This application is based upon and claims the benefit of priority from the corresponding Japanese Patent Applications No. 2017-002333 filed on Jan. 11, 2017 and No. 2017-006872 filed on Jan. 18, 2017, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a head cleaning mechanism including a recording head having ink ejection ports for ejecting ink onto a recording medium such as paper sheets, and also relates to an ink jet recording apparatus including the head cleaning mechanism.
As a recording apparatus like facsimiles, copiers and printers, ink jet recording apparatuses for ejecting ink to form images have been widely used by virtue of their capabilities of forming high-definition images.
In such an ink jet recording apparatus, minute ink drops (hereinafter, referred to as mist) ejected along with ink drops serving for image recording, or rebounded mist generated when ink drops stick to the recording medium, are deposited and solidified on an ink ejection surface of a recording head. When the mist on the ink ejection surface increases gradually so as to overlap with the ink ejection ports, there occur deterioration of ink flying linearity (flying curve), non-ejection and the like, causing the recording head to decline in print performance.
Under such circumstances, there has been known an ink jet recording apparatus in which with a view to cleaning the ink ejection surface of the recording head, a plurality of cleaning liquid supply ports are provided in outside portion (upstream-side portion in a wiping direction of a wiper) of an ink ejection area, where a plurality of ink ejection ports are opened, out of the ink ejection surface. In this ink jet recording apparatus, after cleaning liquid is supplied through the cleaning liquid supply ports, the wiper is moved along the ink ejection surface from outward of the cleaning liquid supply ports, by which the ink ejection surface can be wiped while the cleaning liquid is held by the wiper. In this way, recovery process for the recording head can be carried out.
A head cleaning mechanism in one aspect of the present disclosure includes a recording head and a wiper. The recording head includes an ink ejection surface in which an ink ejection area is provided, the ink ejection area having a plurality of ink ejection ports opened therein for ejecting ink onto a recording medium. The wiper wipes the ink ejection surface in a specified direction. The recording head includes an inclined surface placed on an upstream side of the ink ejection surface in a wiping direction that is a direction in which the wiper wipes the ink ejection surface, the inclined surface being inclined downward toward a downstream side of the wiping direction. A plurality of cleaning liquid supply ports for supplying cleaning liquid are provided on a wiping-direction upstream side of a position in the inclined surface with which the wiper makes contact during wiping operation.
Still further objects of the disclosure as well as concrete advantages obtained by the disclosure will become more apparent from embodiments thereof described hereinbelow.
Hereinbelow, embodiments of the present disclosure will be described with reference to the accompanying drawings.
As shown in
A first conveyance unit 5 and a recording part 9 are placed on a downstream side (right side in
By a control signal from a controller 110 of the ink jet recording apparatus 100, the first driving roller 6 is driven to rotate clockwise, by which the sheet S held on the first conveyor belt 8 is conveyed in the arrow X direction.
The recording part 9 includes a head housing 10, and line heads 110, 11M, 11Y and 11K held on the head housing 10. These line heads 110 to 11K are each implemented by one or more (one in this case) recording head 17 which is held at such a height as to form a specified gap (e.g., 1 mm) to a conveyor surface of the first conveyor belt 8 and which extends along a sheet widthwise direction (up/down direction in
As shown in
The recording heads 17 forming the individual line heads 11C to 11K are supplied with ink in four colors (cyan, magenta, yellow and black) stored in their respective ink tanks (not shown) for individual colors of the line heads 11C to 11K, respectively.
Responsive to image data received from an external computer by a control signal from the controller 110 (see
The recording head 17 is also provided with a cleaning liquid supply member (cleaning liquid supply head portion) 60 for supplying cleaning liquid. The cleaning liquid supply member 60 is placed adjacent to the head portion 18 on an upstream side (right side in
The inclined surface 62 includes a cleaning liquid supply area R2 in which a multiplicity of cleaning liquid supply ports 60a (see
Reverting to
The sheet S on which an ink image has been recorded in the recording part 9 is fed to the second conveyance unit 12. During passage through the second conveyance unit 12, the ink ejected on the surface of the sheet S is dried. Also, a maintenance unit 19 and a cap unit 90 are placed under the second conveyance unit 12. For execution of wiping operation by the later-described wiper 35, the first conveyance unit 5 is moved down, and the maintenance unit 19 is moved to under the recording part 9. Then, the wiper wipes off the ink forcedly discharged from the ink ejection ports 18a of the recording head 17 as well as the cleaning liquid supplied from the cleaning liquid supply ports 60a, and then collects the wiped ink and cleaning liquid. For capping of the ink ejection surface F1 (see
Further, a discharge roller pair 16 for discharging the image-recorded sheet S to outside the apparatus body is provided on the downstream side of the second conveyance unit 12 relative to the sheet conveyance direction. A discharge tray (not shown) on which the sheet S discharged outside the apparatus body is to be stacked is provided on the downstream side of the discharge roller pair 16.
The maintenance unit 19 is composed of a plurality of wipers 35 (see
Each wiper 35 is an elastic member (e.g., rubber member formed from EPDM) for wiping off the cleaning liquid supplied through the cleaning liquid supply ports 60a of the recording head 17 (see
Next, structure of the cleaning liquid supply member 60 will be described in detail.
As shown in
Near the wiping-direction downstream end 62a of the inclined surface 62, a hydrophilic area R3 higher in wettability to water than the ink ejection surface F1 and the other portion (e.g., inclined surface 62 and lower surface F2) of the cleaning liquid supply member 60. The hydrophilic area R3 may also be provided in either the inclined surface 62 or the lower surface F2 only if it is near the downstream end 62a. In the drawings, the hydrophilic area R3 is hatched for an easier understanding.
The hydrophilic area R3 is formed so as to extend in the head widthwise direction (arrow BB′ direction). Also, the hydrophilic area R3 is formed in such a strip shape as to continue over a generally entire range in the head widthwise direction near the downstream end 62a. Thus, as described later, when the cleaning liquid is supplied from the cleaning liquid supply ports 60a to the inclined surface 62, the cleaning liquid flows on the inclined surface 62 toward the downstream side (left side in
As a means for forming the hydrophilic area R3, available are a method including no coating with a water repellent for an area where the hydrophilic area R3 is formed, a method of forming a roughened surface for the same area, a method including coating with a hydrophilic coating agent instead of a water repellent, and the like. The hydrophilic coating agent may be, for example, titanium oxide- or polysilicate-base coating agent.
As shown in
On the other hand, given that the contact angle of the hydrophilic area R3 to water is less than 90°, the aqueous cleaning liquid 23 does not stretch out from the hydrophilic area R3 toward the lower surface F2 side (ink ejection surface F1 side) (depicted in solid line in
Since the cleaning liquid supply member 60 has been processed for water repellency treatment weaker than that for the ink ejection surface F1 as described before, the lower surface F2 is slightly higher in hydrophilicity than the ink ejection surface F1. Then, a neighborhood of the downstream end 62a of the inclined surface 62 is subjected to hydrophilic treatment, by which the hydrophilic area R3 is formed so as to be even higher in hydrophilicity. That is, given a contact angle θ1 of the ink ejection surface F1 to water, a contact angle θ2 of the lower surface F2 (cleaning liquid supply member 60) to water, and a contact angle θ3 of the hydrophilic area R3 to water, then there holds a relationship that θ1>θ2>θ3.
Also, as shown in
Due to the formation that the inclination angle α1 is smaller than the pressure-contact angle α2, when the wiper 35 is moved in the wiping direction (leftward direction in
The cleaning liquid supply member 60 is connected to a tank (not shown), in which the cleaning liquid 23 is housed, via a cleaning liquid supply path (not shown).
On the cleaning liquid supply path is provided a cleaning liquid supply pump (not shown) for pumping up the cleaning liquid 23 from the tank and feeding the cleaning liquid to the cleaning liquid supply member 60.
In this ink jet recording apparatus 100, with a view to cleaning the ink ejection surface F1 of the recording head 17, at a print start time after a long-time halt and during intervals of print operations, recovery operation for the recording head 17 is executed in preparation for next print operation, the recovery operation including: forcedly discharging ink from the ink ejection ports 18a of every recording head 17, while simultaneously feeding the cleaning liquid 23 from the cleaning liquid supply ports 60a (see
Next, the recovery operation for the recording head 17 with use of the maintenance unit 19 in the ink jet recording apparatus 100 of this embodiment will be described. The recovery operation for the recording head 17 described below is executed by controlling operations of the recording head 17, the maintenance unit 19, the cleaning liquid supply pump, and the like according to control signals from the controller 110 (see
For execution of the recovery operation for the recording head 17, as shown in
(Cleaning Liquid Supply Operation)
Prior to wiping operation (described later), the cleaning liquid supply pump (not shown) is driven (turned on) by a control signal from the controller 110 (see
(Ink Purge Operation)
Prior to the wiping operation (described later), ink 22 is supplied to the recording head 17 by the controller 110 (see
(Wiping Operation)
The controller 110, as shown in
In the state in which the distal end of the wiper 35 is in pressure contact with the inclined surface 62 of the cleaning liquid supply member 60, the controller 110 moves the wiper 35 toward the ink ejection area R1 (toward the arrow A direction) along the lower surface F2 as shown in
Then, as shown in
(Separating Operation)
After execution of the wiping operation, as shown in
Finally, the controller 110 moves horizontally the maintenance unit 19 placed between the recording part 9 and the first conveyance unit 5 so that the maintenance unit 19 is placed under the second conveyance unit 12, and further the controller 110 moves up the first conveyance unit 5 to a specified position. Thus, the recovery operation for the recording head 17 is ended.
In this embodiment, as described above, the recording head 17 includes the inclined surface 62 placed on the wiping-direction upstream side of the ink ejection surface F1 and inclined downward toward the downstream side of the wiping direction. A plurality of cleaning liquid supply ports 60a for supplying the cleaning liquid 23 are provided in the inclined surface 62. As a result, when the cleaning liquid 23 is supplied through the cleaning liquid supply ports 60a, the cleaning liquid 23 flows downstream on the inclined surface 62. After the cleaning liquid 23 has reached the downstream end 62a of the inclined surface 62, the wiper 35 is moved along the ink ejection surface F1 from the wiping-direction upstream side of the downstream end 62a of the inclined surface 62. By doing so, the ink ejection surface F1 can be wiped off while the cleaning liquid 23 is being held by the wiper 35. Thus, cleaning of the ink ejection surface F1 can be achieved.
The cleaning liquid supply ports 60a are provided on the wiping-direction upstream side of the position P in the inclined surface 62 at which the wiper 35 makes contact therewith during the wiping operation. With this arrangement, the wiper 35 is kept out of contact with edge portions of the cleaning liquid supply ports 60a during the recovery operation for the recording head 17. Therefore, the distal end of the wiper 35 never rubs against the edge portions of the cleaning liquid supply ports 60a, so that a possibility of damage to the distal end of the wiper 35 can be suppressed.
Also as described above, the inclination angle al of the inclined surface 62 to the ink ejection surface F1 is smaller than the pressure-contact angle α2 of the distal end portion of the wiper 35 to the ink ejection surface F1 under the state in which the wiper 35 is wiping the ink ejection surface F1. As a result of this, the wiper 35 is prevented from flexing over the pressure-contact angle α2 to the ink ejection surface F1 when wiper 35 is moved in the wiping direction while kept in pressure contact with the inclined surface 62 of the recording head 17. Therefore, the wiper 35 is moved while only its corner portion 35a remains in contact with the inclined surface 62. That is, the side face 35b of the wiper 35 does not make contact with the side face (inclined surface 62) of the recording head 17. This makes it possible to suppress the possibility that the cleaning liquid 23 may remain on the inclined surface 62. As a consequence, it can be suppressed that the cleaning liquid 23 remaining on the inclined surface 62 may flow toward the ink ejection surface F1 side upon vibrations or shocks. In addition, when the cleaning liquid 23 flows to the ink ejection surface F1 under a state out of the recovery operation for the recording head 17, flying performance of the ink 22 from the ink ejection ports 18a may be adversely affected. Also, even though the sheet S has rubbed against the recording head 17, a possibility that the cleaning liquid 23 may stick to the sheet S can be suppressed.
As described above, the inclination angle α1 is not less than 15° and less than 45°. With this arrangement, the cleaning liquid 23 is allowed to easily flow toward the downstream end 62a of the inclined surface 62, and moreover it is made easily achievable to make only the corner portion 35a of the distal end of the wiper 35 put into contact the inclined surface 62.
Further as described above, the hydrophilic area R3, which is higher in wettability to water than the ink ejection surface F1, is formed near the downstream end 62a so as to extend in the head widthwise direction. As a result of this, the cleaning liquid 23 supplied from the cleaning liquid supply ports 60a and having flowed to the downstream end 62a of the inclined surface 62 wetly spreads across the hydrophilic area R3 in the head widthwise direction. Therefore, since it becomes possible to reduce the time duration from a start of wiping of the cleaning liquid 23 by the wiper 35 until spreading of the cleaning liquid 23 over the entire range of the head widthwise direction of the recording head 17, a possibility that non-wiped residues of the cleaning liquid 23 may be left at both end portions of the ink ejection surface F1 in the head widthwise direction can be suppressed. In addition, with the hydrophilic area R3 unprovided, driblets of the cleaning liquid 23 would coalesce into one large droplet. In this case, the cleaning liquid 23 would gather around central portion in the head widthwise direction (arrow BB′ direction). Due to this, it would take long time since the cleaning liquid 23 is started to be wiped by the wiper 35 until the cleaning liquid 23 wetly spreads over the entire range of the widthwise direction (arrow BB′ direction) of the wiper 35. As a consequence, in some cases, non-wiped residues of the cleaning liquid 23 may be left at both end portions of the ink ejection surface F1 in the head widthwise direction.
Also, since the cleaning liquid 23 is held spread along the hydrophilic area R3, it can be suppressed that the cleaning liquid 23 may gather around central portion in the head widthwise direction (arrow BB′ direction) to be large droplets and fall from the cleaning liquid supply member 60. Thus, loss of the cleaning liquid 23 can be reduced.
Also as described above, the hydrophilic area R3 is formed over the generally entire range of the head widthwise direction near the downstream end 62a. As a result of this, since it becomes possible to easily reduce the time duration from when wiping of the cleaning liquid 23 is started by the wiper 35 until the cleaning liquid 23 spreads over the entire range of the head widthwise direction across the recording head 17, it can be easily suppressed that non-wiped residues of the cleaning liquid 23 may be left at both end portions of the ink ejection surface F1 in the head widthwise direction.
Also as described above, the hydrophilic area R3 is formed into such a strip shape as to continue over the generally entire range of the head widthwise direction near the downstream end 62a. As a result of this, for example, the cleaning liquid 23 that has flowed up to central portion in the head widthwise direction can be wetly spread to both end portions of the head widthwise direction with simplicity.
Also as described above, given a contact angle θ1 of the ink ejection surface F1 to water, a contact angle θ2 of the cleaning liquid supply member 60 to water, and a contact angle θ3 of the hydrophilic area R3 to water, then the relationship that θ1>θ2>θ3 is satisfied. As a result of this, the wettability of the hydrophilic area R3 to water (cleaning liquid 23 in this case) can be made high enough. Further, it can be suppressed to more extent that the cleaning liquid 23 may flow to the ink ejection surface F1 upon vibrations or shocks.
Also as described above, the inclined surface 62 is subjected to water repellency treatment. As a result of this, it can be suppressed that the cleaning liquid 23 supplied from the cleaning liquid supply ports 60a and flowing on the inclined surface 62 toward its downstream end 62a may stay halfway on the inclined surface 62. Therefore, it can be suppressed that the cleaning liquid 23 remaining halfway on the inclined surface 62 may flow to the downstream end 62a of the inclined surface 62 due to vibrations or shocks under a state out of the recovery operation for the recording head 17. As a result of this, even though the sheet S has rubbed against the recording head 17, the possibility that the cleaning liquid 23 may stick to the sheet S can be suppressed. Further, it can be suppressed that the cleaning liquid 23 may flow to the ink ejection surface F1 so as to adversely affect the flying performance of the ink 22 from the ink ejection ports 18a.
In an ink jet recording apparatus 100 according to a second embodiment of the disclosure, as shown in
In this embodiment, the hydrophilic area R3 is not provided unlike the first embodiment.
The inclined surface 62 includes a groove-formation area R13 (see
The grooves 64 are formed with such an inclination relative to the wiping direction that the grooves 64 extend outward of the head widthwise direction as the grooves 64 extend downward more and more in the wiping direction. The grooves 64 are provided in plurality (two in this case) with a specified distance from each other in the head widthwise direction. The grooves 64 are formed so as to extend outward of the cleaning liquid supply ports 60a in the head widthwise direction and moreover extend up to near both end portions of the inclined surface 62 in the head widthwise direction. As a result of this, as described later, when the cleaning liquid is supplied from the cleaning liquid supply ports 60a to the inclined surface 62, part of the cleaning liquid flows along the grooves 64 toward the downstream side (left side in
The other structures of the second embodiment are the same as in the first embodiment.
Next, the recovery operation for the recording head 17 using the maintenance unit 19 in the ink jet recording apparatus 100 of this embodiment will be described.
For execution of the recovery operation for the recording head 17, the controller 110 (see
(Cleaning Liquid Supply Operation)
Prior to the wiping operation (described later), the cleaning liquid supply pump (not shown) is driven (turned on) by a control signal from the controller 110 (see
(Ink Purge Operation)
Prior to the wiping operation (described later), as shown in
(Wiping Operation)
As shown in
In the state that the distal end of the wiper 35 is in pressure contact with the inclined surface 62 of the cleaning liquid supply member 60, the controller 110 moves the wiper 35 along the lower surface F2 toward the ink ejection area R1 (toward the arrow A direction) as shown in
Then, as shown in
(Separating Operation)
After execution of the wiping operation, the controller 110 moves down the wiper 35 so that the wiper 35 is separated from the ink ejection surface F1 as shown in
Finally, the controller 110 moves horizontally the maintenance unit 19, which is placed between the recording part 9 and the first conveyance unit 5, so that the maintenance unit 19 is placed under the second conveyance unit 12, and further the controller 110 moves up the first conveyance unit 5 to a specified position. Thus, the recovery operation for the recording head 17 is ended.
The other operations of the second embodiment are the same as in the first embodiment.
In this embodiment, as described above, the grooves 64, which extend outward of the head widthwise direction while extending downward more and more in the wiping direction, are formed on the wiping-direction downstream side of the cleaning liquid supply ports 60a in the inclined surface 62. As a result of this, the cleaning liquid 23, when flowing toward the downstream side in the inclined surface 62, spreads along the grooves 64 outward of the head widthwise direction. Therefore, since it becomes possible to reduce the time duration from when wiping of the cleaning liquid 23 is started by the wiper 35 until the cleaning liquid 23 spreads over the entire range of the head widthwise direction in the recording head 17, a possibility that non-wiped residues of the cleaning liquid 23 are left at both end portions of the ink ejection surface F1 in the head widthwise direction can be suppressed. In addition, with the grooves 64 unprovided, driblets of the cleaning liquid 23 would be more likely to coalesce into one large droplet. In this case, the cleaning liquid 23 would gather around central portion in the head widthwise direction. Due to this, it would take long time since the cleaning liquid 23 is started to be wiped by the wiper 35 until the cleaning liquid 23 spreads over the entire range of the widthwise direction of the wiper 35. As a consequence, in some cases, non-wiped residues of the cleaning liquid 23 may be left at both end portions of the ink ejection surface F1 in the head widthwise direction.
Also as described above, the grooves 64 are formed up to near both end portions of the inclined surface 62 in the head widthwise direction. Therefore, since it becomes possible to reduce the time duration from when wiping of the cleaning liquid 23 is started by the wiper 35 until the cleaning liquid 23 spreads over the entire range in the head widthwise direction of the recording head 17, it can be suppressed to more extent that non-wiped residues of the cleaning liquid 23 may be left at both end portions of the ink ejection surface F1 in the head widthwise direction.
Also as described above, the grooves 64 are provided in plurality with a specified distance from each other or one another in the head widthwise direction. As a result of this, the cleaning liquid 23 flows through central portion as well as near both end portions of the inclined surface 62 in the head widthwise direction, so that quantity of the cleaning liquid 23 in the head widthwise direction can be uniformized.
Also as described above, the grooves 64 are provided on the wiping-direction upstream side of the position P in the inclined surface 62 with which the wiper 35 makes contact during wiping operation. With this arrangement, the wiper 35 is kept out of contact with edge portions of the grooves 64 during the recovery operation for the recording head 17. Therefore, since the distal end of the wiper 35 never rubs against the edge portions of the grooves 64, a possibility of damage to the distal end of the wiper 35 can be suppressed to more extent.
Also as described above, the depth of the grooves 64 is within a range of 0.1 mm to 0.5 mm. As a result of this, it becomes possible to let the cleaning liquid 23 easily flow along the grooves 64 as well as to suppress remaining of the cleaning liquid 23 inside the grooves 64.
Also as described above, the recording head 17 is composed of the head portion 18 having the ink ejection surface F1, and the cleaning liquid supply member 60 having the inclined surface 62 and the lower surface F2. As a result of this, the inclined surface 62 and the grooves 64 can be formed with more simplicity, as compared with the case where the inclined surface 62 and the grooves 64 are formed in the head portion 18.
The other effects of the second embodiment are the same as in the first embodiment.
In the cleaning liquid supply member 60 of an ink jet recording apparatus 100 according to a third embodiment of the disclosure, the grooves 64 are provided by four pieces as shown in
The grooves 64 are formed with such an inclination relative to the wiping direction that the grooves 64 extend outward of the head widthwise direction as the grooves 64 extend toward the downstream side more and more in the wiping direction. The grooves 64 are provided in plurality (two for each array in this case) with a specified distance between the arrays in the head widthwise direction.
The grooves 64 include upstream-side grooves 64a placed on the upstream side of the wiping direction, and downstream-side grooves 64b placed on the downstream side of the wiping direction. The upstream-side grooves 64a and the downstream-side grooves 64b are provided independently of each other in the wiping direction, and placed so as to overlap with each other in the head widthwise direction (arrow BB′ direction). The downstream-side grooves 64b are placed so as to be shifted outward of the upstream-side grooves 64a in the head widthwise direction, and formed up to near both end portions of the inclined surface 62 in the head widthwise direction.
As a result, as shown in
In addition, quantity and ratio of the cleaning liquid 23 that goes beyond the grooves 64 are regulatable depending on depth of the grooves 64, width of the grooves 64, inclination angle al of the inclined surface 62, quantity of the cleaning liquid 23 supplied to the inclined surface 62, inclination angle of the grooves 64 to the wiping direction, and the like. This is similarly applicable also to the other embodiments.
The other structures and operations of the third embodiment are the same as in the second embodiment.
In this embodiment, as described above, the grooves 64 include the upstream-side grooves 64a and the downstream-side grooves 64b provided independently of each other in the wiping direction, and the upstream-side grooves 64a and the downstream-side grooves 64b are placed so as to overlap with each other in the head widthwise direction. As a result of this, the cleaning liquid 23 that has got beyond the upstream-side grooves 64a can be directed (led) more effectively toward the outer side of the head widthwise direction by the downstream-side grooves 64b.
The other effects of the third embodiment are the same as in the second embodiment.
In the cleaning liquid supply member 60 of an ink jet recording apparatus 100 according to a fourth embodiment of the disclosure, as shown in
The groove 64 is formed with such an inclination relative to the wiping direction that the groove 64 extends outward of the head widthwise direction as the groove 64 extends more and more toward the downstream side of the wiping direction. The groove 64 is formed so as to continue in the head widthwise direction and, in this case, formed into an inverted-U shape. The groove 64 may also be formed into an inverted-V shape.
With this arrangement, when the cleaning liquid 23 is supplied from the cleaning liquid supply ports 60a to the inclined surface 62 as shown in
The other structures and operations of the fourth embodiment are the same as in the second embodiment.
In this embodiment, as described above, the groove 64 is formed so as to continue in the head widthwise direction. As a result of this, part of the cleaning liquid 23 that has flowed up to central portion of the head widthwise direction, as an example, can be easily led to both end portions of the head widthwise direction.
The other effects of the fourth embodiment are the same as in the second embodiment.
In the cleaning liquid supply member 60 of an ink jet recording apparatus 100 according to a fifth embodiment of the disclosure, as shown in
The grooves 64 include an upstream-side groove 64a placed on the upstream side of the wiping direction, and a downstream-side groove 64b placed on the downstream side of the wiping direction. The upstream-side groove 64a and the downstream-side groove 64b are provided independently of each other in the wiping direction, and placed so as to overlap with each other in the head widthwise direction (arrow BB′ direction).
With this arrangement, when the cleaning liquid 23 is supplied from the cleaning liquid supply ports 60a to the inclined surface 62 as shown in
The other structures and operations of the fifth embodiment are the same as in the fourth embodiment.
The effects of the fifth embodiment are the same as in the third and fourth embodiments.
The embodiments disclosed herein should be construed as not being limitative but being an exemplification at all points. The scope of the disclosure is defined not by the above description of the embodiments but by the appended claims, including all changes and modifications equivalent in sense and range to the claims.
For example, the foregoing embodiments have been described on a case in which the cleaning liquid supply member 60 with the inclined surface 62 and the cleaning liquid supply ports 60a formed therein is provided independently of the head portion 18, but the present disclosure is not limited to this. With no cleaning liquid supply member 60 provided, the inclined surface 62 and the cleaning liquid supply ports 60a may be formed in the head portion 18.
Also, the first embodiment has been described on a case in which the hydrophilic area R3 is formed in such a strip shape as to continue over the generally entire range of the head widthwise direction near the downstream end 62a, but the present disclosure is not limited to this. As in the case of a cleaning liquid supply member 60 of a recording head 17 shown in
Also, the second to fifth embodiments have been described on a case in which the grooves 64 are provided on the wiping-direction upstream side of the position P in the inclined surface 62 with which the wiper 35 makes contact during the wiping operation. However, the present disclosure not being limited to this, the grooves 64 may be provided so as to overlap the position P in the inclined surface 62 with which the wiper 35 makes contact during the wiping operation. However, in order to suppress the possibility of damage to the distal end of the wiper 35, it is preferable that the wiper 35 be prevented as much as possible from making contact with the grooves 64, or that edge portions of the grooves 64 be formed into curved surfaces.
Further, the foregoing embodiments have been described on a case in which the recovery operation for the recording head 17 is executed with use of the cleaning liquid 23 and the ink (purge ink) 22. However, the recovery operation for the recording head 17 may be executed with use of the cleaning liquid 23 alone. That is, the ink purge operation does not necessarily need to be executed.
Configurations obtained by combining configurations of the above-described embodiments and modifications as required should also be construed as being included in the technical scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2017-002333 | Jan 2017 | JP | national |
2017-006872 | Jan 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20050231548 | Tsukada | Oct 2005 | A1 |
20130021409 | Jefferson | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2007-83496 | Apr 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20180194140 A1 | Jul 2018 | US |