A general architecture that implements the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention.
Various embodiments according to the invention will be described hereinafter with reference to the accompanying drawings. In general, according to one embodiment of the invention, there is provided a head comprising: a slider which has a facing surface opposed to a surface of a rotatable recording medium and is flown by an airflow which is generated between a surface of the recording medium and the facing surface as the recording medium rotates; and a head portion which is provided on the slider and records and reproduces information to and from the recording medium, the facing surface of the slider having a longitudinal direction extending in a direction of the airflow and a transverse direction perpendicular to the longitudinal direction, the slider having a negative-pressure cavity which is formed in the facing surface and generates a negative pressure, a leading step portion which protrudes from the facing surface and is situated on an upstream side of the negative-pressure cavity with respect to the airflow, a trailing step portion which protrudes from the facing surface, is situated on a downstream side of the negative-pressure cavity with respect to the airflow, and faces the recording medium, a pair of side step portions which protrude from the facing surface, extend in the longitudinal direction from the leading step portion toward a downstream end of the slider, and face each other with a gap in the transverse direction therebetween, and a pair of skirt portions which protrude from the facing surface and extend individually from the side step portions toward the downstream end of the slider, each of the skirt portions having a proximal end portion connected to each corresponding side step portion and an extended end portion, which is situated on the downstream end side of the slider and nearer to the trailing step portion with respect to the proximal end portion and faces the trailing step portion with a gap therebetween, and being disposed in a region which contains a line connecting the proximal end portion and the extended end portion and an area situated on the opposite side of the line with respect to the trailing step portion.
According to another embodiment of the invention, there is provided a disk device comprising: a disk-shaped recording medium; a drive section which supports and rotates the recording medium; a head including a slider which has a facing surface opposed to a surface of the recording medium and is flown by an airflow which is generated between the recording medium surface and the facing surface as the recording medium rotates, and a head portion which is provided on the slider and records and reproduces information to and from the recording medium; and a head suspension which supports the head for movement with respect to the recording medium and applies a head load directed to a surface of the recording medium to the head. The facing surface of the slider has a longitudinal direction extending in a direction of the airflow and a transverse direction perpendicular to the longitudinal direction, the slider has a negative-pressure cavity which is formed in the facing surface and generates a negative pressure, a leading step portion which protrudes from the facing surface and is situated on an upstream side of the negative-pressure cavity with respect to the airflow, a trailing step portion which protrudes from the facing surface, is situated on a downstream side of the negative-pressure cavity with respect to the airflow, and faces the recording medium, a pair of side step portions which protrude from the facing surface, extend in the longitudinal direction from the leading step portion toward a downstream end of the slider, and face each other with a gap in the transverse direction therebetween, and a pair of skirt portions which protrude from the facing surface and extend individually from the side step portions toward the downstream end of the slider. Each of the skirt portions has a proximal end portion connected to each corresponding side step portion and an extended end portion, which is situated on the downstream end side of the slider and nearer to the trailing step portion with respect to the proximal end portion and faces the trailing step portion with a gap therebetween, and being disposed in a region which contains a line connecting the proximal end portion and the extended end portion and an area situated on the opposite side of the line with respect to the trailing step portion.
A first embodiment in which a disk device according to this invention is applied to a hard disk drive (HDD) will now be described in detail with reference to the accompanying drawings.
The case 12 contains a magnetic disk 16, spindle motor 18, magnetic heads 40, carriage assembly 22, voice coil motor (VCM) 24, ramp load mechanism 25, board unit 21, etc. The magnetic disk 16 serves as a recording medium. The spindle motor 18 serves as a drive section that supports and rotates the magnetic disk. The magnetic heads write and read information to and from the disk. The carriage assembly 22 supports the heads for movement with respect to the disk 16. The VCM 24 rocks and positions the carriage assembly. The ramp load mechanism 25 holds the magnetic heads in a retracted position at a distance from the magnetic disk when the heads are moved to the outermost periphery of the disk. The board unit 21 has a head IC and the like.
A printed circuit board (not shown) for controlling the operations of the spindle motor 18, VCM 24, and magnetic heads through the board unit 21 is screwed to the outer surface of a bottom wall of the case 12.
The magnetic disk 16 has magnetic recording layers on its upper and lower surfaces, individually. The disk 16 is fitted on a hub (not shown) of the spindle motor 18 and fixed on the hub by a clamp spring 17. If the motor 18 is actuated, the disk 16 is rotated at a predetermined speed of, for example, 4,200 rpm in the direction of arrow B.
The carriage assembly 22 is provided with a bearing portion 26 fixed on the bottom wall of the case 12 and arms 32 extending from the bearing portion. The arms 32 are situated parallel to the surfaces of the magnetic disk 16 and spaced from one another. They extend in the same direction from the bearing portion 26. The carriage assembly 22 is provided with suspensions 38 that are elastically deformable elongate plates. Each suspension 38 is formed of a leaf spring, of which the proximal end is fixed to the distal end of its corresponding arm 32 by welding or adhesive bonding and which extends from the arm. Alternatively, each suspension may be formed integrally with its corresponding arm 32. The arm 32 and the suspension 38 constitute a head suspension, and the head suspension and the magnetic heads 40 constitute a head suspension assembly.
As shown in
As shown in
The ramp load mechanism 25 comprises a ramp 51 and tabs 53. The ramp 51 is provided on the bottom wall of the case 12 and located outside the magnetic disk 16. The tabs 53 extend individually from the respective distal ends of the suspensions 38. As the carriage assembly 22 rocks to its retracted position outside the magnetic disk 16, each tab 53 engages a ramp surface on the ramp 51 and is then pulled up along the slope of the ramp surface, whereupon each magnetic head is unloaded.
The following is a detailed description of each magnetic head 40.
As shown in
The slider 42 is formed as a so-called pemto slider, having a length L of 1.25 mm, in the first direction X and a width W of 0.7 mm or less, in the second direction Y.
The magnetic head 40 is constructed as a flying head, in which the slider 42 is flown by an airflow C (see
A substantially rectangular leading step portion 50 protrudes from the disk-facing surface 43 so as to face the magnetic disk surface. A pair of side step portions 46 protrude from the disk-facing surface 43. They extend along the long sides of the surface 43 and are opposed to each other with a space between them. The side step portions 46 extend from the leading step portion 50 toward the downstream end of the slider 42. The leading step portion 50 and the pair of side step portions 46 are located symmetrically with respect to the central axis D of the slider 42. As a whole, they are formed substantially in the shape of a U, closed on the upstream side and open to the downstream side.
In order to maintain the pitch angle of the magnetic head 40, a leading pad 52 that utilizes an air film to support the slider 42 protrudes from the leading step portion 50. The leading pad 52 continuously extends throughout the area in the width direction of the leading step portion 50 in the second direction Y, and is formed in a position deviated on the downstream side from the inflow end of the slider 42. The leading pad 52 is situated on the inflow end side of the slider 42 with respect to the direction of the airflow C. A side pad 48 is formed on each side step portion 46 and leads to the leading pad 52. The pads 52 and 48 are formed substantially flat and face the magnetic disk surface.
A recess 56 is formed in each side pad 48. The recess 56 opens toward the inflow end of the disk-facing surface 43 as well as toward the magnetic disk surface. Each recess 56 has a rectangular shape defined by a pair of side edges, which extend substantially parallel to the first direction X, and a bottom edge, which connects the respective extended ends of the side edges and extends substantially parallel to the second direction Y.
As shown in
The slider 42 has a substantially rectangular trailing step portion 60 that protrudes from the downstream end portion of the disk-facing surface 43. The trailing step portion 60 is situated on the downstream side of the negative-pressure cavity 54 with respect to the direction of the airflow C and substantially in the center of the disk-facing surface 43 with respect to the transverse direction thereof. A trailing pad 66 protrudes from the trailing step portion 60 and faces the magnetic disk surface.
The head portion 44 of the magnetic head 40 has a recording element and a reproducing element, which record and reproduce information to and from the magnetic disk 16. The reproducing and recording elements are embedded in the downstream end portion of the slider 42 with respect to the direction of the airflow C. The reproducing and recording elements have a read/write gap 64 that is formed in the trailing pad 66.
As shown in
On the disk-facing surface 43, as shown in
In the present embodiment, each skirt portion 70 has a first portion 72a and a second portion 72b and is substantially L-shaped. The first portion 72a extends in the first direction X of the disk-facing surface 43 from the proximal end portion 70a toward the downstream end of the slider 42. The second portion 72b extends in the second direction Y of the disk-facing surface from the first portion to the extended end portion 70b. The height of projection of each skirt portion 70 above the disk-facing surface 43 is lower than that of each side step portion 46.
According to the HDD and the head suspension assembly constructed in this manner, the magnetic head 40 is flown by the airflow C that is generated between the disk surface and the disk-facing surface 43 as the magnetic disk 16 rotates. When the HDD is operating, the disk-facing surface 43 of the slider 42 never fails to be opposed to the disk surface with a gap therebetween. As shown in
According to the magnetic head 40 constructed in this manner, a negative pressure can be stably generated by the negative-pressure cavity 54 that is provided in the central part of the disk-facing surface 43. The roll stiffness of the slider 42 is enhanced by the side step portions 46 on the opposite sides of the central axis D of the slider, so that occurrence of roll oscillation, i.e., oscillation around the central axis D of the slider, can be suppressed. Further, the pair of substantially L-shaped skirt portions 70 serve to enhance a damping force against roll oscillation. With use of the skirt portions 70 constructed in this manner, therefore, the airflow that is introduced through the inflow end of the slider 42 and urged to get out through the outflow end is temporarily stopped by the skirt portions. Thereafter, the airflow gets out from the downstream end of the slider through the gaps between the trailing step portion 60 and the respective extended end portions 70b of the skirt portions. Thereupon, a squeezing effect is enhanced, and a damping force in the rolling direction increases.
A femto slider of Comparative Example 1 and pemto sliders of Comparative Examples 2 and 3, which are shown in
As seen from
Thus, there may be obtained the magnetic head 40, which is improved in roll stability and can perform information processing for magnetic disks with high reliability and stability, and the head suspension assembly and the HDD provided with the magnetic head.
The following is a description of a magnetic head 40 of an HDD according to a second embodiment of the invention.
As shown in
Each skirt portion 70 has a first portion 72a, a second portion 72b, and a third portion 72c and is substantially L-shaped. The first portion 72a extends in the first direction X of the disk-facing surface 43 from a proximal end portion 70a toward the downstream end of the slider 42. The second portion 72b extends in the second direction Y of the disk-facing surface from the first portion to the vicinity of the trailing step portion 60. The third portion 72c extends in the first direction X from the distal end of the second portion 72b toward the upstream end of the slider. The third portion 72c faces the trailing step portion 60 with a gap therebetween. The height of projection of each skirt portion 70 above the disk-facing surface 43 is lower than that of each side step portion 46.
Since other configurations of the magnetic head 40 and the HDD are the same as those of the foregoing first embodiment, like reference numerals are used to designate like portions, and a detailed description of those portions is omitted.
The shapes of the skirt portions 70 of the sliders are not limited to the ones according to the first and second embodiments, but may be variously changed within a range that meets the aforementioned conditions. Specifically, it is necessary only that each skirt portion 70 have a proximal end portion connected to each corresponding side step portion 46 and an extended end portion, which is situated on the downstream end side of the slider 42 and nearer to the trailing step portion 60 with respect to the proximal end portion and faces the trailing step portion 60 with a gap therebetween. On the disk-facing surface 43, moreover, each skirt portion 70 is expected only to be disposed in the region E that is situated on the opposite side of the line F that connects the proximal end portion and the extended end portion with respect to the trailing step portion 60.
According to a third embodiment shown in
According to a fourth embodiment shown in
According to a fifth embodiment shown in
Since other configurations of magnetic heads and HDDs according to the third to fifth embodiments are the same as those of the foregoing first embodiment, like reference numerals are used to designate like portions, and a detailed description of those portions is omitted. Further, the third to fifth embodiments can provide the same functions and effects as those of the first embodiment.
While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
This invention is not limited to femto sliders but may be also applied to pico sliders, pemto sliders, or any other larger sliders.
| Number | Date | Country | Kind |
|---|---|---|---|
| 2006-182688 | Jun 2006 | JP | national |