The present invention relates to a head arm of a magnetic disk device, and more particularly, to a head arm of a magnetic disk device having one or more features for reducing vibrations attributable to turbulence of the air flow generated with the rotation of the magnetic disk.
Currently, a commonly used hard disk device used for an internal or external storage unit or the like has a CSS (contact start stop) system in which the magnetic disk medium and the magnetic head are in contact with each other at the time of activation. In this type of hard disk device, the magnetic head mounted at the forward end of the head arm through a suspension floats due to the air flow generated with rotation of the magnetic disk.
The head arm 44 is rotatably mounted on a rotary shaft 47 and is adapted to swing in the direction along the diameter of the magnetic disk 43 by an actuator making up a head arm drive motor 49. In this case, the access rate to the data written in the magnetic disk 43 is determined by the rotational speed of the magnetic disk 43 and the moving speed of the head arm 44. For achieving a faster access, therefore, the rotational speed of the magnetic disk 43 and the moving speed of the head arm 44 can be increased.
With the conventional head arm 44, in order to improve the access rate, the forward end portion nearer to the suspension 45 is formed with a substantially rectangular weight-reducing aperture 48 about 6 mm wide and about 20 mm long, to reduce the moment of inertia of the head arm 44. The air flow caused by rotation of the magnetic disk 43, however, generates an air eddy in the weight-reducing aperture 48 formed in the head arm 44. This air eddy provides a source of vibration of the head arm 44, thereby leading to the problem of reduced positioning accuracy of the magnetic head 46. This situation will be explained with reference to
a) also shows a conventional head arm, and
The conventional head arm 44 has a rectangular sectional shape. The phenomenon of flow separation occurs, therefore, downstream of the head arm 44, thereby generating an air eddy. With this air eddy as a vibration source of the head arm 44, the problem of reduced positional accuracy of the magnetic head 46 is posed. This situation will be explained with reference to
a) shows another conventional head arm, and
c) shows the result of simulation of the air flow 52 in the neighborhood of the downstream end of the head arm 44 as viewed along the direction indicated by the arrow in
In the neighborhood of the central portion along the thickness of the portion near the head arm 44, the air flow 52 from the root or axis of the head arm 44 toward the forward end thereof is generated with rotation of the magnetic disk 43. The forward end portion of the conventional head arm 44 is arcuate. Therefore, the air flow 52 is separated and an air eddy 55 is generated at the forward end portion, as seen in
In the conventional magnetic disk device, both the rotational speed and the velocity of the air flow generated by rotation of the magnetic disk are low. Therefore, vibration has not posed a serious problem. For this reason, neither the shape of the weight-reducing aperture of the head arm nor the sectional shape of the head arm has been taken into consideration specifically in the design stage.
In recent years, however, in order to achieve a higher access rate, the rotational speed of the magnetic disk has been increased, which in turn has increased the velocity of the air flow generated by rotation of the magnetic disk. As a result, suppression of vibration of the head arm caused by pneumatic force, which has conventionally been ignored, has come to pose a serious problem.
Specifically, with the recent increase in recording density, an improved positioning accuracy of the magnetic head has posed a crucial problem. To obviate this problem, it is necessary not only to improve the head positioning control system but also to reduce the disturbance of the pneumatic force by the head arm and the adverse effect of the disturbance on the positioning accuracy of the magnetic head.
Accordingly, an object of the present invention is to reduce the turbulence of the air flow around the head arm.
In keeping with one aspect of the invention, a head arm of a magnetic disk device has a magnetic head mounted at the forward end portion thereof. The head arm is driven by an actuator at the other end. Arm apertures in the head arm are formed transversely of the head arm. By sizing the arm apertures appropriately such as by dividing the arm apertures into a plurality of sufficiently small apertures, the air eddy currents generated in the arm apertures can be suppressed, thereby making it possible to reduce the vibration of the head arm.
Also, according to another aspect of this invention, the downstream end portion of the head arm may be formed with an irregularity or chamfered portions at regular intervals. As another alternative, at least one of the two surfaces of the head arm in opposed relation to the magnetic disk may be formed with at least one protrusion, whereby the air eddy generated downstream of the head arm can be suppressed, thereby making it possible to reduce the vibration of the head arm.
In yet another aspect of the invention, the forward end portion of the head arm may be formed in the shape of a wedge, whereby the air eddy generated at the forward end portion of the head arm can be suppressed, thereby making it possible to reduce the vibration of the head arm.
The configuration of the arm apertures, the configuration of the downstream end portion, the configuration of the surfaces in opposed relation to the magnetic disk and the configuration of the forward end portion or any combination thereof may be employed at the same time. By doing so, generation of an air eddy can be suppressed in the arm apertures, at the downstream end portion or at the forward end portion of the head arm, thereby making it possible to reduce the vibration of the head arm further.
Further, in addition to the aforementioned configurations, a chamfered portion may be formed at the upstream end portion of the head arm, whereby the turbulence of the flow which otherwise might cause vibration can be suppressed by smoothing the air flow bombarding the head arm.
The above mentioned and other features of this invention and the manner of obtaining them will become more apparent, and the invention itself will be best understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, in which:
a) is a plan view schematically showing a head arm according to a second embodiment of the invention, and
a) is a plan view schematically showing a head arm according to a third embodiment of the invention,
a) is a plan view schematically showing a head arm according to a fourth embodiment of the invention.
a) is a plan view schematically showing a head arm according to a sixth embodiment of the invention, and
a) is a plan view of the first embodiment and the second embodiment combined with each other,
a) is a plan view of a head arm having a known weight-reducing aperture formed in the second embodiment of the invention.
a) is a plan view schematically showing a head arm according to a ninth embodiment of the invention, and
a) is a plan view schematically showing the conventional head arm of
a) is a plan view schematically showing another conventional head arm, and
Now, a head arm according to a first embodiment of this invention will be explained with reference to
Incidentally, the velocity distribution of the air flow 19 in the neighborhood of the head arm 11 formed with the weight-reducing apertures 15, 16 was measured by the laser Doppler flowmeter to determine the turbulence energy downstream of the head arm 11. As compared with the case where the conventional weight-reducing apertures are formed, it was confirmed that the turbulence energy is reduced by about 10%.
The dimensions of the weight-reducing apertures 15, 16 are not limited to the values described above, but can be appropriately changed in accordance with the shape and weight of the head arm. The number thereof is not limited to two, but may be three or more as required.
The weight-reducing apertures 15, 16 can be formed by punching according to the first embodiment, but the invention is not limited to this configuration. For example, a somewhat large weight-reducing aperture may be formed by punching, and then divided by bonding a plastic bridging material.
As described above, according to the first embodiment of the invention, the weight-reducing apertures 15, 16 formed for reducing the weight of the head arm 11 are so narrow that an air eddy is not substantially generated in the weight-reducing apertures 15, 16, and the air flow is not disturbed. Therefore, the vibration of the head arm 11 can be reduced.
Next, with reference to
A plurality of protrusions 21 having a width of perhaps 1 mm and a protrusion length of about 1 mm are formed at regular intervals on the downstream side of the head arm according to the second embodiment. In the diagram, six protrusions 21 are shown.
As the result of the provision of the protrusions 21, the large secondary air eddy currents which otherwise might be generated in the plane perpendicular to the head arm surface in the neighborhood of the protrusions 21 are reduced and destroyed around the protrusions by an air eddy having a rotational axis perpendicular to that of the secondary air eddy. Thus, the air flow turbulence can be reduced.
According to the second embodiment, therefore, the provision of the protrusions 21 on the downstream side of the head arm 11 can suppress the turbulence of the downstream flow, thereby reducing the force for vibrating the head arm.
Next, a head arm according to a third embodiment of the invention will be explained with reference to
The head arm according to the third embodiment comprises six protrusions 22, as shown in the drawing, made of plastic 1 mm wide and protruding 1 mm long, for example, at regular intervals on the downstream side of the head arm 11.
The third embodiment is similar to the second embodiment in shape, but different from the second embodiment in material. As in the second embodiment, downstream turbulence can be suppressed by the protrusions 22 formed on the downstream side of the head arm 11, thereby making it possible to reduce the force for vibrating the head arm.
Next, a head arm according to a fourth embodiment of the invention will be explained with reference to
As in the prior art, the suspension 12 for supporting the magnetic head is mounted at the forward end of the head arm 11. The head arm 11 further includes a rotary shaft 14.
The head arm according to the fourth embodiment includes chamfered portions 23, which are each about 1 mm wide and have the angled or biting length of 1 mm, for example, and are formed at regular intervals on the downstream side of the head arm 11. In the drawing, six chamfered portions 23 are shown.
Also in this fourth embodiment, the irregularity formed at the downstream end portion develops a similar situation to that of the second embodiment described above, and therefore should have the effect of suppressing the turbulence of the flow in the same manner as in the second embodiment.
Next, a head arm according to a fifth embodiment of the invention will be explained with reference to
Though not shown, the suspension 12 for supporting the magnetic head is mounted at the forward end portion as in the prior art. In the head arm according to the fifth embodiment, the forward end portion 24 of the head arm 11 is formed in the shape of a wedge.
By forming a wedge-shaped forward end portion 24 in this way, the air flow 19 cannot be easily separated at the forward end portion, and the air eddy generation is also suppressed, thereby making it possible to reduce the force for vibrating the head arm 11.
a) is a plan view schematically showing a head arm according to the sixth embodiment of the invention. The suspension 12 for supporting the magnetic head 13 is mounted at the forward end of the head arm 11 as in the prior art. Further, the head arm 11 is secured to a rotary shaft 14. The head arm according to the sixth embodiment is provided with a plurality of protrusions 25 of plastic 1 mm long, 1 mm wide and 0.2 mm thick, for example, on the upper and lower surfaces of the head arm 11. Four protrusions 25 are shown in the drawing.
b) shows two magnetic disks 17, 18 between which the head arm is interposed. By forming the protrusions 25 on the head arm 11, an air eddy rotating about an axis perpendicular to the main surfaces of the head arm 11 is generated, and reduces and destroys the existing air eddy, thereby reducing the turbulence of the air flow 19.
Next, with reference to
In
b) shows a combination of the first embodiment and the fifth embodiment. Two narrow weight-reducing apertures 15, 16 are formed on the head arm 11, and the forward end portion 24 of the head arm 11 is formed in the shape of a wedge. This configuration can suppress the generation of an air eddy due to the weight-reducing apertures, while at the same time suppressing the separation of the air flow or the generation of an air eddy at the forward end portion, thereby further reducing the force vibrating the head arm 11.
c) shows a combination of the first embodiment, the second embodiment and the fifth embodiment. Two narrow weight-reducing apertures 15, 16 are formed on the head arm 11, and the forward end portion 24 of the head arm 11 is formed in the shape of a wedge. Further, a plurality of protrusions 21 are formed at regular intervals at the downstream end portion of the head arm 11. This configuration can suppress both the generation of an air eddy due to the provision of the weight-reducing apertures on the one hand and the separation of the air flow or the generation of an air eddy at the forward end portion on the other. Further, the generation of a downstream air eddy due to the rectangular sectional shape can also be suppressed. Thus, the force for vibrating the head arm 1 can be further reduced.
Next, with reference to
In
c) shows a combination of the configuration of
Next, with reference to
Further, the dimensions and the number of protrusions according to the second embodiment, the protrusions according to the third embodiment, the chamfered portions according to the fourth embodiment and the protrusions according to the sixth embodiment are not of course limited to those specified in the respective embodiments, but can be changed appropriately in accordance with the shape and weight of the head arm involved. Also, although the embodiments described above fail to refer to the material of the head arm, aluminum is used normally. Nevertheless, other metal such as stainless steel or other materials can be used.
As explained above, according to this invention, a plurality of narrow weight-reducing apertures are formed for reducing the weight of the head arm, and therefore the generation of an air eddy which otherwise might be caused by a single weight-reducing aperture can be suppressed, whereby the force for vibrating the head arm can be suppressed. Thus, the positioning accuracy of the magnetic head can be improved, thereby greatly contributing to a higher speed and a higher performance of the magnetic disk device.
Also, according to this invention, the irregularity or the protrusions are formed at the downstream end portion or on the main surfaces of the head arm, and therefore, the existing air eddy can be reduced or destroyed by the air eddy generated by the irregularity or the protrusions, as the case may be, thereby suppressing the force for vibrating the head arm. Thus, the positioning accuracy of the magnetic head can be improved, thereby greatly contributing to a higher speed and a higher performance of the magnetic disk device.
Further, according to this invention, the forward end portion of the head arm can be formed in the shape of a wedge. Therefore, the air flow cannot be easily separated along the end portion of the head arm and the generation of an air eddy can be suppressed. As a result, the force for vibrating the head arm can be suppressed. Thus, the positioning accuracy of the magnetic head can be improved, thereby greatly contributing to a higher speed and a higher performance of the magnetic disk device.
While the principles of the invention have been described above in connection with specific apparatus and applications, it is to be understood that this description is made only by way of example and not as a limitation on the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2001-162678 | May 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4723186 | Nakajima et al. | Feb 1988 | A |
5734524 | Ruiz | Mar 1998 | A |
5999372 | Peterson et al. | Dec 1999 | A |
6366432 | Tadepalli et al. | Apr 2002 | B1 |
6473271 | Rahman et al. | Oct 2002 | B1 |
6614626 | Raphael et al. | Sep 2003 | B1 |
6751068 | Kant et al. | Jun 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20020186512 A1 | Dec 2002 | US |