This application claims benefit of Serial No. TO2010A000613, filed 15 Jul. 2010 in Italy and which application is incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
The present invention relates to a high-efficiency head for injecting consolidating pressurised fluid mixtures into the ground in order to form consolidated soil portions.
The techniques known as “jet grouting” are used to form columnar structures of artificial conglomerate in the ground. These techniques are based on the mixing of particles of the soil itself with binders, usually cement mixtures, which are injected at high pressures through generally small radial nozzles formed in an injection head (commonly referred to as a “monitor”), fixed in the proximity of the lower end of a string of tubular rods which is rotated and withdrawn towards the surface. At the bottom of the string of rods, under the monitor, there is fixed a drilling tool which is lubricated, during the excavation phase, with a drilling fluid supplied through the rods, which, in this case, act as ducts.
The jets of binder are dispersed and are mixed with the surrounding soil, thus creating a conglomerate block, generally of cylindrical shape, which, when hardened, forms a consolidated area of soil.
The strings which are presently most commonly used in the foundations sector have a duct with a large cross-section through which the mixture of water and cement is supplied to the monitor zone, where the nozzles are present. The latter are housed in radially oriented holes, i.e. perpendicular to the longitudinal axis of the monitor. In terms of fluid dynamics, this configuration reduces the friction losses along the path, since the flow velocity of the fluid is low so long as the fluid does not reach the end of the monitor. Once the fluid has reached this zone, the stream deviates orthogonally in the region of the nozzle, also creating irregular free motions characterised by strong turbulence in the region in which the stream deviates. This brings about a high head loss, right in the proximity of the outlet from the nozzles, as a result of turbulence which prevents the stream from exiting the nozzles in an ordered manner, i.e. with the velocity vector of the single particle of material exiting oriented according to the main axis of each nozzle.
The procedures by which the fluid passes from the inside to the outside of the monitor are the cause of considerable head losses and are therefore understood not just in terms of increased power consumption but also in terms of a reduced diameter of the column of treated material. There is thus a need in the field to limit the head losses generated within the monitor.
The patent literature discloses various monitors for the jet grouting sector which, in their interior, have a plurality of channels that are twisted according to a layout with multi-helical geometry and are able to guide the stream in a helical motion from the inlet of the monitor to the inlet of the relative nozzle. One example is given by JP-A-2008285811. This type of multi-helical geometry does not guarantee per se the maximum improvement in performances with respect to the conformation usually used (i.e. that which generates a turbulent free motion), unless the fundamental parameters for the correct dimensioning of said structure are identified and the inlet and outlet zones of the jet are modified so as to maximise efficiency.
The patent literature also describes other monitors having one or more curved ducts for deviating the fluid mixture, conveying it from the main duct towards the side nozzles, following paths with gradual changes in direction, thereby reducing the turbulences and the concentrated head losses. U.S. Pat. No. 5,228,809 discloses a duct with a constant cross-section and regular curvature. EP-1396585 discloses progressively tapered, variable curvature ducts. However, the diameter of the ducts for the passage of the fluid mixture along the entire final inlet length to the nozzles is conditional on the need to balance two opposing requirements: firstly, it is necessary to limit the external dimensions of the monitor (generally relatively small and of the order of magnitude of about 100 mm); secondly, it is desirable to give the ducts the best radius of curvature possible. In other words, these systems provide a length which has an appreciable length and a reduced diameter and is comparable to that of the outlet for the nozzle. Therefore, the advantage derived from the reduced concentrated losses is limited by the fact that the fluid adopts a very high velocity within the final length, with very high resulting friction losses. In addition, the presence of ducts, curves and radiuses greatly complicates the overall architecture of the monitor, making the assembly, maintenance and disassembly steps much more complex.
The main object of the invention is to provide a monitor or injection head having the greatest possible efficiency in terms of penetrative capacity of the jets leaving the monitor, to be more precise to obtain a greater disintegrating effect on the soil to be treated, with the power consumption remaining the same.
This and other objects and advantages, which will be understood more fully from the text which follows, are obtained according to the invention by an injection head or monitor having the features set forth in the appended claims. In brief, the head includes an outer cylindrical body with at least one upper inlet for fluids, at least one outlet side nozzle and at least one helical duct having a helical central line. The duct connects the upper inlet to the nozzle and imparts the fluid flowing through it a helical motion about the longitudinal axis of the outer body towards the nozzle. The helical duct is progressively tapered towards the nozzle and includes a terminal length of the duct which is radiused to the nozzle in a tapered manner, both when viewed in cross-sectional planes parallel to the longitudinal axis and tangent to the helical central line, as well as when viewed in cross-sectional planes perpendicular to the longitudinal axis.
A preferred but non-restrictive embodiment of the invention will now be described with reference to the appended drawings, in which:
Before providing a detailed description of a preferred embodiment of the invention, the text hereinafter states the criteria which were carried out in order to achieve the invention and which are all based on the search for the maximum efficiency of the jet. In this respect, an energy analysis was carried out on the fluid stream in motion in the monitor, analysing the head losses. The following have emerged from these analyses, in view of the conditions imposed by the architecture of the monitor:
With reference to
x=r(θ) cos θ
y=r(θ) sin θ
z=h(θ),
where r(θ) and h(θ) are functions of the angle θ, variable within a range between the values θ1 (inlet of the monitor) and θ2 (angular value at the outlet nozzle).
The first condition for minimising the losses is that the radius r of the helical path ideally remains constant. In some cases, this is not possible for design reasons; the radius, though, has to vary linearly between the inlet and the outlet of the monitor. Arbitrarily setting the lower limit of the range in which the angle θ lies to zero (that is θ1=0) implies that the variable to be determined will instead be θ2 or, in an equivalent manner, the height of the monitor H, understood to be the distance on the axis of the monitor between the inlet and the outlet of the monitor itself. Regarding the function h(θ), the following relationship would be present in the case of a helix with a constant pitch (references in FIG. 2).
pitch p=z(θ=2π)=h 2π
(where h has a constant value of greater than zero)
tgα=h/r
z=h θ=r tgαθ
The condition of a constant pitch is in fact not verified in the example shown here, since there is a variation in the angle α of the helical path present between the inlet (α≈90°) and the outlet of the monitor (α≈0°).
The second condition for minimising the losses is as follows: the function which expresses the variation in the angle α of the helical path between the inlet and the outlet of the monitor has to be linear; in other words, the function which expresses the variation in the angle α of the helix along the path has a constant derivative.
The angle α at the inlet cannot be set to be equal to 90° since an infinite value of the derivative corresponds to this angle value. It is therefore necessary to radius the inlet of the monitor so as to deviate the stream into an almost vertical direction, which differs by a quantity Δ from the strictly vertical direction so as to minimise the losses (third condition for minimising the losses). By way of example, a value known from the literature for a conical inlet with small concentrated losses is that of a radius angle Δ equal to 20°, which corresponds to a real inlet at the inlet of the fluid (start of the path) with an α value equal to 70° (i.e. 90°-20°), which produces small concentrated head losses. If the derivative of the function which describes the variation of the angle of the helical path α is constant with respect to θ, it follows that this function will be linear, considering the constrained conditions at the ends, i.e. of the following type:
α=a+b θ=(π/2−Δ) (1−θ/θ2)
At this point, it is necessary to deduce the link between z and the tangent of α. The quantity increase dz, which differs on each point of the helical path, due to the variability of α along the path itself, that is as a function of θ, is given by the following:
dz=r tgα dθ
from which, by integration, the value of z associated with each value of θ is obtained.
z=∫r tgα dθ=−r/b [1n|cos α|−1n|cos a|]
A number of decisive relationships for specifying the optimum path have been established from the known equation for calculating the losses of head of fluids in motion in ducts and drawing on the technical literature; in particular, reference is made to the relationship which exists between the variation in cross-section (or in the square of the hydraulic diameter) and the corresponding coefficient of concentrated loss relative to the abrupt cross-sectional variation.
It is observed that, with a variation in cross-section (or in the square of the hydraulic diameter) present between the inlet and the outlet of the monitor, the function S which expresses the decrease in the cross-section (or the function D which expresses the decrease in the square of the hydraulic diameter) between the inlet and the outlet of the monitor have to be linear, i.e. have a constant derivative (fourth condition for minimising the losses).
A further observation derives from the study of the head losses in converging ducts. If the hydraulic diameter is known at the inlet and at the outlet of the monitor, the linear development of the path shows that, depending on the value of the opening half-angle of the converging duct thus designed, it is possible to obtain a very short path (L1 in
It is known from the technical literature that, in order for the head losses to be substantially small, the optimum half-angle δ by which the duct is tapered has to stay comprised between 5° and 15°; it is therefore possible to define a range within which it is possible to vary the value of the length L, which renders the path substantially optimised (fifth condition for minimising the head losses).
When designing the monitor, the first choice relates to the maximum admissible value of the tapering angle δ (i.e. 15°) for realising the smallest possible path without generating considerable concentrated losses. A posteriori, the feasibility of the choice made will be verified inasmuch as it is possible to verify intersections between the passage cross-sections of the duct between consecutive pitches of the helicoid and it is also possible to detect a thickness between the passage cross-sections of the duct between consecutive pitches of the helicoid which is less than the minimum thickness, which is a function of the working pressure of the fluid in motion within the monitor. Therefore, it is necessary to resort to a process of the iterative type, which specifies the maximum value of δ which is compatible with the design requirements.
The five conditions explained above are adequate for analytically determining the equation of the helicoid which minimises the head losses within the monitor. The analytical determination of the path of the helicoid is followed by the “construction” of the duct, understood to be the point by point application of a corresponding value of the area of the passage cross-section on the path, meaning the cross-section oriented at every point of the path of the helicoid orthogonally thereto.
The equation for the optimum path (in the above understanding) is therefore defined by the following relationships:
x=r cos θ (1)
y=r sin θ(2)
z=−r/b [1n|cos α|−1n|cos a|] (3)
θ ε [0; θ2] (4)
r=cost (5)
α=(π/2−Δ) (1−θ/θ2) (6)
a=π/2−Δ (7)
b=−(π/2−Δ)/θ2 (8)
L=∫(dx2+dy2+dz2)0.5=(D1−D2)/[2tgδ] (9)
If the inlet cross-section S1, the hydraulic diameter D1 and the radius r (which correspond in fact to the reference construction variables) are known, it is necessary to set a value for the parameters Δ and δ. In particular, the choice of the angle δ is verified at the end of the first calculation and may require an iterative process. Once these conditions have been defined, it is possible to deduce the missing variables as a function of the hydraulic diameter D2, which in fact will coincide with the real diameter of the nozzle. In fact, the fixing of D2 is equivalent to determining, by means of equation (9), the value of the length L of the helix. The value of θ2 is obtained from the resolution of the definite integral, again by equation (9). It is possible to reconstruct the path of the helix from equations (1), (2) and (3).
In summary, therefore:
Referring, now, to
The top of the monitor is provided with an inlet 16, through which a consolidating pressurised mixture to be delivered to the side injection nozzles is introduced. The side nozzles 11, of which there are two in the example shown in
In all of the different embodiments described and shown here, the helical duct 13 is progressively tapered towards the respective nozzle 11 and includes a terminal length of the duct having a helical central line m (
On account of the helical shape of the ducts 13, the fluid located in the monitor follows a fixed helical path without being subjected to sudden variations in trajectory, thus minimising the creation of turbulences, or irregular components of the motion, with resulting energetic dissipations. Along the duct, the area of the cross-section that can be used for the passage of the fluid decreases linearly, or with a constant gradient; more particularly, as mentioned above, the square of the hydraulic diameter of the passage cross-sections decreases linearly, i.e. with a constant gradient, as far as the zone of the nozzles 11. The radius of the helix which defines the path of the ducts 13 remains substantially constant, whereas the inclination α of the same helix is reduced linearly in the direction of the nozzle; in other words, the pitch of the helix which defines the path is reduced linearly towards the discharge nozzle.
Compared with the conventional monitors discussed in the introductory part of the description, the greater cross-section of the monitor according to the present invention entails, with equivalent flow rate and pressure, clearly smaller head losses, or the minimum losses possible, given the helical geometry. As is known, the friction losses, in the case of incompressible fluid, are inversely proportional to the fifth power of the transverse dimension of the duct. Therefore, jets of an energy which is higher than that of the conventional monitors arrive at the monitor nozzles. As a result, the action of the jet grouting is more effective because, with an equivalent power being used, a column of consolidated soil having a greater diameter will be obtained.
In order to gain the maximum advantage in terms of performance, the nozzles are oriented according to tangents or secants with respect to the outer cylindrical surface of the monitor and in directions which match the direction in which the fluid advances, as indicated schematically in
The ability of the monitor to keep all the fluid streams together until the outlet nozzle drastically reduces the turbulences in the terminal part; this factor, together with the net reduction of distributed friction losses, contributes to an increase in the performance of the monitor compared to conventional monitors and to a maximisation of the hydraulic efficiency.
Each side nozzle 11 includes an insert 18 which is made of a wear-resistant material and has an inner funnel-shaped passage.
In the case of helical ducts 13 having a polygonal cross-section, such as the rectangular ducts in the example shown in
The number 24 designates sealing elements which prevent leakage between the helical duct and the outlet of the nozzle. Indeed, on account of the very high pressure, the injection jet would not remain confined within the duct if there were a simple blow or a simple mechanical fit. This also occurs between the inner helical body 17 when it is inserted inside the sleeve 12. In this case, sealing elements are not inserted between the cylindrical edge 14c joining two helical surfaces (upper surface 14a and lower surface 14b), and the stream of injection material could leak from an upper coil pitch to the lower coil pitch (this would only occur, however, during the initial pumping step, when the monitor is not completely filled and adequately pressurised). In this executive assembled form, however, it is necessary to ensure that there is a seal between the inner helical body 17 and the inner cavity 15b of the sleeve 12. For this reason, at least one pair of gaskets 26 have been inserted above and below the nozzles, and guarantee that the fluid is sealed within the duct. In the absence of these gaskets, the injected material could leak and escape, brushing the surface 15b, with resulting problems in terms of liquid and pressure loss and inefficiencies in relation to the final erosive capacity of the jet.
In addition, as can be seen more clearly from
It is to be understood that the invention is not limited to the embodiments described and shown herein, which are to be considered as exemplary embodiments of the monitor; rather, the invention can be modified in respect of the form and arrangement of parts and details of construction, and in respect of its operation. For example, there may be one or more nozzles in the terminal length of each helical duct located at the same level or at different levels. In addition, for applications with double fluid jets (for example air—grout or water—grout), provision is made of an outer space suitable for feeding the air (or the water) to the outlet section of the nozzles, as is currently used with conventional monitors. In addition, these dedicated ducts may be used for the insertion thereinto of instruments or cables intended for the passage of information (data transmission) from the tool to the outside, and vice versa. Finally, it is possible to form two or more monitors of this type (a single fluid monitor and a double fluid monitor) to carry out triple fluid jet grouting treatments.
With respect to the form of the helical duct, it has already been mentioned that this depends on the design conditions, and these techniques are more or less expedient depending on the number of monitors produced. It is thereby possible to go from the form described, which is realised in one piece with a predominantly polygonal transverse cross-section, for a limited number of pieces, to a form obtained by casting or electroerosion, in which the duct could be realised in a form much closer to the optimum theoretical form, with ample radiusing in the inlet and outlet of the monitor.
Number | Date | Country | Kind |
---|---|---|---|
TO2010A000613 | Jul 2010 | IT | national |