conditions or user concerns involving muscles and/or other tissues of the head and neck. Other conditions or user concerns can include disorders of speech or swallowing, skin wrinkles, fat in the head and neck, teeth grinding, facial pain, and mouth breathing.