Information
-
Patent Grant
-
6746098
-
Patent Number
6,746,098
-
Date Filed
Monday, November 25, 200222 years ago
-
Date Issued
Tuesday, June 8, 200421 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 347 29
- 347 22
- 347 23
- 347 30
- 347 32
- 347 33
- 347 35
-
International Classifications
-
Abstract
A head cap is reciprocally movable between a capping position for covering nozzles of a print head and a retracted position separated from the nozzle surface. A pump is connected to the head cap. A pump gear is rotated by a drive source to drive the pump. A cylindrical cam is reciprocally rotatable between a first position and a second position to reciprocally move the head cap. A frictional clutch rotates the cylindrical cam together with the pump gear, but rotates only the pump gear when the cylindrical cam reaches each one of the first position and the second position.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a head maintenance mechanism for a serial type ink jet printer in which a carriage mounting thereon a print head is reciprocated in a widthwise direction of printing. More specifically, the invention relates to a head maintenance mechanism in which a single rotary drive source is used to drive a head cap, wiper and an ink suction pump.
With a serial type ink jet printer, a head maintenance mechanism is arranged in a position outside a region of printing performed by a print head, and wiping of dirt on a nozzle surface of the print head, capping intended for prevention of plugging of a nozzle orifice, and an operation of sucking ink in an increased viscosity from the nozzle orifice are performed by the head maintenance mechanism. To meet the needs of making a head maintenance mechanism for an ink jet printer small-sized, compact and inexpensive, related art head maintenance mechanisms are constituted by a configuration in which a single rotary drive source, such as stepping motors or the like, is used to cause movement of a wiper for wiping a nozzle surface, a capping action of a head cap for capping the nozzle surface, and an operation of sucking ink from a nozzle orifice as capped.
For example, Japanese Patent Publication No. 2000-141673A discloses a head maintenance mechanism of such configuration. With the head maintenance mechanism disclosed in this publication, rotation of a single motor in one direction causes a head cap and a wiper to be driven through a slide type rack and a cam mechanism, and reverse rotation of the motor causes a diaphragm suction pump to be driven through a cylindrical cam.
However, a head maintenance mechanism of a type in which rotation of a single motor in one direction causes a head cap and a wiper to be driven, and reverse rotation of the motor causes a suction pump to be driven, involves the following problems.
First, a cylindrical cam is generally used to convert rotary movements of a motor into reciprocal movements. Since such a cylindrical cam is continuously rotationally driven in one direction, there is a need of providing a position detector for detecting a reference or initial position of the cylindrical cam in order to control respective motions of the cylindrical cam.
Also, there is a need of separately providing a power transmitting mechanism for driving of a head cap and a wiper and a power transmitting mechanism for driving of an ink suction pump, which is disadvantageous in making a head maintenance mechanism small-sized and compact.
Further, a pump, for example, a tube pump needed to rotate forward and rearward cannot be adopted as an ink suction pump. More specifically, in the case where a tube pump is used, a roller rotates flattening an ink tube to perform an ink sucking action when a pump gear being a drive force input element of the pump is rotated forward, and the roller is put in a release state, in which the ink tube is not flattened, when the pump gear is rotated rearward. Since the release state is necessary after the ink sucking action, a tube pump cannot be used in the case of rotary driving in one direction.
Also, a head maintenance mechanism for an ink jet printer involves as an ink sucking configuration from a head cap with an ink sucking action, the case where ink is sucked from a nozzle orifice and the case where ink accumulated in the head cap is sucked (idle suction) in a state in which the head cap made in capping is put in an atmospheric opening state. In order to realize both of these ink sucking configurations, it is necessary to provide a mechanism for opening and closing a vent valve mounted on a head cap after there is established a state in which the head cap caps the nozzle surface. When such mechanism can be made compact, it is advantageous in making a head maintenance mechanism small-sized, compact or thin.
SUMMARY OF THE INVENTION
An object of the invention is to propose a head maintenance mechanism for an ink jet printer which is capable of controlling motions of a head cap, wiper and an ink suction pump without the use of any position detector.
Also, an object of the invention is to propose a head maintenance mechanism for an ink jet printer which is capable of driving an ink suction pump forward and rearward.
Further, an object of the invention is to propose a head maintenance mechanism for an ink jet printer in which a power transmitting mechanism for driving a head cap, wiper and an ink suction pump can be made compact.
Further still, an object of the invention is to propose a head maintenance mechanism for an ink jet printer in which a mechanism for switching an interior of a head cap capping a nozzle surface between opening to the atmosphere and not opening is made compact.
In order to achieve the above objects, according to the present invention, there is provided a maintenance mechanism for a print head having a nozzle surface in which are formed a plurality of nozzles, comprising:
a head cap, reciprocally movable between a capping position for covering the nozzles and a retracted position separated from the nozzle surface;
a pump, connected to the head cap;
a drive source;
a pump gear, rotated by the drive source to drive the pump;
a cylindrical cam, reciprocally rotatable between a first position and a second position to reciprocally move the head cap; and
a frictional clutch, which rotates the cylindrical cam together with the pump gear, but rotates only the pump gear when the cylindrical cam reaches each one of the first position and the second position.
Preferably, a cam groove is formed on an outer peripheral surface of the cylindrical cam in a predetermined circumferential angular range. The maintenance mechanism further comprises a cap driving pin slidably movable along the cam groove to reciprocally move the head cap.
Here, it is preferable that the maintenance mechanism further comprises an urging member which urges the cap driving pin toward a bottom surface of the cam groove.
Preferably, a first engagement member and a second engagement member are provided with the cylindrical cam, and a third engagement member is disposed at a predetermined position. A rotation of the cylindrical cam in a first direction is stopped when the first engagement member engages with the third engagement member, and a rotation of the cylindrical cam in a second direction is stopped when the second engagement member engages with the third engagement member.
Alternatively, it is preferable that a rotation of the cylindrical cam in a first direction is stopped when the cap driving pin reaches at a first dead end of the cam groove, and a rotation of the cylindrical cam in a second direction is stopped when the cap driving pin reaches at a second dead end of the cam groove.
Here, it is preferable that the pump gear and the cylindrical cam are coaxially arranged, so that they can be arranged in a compact manner.
Still here, it is preferable that the frictional clutch includes an urging member which presses one circular end surface of the pump gear and one circular end surface of the cylindrical cam together.
Further, it is preferable that the pump is a tube pump which performs a sucking operation only when the cylindrical cam is rotated in either one of the first direction and the second direction.
Here, it is preferable that the pump is arranged coaxially with the cylindrical cam.
Preferably, the head cap includes:
a cap body having an opening which faces the nozzle surface;
a cap holder, which holds the cap body;
an urging member, disposed in the cap holder to urge the cap body in a direction that the cap body is projected from the cap holder; and
a vent valve, closed when the cap body of the head cap placed at the capping position is pushed toward the cap holder by a predetermined amount against an urging force of the urging member, so that an interior space of the head cap is isolated from atmosphere.
Here, it is preferable that the cam groove includes:
a first portion which moves the cap driving pin so as to place the cap holder at a first capping position where the cap body covers the nozzles and the vent valve is closed; and
a second portion which moves the cap driving pin so as to place the cap holder at a second capping position where the cap body covers the nozzles and the vent valve is opened.
Still here, it is preferable that the cam groove includes a guide portion which guides the cap driving pin situated in the first portion to the second portion. The cap driving pin situated in the vicinity of one end of the first portion is guided to the second portion via the guide portion, when the cap driving pin is moved away from the one end of the first portion.
Still here, it is preferable that: the first portion includes a depth-decreasing portion in which a depth thereof gradually decreases toward the one end thereof; and the guide portion connects a part in the first portion in the vicinity of the depth-decreasing portion and the second portion.
Preferably, the cam groove is one continuous groove, and the predetermined circumferential angular range is 360 degrees or less.
Preferably, the maintenance mechanism further comprises an intermittent gear arranged coaxially with the cylindrical cam, so as to rotate integrally with the cylindrical cam. A driving force of the driving source is transmitted to the intermittent gear only in a predetermined circumferential angular range of the cylindrical cam between the first position and the second position.
Preferably, the maintenance mechanism further comprises:
a wiper, reciprocally movable between a wiping position for wiping the nozzle surface and a standby position; and
a wiper driving pin, slidably moving along the cam groove to reciprocally move the wiper.
The cam groove includes:
a first dead end portion, at which the wiper driving pin is placed when a rotation of the cylindrical cam in a first direction is stopped;
a wiper driving portion, continued from the first dead end portion, which moves the wiper driving pin to reciprocally move the wiper;
a second dead end portion, at which the cap driving pin is placed when a rotation of the cylindrical cam in a second direction is stopped; and
a cap driving portion, continued from the second dead end portion, which moves the cap driving pin to reciprocally move the head cap.
Here, it is preferable that the maintenance mechanism further comprises an intermittent gear arranged coaxially with the cylindrical cam, so as to rotate integrally with the cylindrical cam. A driving force of the drive source is transmitted to the intermittent gear only in a predetermined circumferential angular range of the cylindrical cam between the first dead end portion and the second dead end portion of the cam groove.
Here, it is preferable that the pump is a tube pump which performs a sucking operation only when the cylindrical cam is rotated in the second direction.
In the above configurations, the torque of a single drive source is transmitted to the cylindrical cam through the frictional clutch from the pump gear, and a finite rotation of the cylindrical cam causes at least one of the head cap and the wiper to move. Accordingly, it is possible to place the cylindrical cam of the finite rotation type in an initial or reference position without the use of a position detector for detecting the rotation angle of the cylindrical cam. Therefore, an inexpensive head maintenance mechanism easy to control can be realized.
Since there is no need of separately arranging the power transmitting mechanisms for the suction pump, the head cap and the wiper, it is possible to realize a small-sized and compact head maintenance mechanism.
Since forward and rearward rotations from the drive source can be transmitted to the suction pump, it is possible to switchingly control a state of a pump, such as a tube pump, by switching of a direction of rotation of the drive source.
Since the cam groove is formed so as to establish a state in which the head cap seals the nozzle surface, and a state in which the head cap seals the nozzle surface but the interior space of the head cap is communicated to atmosphere, there is no need of separately providing a drive mechanism for driving a valve mechanism for opening of the head cap to the atmosphere and it is possible to realize a small-sized and compact head maintenance mechanism.
Since the cylindrical cam, the pump gear and the suction pump are arranged in a coaxial manner, a predetermined space in a direction perpendicular to the coaxes can be saved so that a small-sized and compact head maintenance mechanism can be realized.
BRIEF DESCRIPTION OF THE DRAWINGS
The above objects and advantages of the present invention will become more apparent by describing in detail preferred exemplary embodiments thereof with reference to the accompanying drawings, wherein:
FIG. 1
is a plan view showing a head maintenance mechanism of an ink jet printer according to one embodiment of the invention;
FIG. 2
is an exploded, perspective view showing the head maintenance mechanism of
FIG. 1
;
FIG. 3
is a perspective view showing the head maintenance mechanism of
FIG. 1
with a housing removed;
FIG. 4
is a side view of a head cap as viewed in a direction indicated by an arrow IV in
FIG. 3
;
FIG. 5
is a side view of the head cap as viewed in a direction indicated by an arrow V in
FIG. 3
;
FIG. 6
is a partial, cross sectional view of the head cap taken along lines VI—VI in
FIGS. 1 and 3
;
FIG. 7
is a partial, cross sectional view of the head cap taken along a line VII—VII in
FIG. 3
, and showing a state, in which a head cap is disposed in a retracted position;
FIG. 8
is a partial, cross sectional view of the head cap taken along the line VII—VII in
FIG. 3
, and showing a capping state, in which the head cap is disposed in an ink sucking position;
FIG. 9
is a partial, cross sectional view of the head cap taken along the line VII—VII in
FIG. 3
, and showing a capping state, in which the head cap is disposed in an idle sucking position;
FIG. 10
is a bottom view showing a motion of a tube pump in the head maintenance mechanism of
FIG. 1
under a pumping state;
FIG. 11
is a bottom view showing a motion of a tube pump in the head maintenance mechanism of
FIG. 1
under a pump release state;
FIGS. 12A
to
12
C are diagrams explaining a cam groove of a cylindrical cam in the head maintenance mechanism of
FIG. 1
;
FIG. 13
is a view showing a movement of a cap driving pin, which moves along a cap driving region of the cam groove;
FIG. 14
is a timing chart indicating the operation in a case where the head cap in an initial position is moved to the ink sucking position;
FIG. 15
is a timing chart indicating the operation in a case where the head cap in the initial position is moved to the idle sucking position; and
FIGS. 16A
to
16
D are views illustrating the positional relationship of the cylindrical cam, the cap driving pin, and a wiper driving pin in respective points of time.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A preferred embodiment of a head maintenance mechanism of an ink jet printer according to the invention will be described below with reference to the accompanying drawings. Since the ink jet printer in which the head maintenance mechanism of the invention is incorporated is provided with a well-known structure, there will be omitted specific explanation and illustrations for the same.
As shown in
FIGS. 1 and 2
, a head maintenance mechanism
1
comprises: a head cap
2
for capping a nozzle surface of a print head; a wiper
3
for wiping the nozzle surface; and a tube pump
4
as an ink suction pump for sucking ink from the head cap
2
. Also, the head maintenance mechanism
1
further comprises a stepping motor
5
as a common drive source for driving the head cap
2
, wiper
3
, and the tube pump
4
. Further, the head maintenance mechanism
1
comprises a power transmitting mechanism
6
for transmitting torque of the stepping motor
5
to the head cap
2
, wiper
3
, and the tube pump
4
. These respective parts are mounted to a housing
7
.
As shown in
FIG. 2
, the power transmitting mechanism
6
comprises a cylindrical cam
11
, on an outer peripheral surface of which is formed a cam groove
12
having a predetermined depth in a circumferential direction. A cap driving pin
13
for movement of the head cap is inserted into the cam groove
12
in a state of being slidable along the cam groove
12
as the cylindrical cam
11
rotates. Also, a wiper driving pin
14
for movement of the wiper is inserted in a position offset clockwise substantially 90 degrees into the cam groove
12
in a state of being slidable along the cam groove
12
as the cylindrical cam
11
rotates. Further, a pump gear
16
being a drive power input element of the tube pump
4
is coaxially opposed to and disposed immediately below a circular bottom surface
11
a
of the cylindrical cam
11
.
Disposed immediately below the pump gear
16
is the tube pump
4
, of which a central shaft
17
extends centrally through the pump gear
16
and the cylindrical cam
11
to project upward. The central shaft
17
has its lower end
17
a
rotatably supported on the housing
7
and its upper end
17
b
rotatably inserted into a shaft hole
8
a
formed in an upper wall
8
fixed to an upper surface of the housing by a pair of screws.
The cylindrical cam
11
and the pump gear
16
are held in frictional engagement by a frictional clutch mechanism
18
. The frictional clutch mechanism
18
in the embodiment comprises the circular bottom surface
11
a
, an upper end surface
16
a
of the pump gear
16
, and a coil spring
20
mounted in a central hole
11
b
of the cylindrical cam
11
. The coil spring
20
is mounted in a compressed state between the cylindrical cam
11
and the upper wall
8
to constantly push the cylindrical cam
11
with a predetermined bias. Accordingly, the circular bottom surface
11
a
of the cylindrical cam
11
and the upper end surface
16
a
of the pump gear
16
are pushed together with a predetermined bias to be made rotatable together by frictional forces generated thereby. When load exceeding the frictional forces acts, sliding is established between both elements.
The pump gear
16
is connected to the stepping motor
5
through a reduction gear mechanism
19
. The reduction gear mechanism
19
comprises a composite reduction gear
22
meshing with a motor gear
21
mounted on a motor shaft, and a reduction gear (drive gear)
23
meshing with a small-diameter gear
22
a
of the composite reduction gear
22
, the reduction gear
23
meshing with the pump gear
16
.
Here, the cylindrical cam
11
is formed at an outer peripheral surface of a lower end thereof with an intermittent gear
25
, which is formed over an angular range of substantially 200 degrees with teeth
24
. The teeth
24
can also mesh with the reduction gear
23
.
Also, the cylindrical cam
11
in the embodiment is of finite rotation type, and there are provided rotation limiters for defining a clockwise dead end and a counterclockwise dead end. The rotation limiters in the embodiment comprise stopper walls
11
d
,
11
e
for defining both ends of an arcuate groove
11
c
formed over a predetermined angular range along an inner peripheral edge of an annular upper surface of the cylindrical cam
11
, and a projection
8
b
projected into the arcuate groove
11
c
from the back of the upper wall
8
. When the cylindrical cam
11
rotates clockwise, the stopper wall
11
d
strikes against (contacts) the projection
8
b
to inhibit rotation of the cylindrical cam
11
. Also, when the cylindrical cam
11
rotates counterclockwise, the other stopper wall
11
e
strikes against (contacts) the projection
8
b
to inhibit rotation of the cylindrical cam
11
.
With the power transmitting mechanism
6
in the embodiment constructed in this manner, rotation of the stepping motor
5
is transmitted to the pump gear
16
through the reduction gear mechanism
19
, and rotation of the pump gear
16
is transmitted to the cylindrical cam
11
through the frictional clutch mechanism
18
. Also, rotation of the stepping motor
5
is transmitted directly to the cylindrical cam
11
in a state, in which the intermittent gear
25
of the cylindrical cam
11
meshes with the reduction gear
23
.
When the cylindrical cam
11
rotates, the cap driving pin
13
and the wiper driving pin
14
, which are inserted into the cam groove
12
of the cam in predetermined positions, are moved in a direction (up and down direction in
FIGS. 2
to
6
) along an axis of rotation of the cylindrical cam
11
to afford a capping state by the head cap
2
and a wiping state by the wiper
3
. Also, the tube pump
4
sucks ink from the head cap
2
put in the capping state.
Next, the construction of the head cap
2
in the embodiment will be described with reference to
FIGS. 6
to
9
. The head cap
2
comprises a box-shaped cap body
31
facing a nozzle surface
101
of a print head
100
and opened upward, and a cap holder
32
holding the cap body
31
in a state to receive the same from the upper opening. A horizontal arm
32
a
is projected from a side of the cap holder
32
, and the cap driving pin
13
is inserted into a pin hole
32
b
formed on a tip end of the arm
32
a
. In the embodiment, a coil spring
32
c
inserted into the pin hole
32
b
constantly biases the cap driving pin
13
in a projecting direction from the pin hole
32
b
. Accordingly, a tip end of the cap driving pin
13
is constantly pushed against a bottom surface of the cam groove
12
of the cylindrical cam
11
.
An ink absorbing member
33
is housed in the cap body
31
, and ink recovered by the ink absorbing member
33
is discharged from an ink discharging port
34
formed in a bottom plate portion of the cap body
31
.
Also, configured between the bottom plate portion of the cap body
31
and the cap holder
32
is a vent valve mechanism
35
for opening an interior of the cap body to the atmosphere. More specifically, a vent port
36
is extended downward from the bottom plate portion of the cap body
31
, and a valve seat
37
is formed on the cap holder
32
to be opposed to a lower end of the vent port
36
. The cap body
31
is mounted in a state to be vertically movable a predetermined amount with regard to the cap holder
32
. Normally, the cap body
31
is biased upward by a coil spring
38
, and therefore the vent port
36
is spaced away from the valve seat
37
to be held in an atmospheric opening state. When the cap body
31
is pressed a predetermined amount from above, a lower end of the vent port
36
abuts against the valve seat
37
to be closed thereby, and so the vent valve mechanism
35
is put in a closed state.
In
FIG. 7
, the head cap
2
is in a state to be disposed in a retracted position
2
A. In contrast,
FIGS. 8 and 9
show a state in which the head cap
2
caps the nozzle surface
101
. In a state shown in
FIG. 8
, the head cap
2
is disposed in an ink sucking position
2
B in which capping is effected when the vent valve mechanism
35
is put in a closed state. In this position, the cap holder
32
rises a distance L1 from the retracted position
2
A shown in
FIG. 7
while the cap body
31
abuts against the nozzle surface
101
of the print head
100
disposed right above to be relatively pushed downward to have the vent port
36
seated on the valve seat
37
. In this state, when the tube pump
4
performs an ink sucking action, ink is sucked from the nozzle orifice on the print head
100
to be discharged outside.
In contrast,
FIG. 9
shows an idle sucking position
2
C, in which the cap holder
32
rises a smaller distance L2 than the distance L1 from the retracted position
2
A and the cap body
31
caps the nozzle surface
101
, but the vent valve mechanism
35
is remained in a opened state since the lift L2 is small. In this state, when the tube pump
4
performs an ink sucking action, ink is not sucked from the nozzle orifice on the print head
100
and ink recovered by the ink absorbing member
33
is sucked and discharged outside.
As shown in
FIGS. 2 and 3
, the wiper
3
comprises a rectangular wiper blade
3
a
, and a blade holder
3
b
holding the blade, and the blade holder
3
b
is mounted on the housing
7
in a manner to be able to reciprocate between a retracted position and a wiping position in which the nozzle surface
101
of the print head
100
can be wiped. A horizontal arm
3
c
is extended from a side of the blade holder
3
b
, and the wiper driving pin
14
is mounted to a tip end of the horizontal arm
3
c.
Next, the construction of the tube pump
4
will be described mainly with reference to
FIGS. 2
,
10
, and
11
. The tube pump
4
comprises a rotor
42
rotatably inserted into a circular recess
41
formed in the housing
7
, the rotor
42
comprising the central shaft
17
, a lower end plate
43
formed at a lower end of the shaft
17
, and a roller driving disk
44
formed midway up the central shaft
17
. A pair of rollers
45
,
46
are rotatably mounted between the lower end plate
43
and the roller driving disk
44
. An ink tube
47
is laid between the rollers
45
,
46
and an inner peripheral surface
41
a
of the circular recess
41
on the housing
7
. One end of the ink tube
47
is communicated to the ink discharging port
34
of the head cap
2
, and the other end thereof is communicated to an ink recovery section (not shown).
An upper end surface of the roller driving disk
44
is opposed to a lower end surface of the pump gear
16
. Formed at one position in a circumferential direction on both surfaces are engagement projections (not shown), and when the roller driving disk
44
rotates approximately 360 degrees, both projections engage with each other to cause the pump gear
16
and the tube pump
4
to rotate together.
Arcuate grooves
44
a
,
44
b
are formed on the roller driving disk
44
as shown in
FIGS. 10 and 11
to guide central shafts
45
a
,
46
a
of the rollers
45
,
46
. When the tube pump
4
rotates in a direction indicated by an arrow in
FIG. 10
, the pair of rollers
45
,
46
move radially outward along the arcuate grooves
44
a
,
44
b
to revolve while flattening the ink tube
47
. Thereby, an ink sucking action (pumping action) is made. Meanwhile, when the tube pump
4
rotates in a reverse direction shown in
FIG. 11
, a release state, in which the ink tube
47
is not flattened, is created since the pair of rollers
45
,
46
retract radially inward along the arcuate grooves
44
a
,
44
b.
Next, a detailed explanation will be given to the cam groove
12
formed on the cylindrical cam
11
in the embodiment.
FIG. 12A
shows a development of the cam groove
12
of the cylindrical cam
11
in plan,
FIG. 12B
is a view showing groove depths of respective portions, and
FIG. 12C
is a view showing positions of the intermittent gear
25
and the reduction gear
23
.
The cam groove
12
in the embodiment comprises a first dead end
51
, against which the wiper driving pin
14
abuts, or close to which the wiper driving pin is disposed when the cylindrical cam
11
rotates counterclockwise, a wiper driving region
52
, which is contiguous to the first dead end
51
and in which the wiper driving pin
14
is moved, a cap driving region
53
, in which the cap driving pin
13
is moved, and a second dead end
54
formed at an end of the cap driving region
53
. When the cylindrical cam
11
rotates clockwise, the cap driving pin
13
abuts against or is disposed close to the second dead end
54
. In the embodiment, the cam groove
12
is formed over an angular range of approximately 350 degrees, and a connecting region
55
connects between the wiper driving region
52
and the cap driving region
53
. Of course, wiper driving region
52
and cap driving region
53
may include discontinuous cam grooves.
Here, as described above, the dead ends of the cylindrical cam
11
in clockwise and counterclockwise rotation are defined by the stopper walls
11
d
,
11
e
of the cylindrical cam
11
and the projection
8
b
formed on the upper wall
8
. In the embodiment, the cylindrical cam
11
rotates clockwise and the stopper wall
11
d
strikes against the projection
8
b
, whereby clockwise rotation of the cylindrical cam is stopped. In this state, the cap driving pin
13
abuts against the second dead end
54
or comes to a position immediate before it abuts against the second dead end
54
. Conversely, the cylindrical cam rotates counterclockwise and the stopper wall
11
e
strikes against the projection
8
b
, whereby counterclockwise rotation of the cylindrical cam is stopped. In this state, the wiper driving pin
14
abuts against the first dead end
51
or comes to a position immediate before it abuts against the first dead end
51
.
The wiper driving region
52
comprises a trapezoidal portion extending over an angular range of approximately 90 degrees, and the wiper driving pin
14
disposed at the first dead end
51
slides relative to and along the wiper driving region
52
to move up and down when the cylindrical cam
11
rotates clockwise. When the cylindrical cam
11
rotates approximately 45 degrees, the wiper
3
comes to the wiping position enabling wiping the nozzle surface
101
from the retracted position, and when the cylindrical cam
11
further rotates approximately 45 degrees, it returns to the retracted position again. In a state in which the wiper driving pin
14
is disposed in the connecting region
55
of the cam groove
12
as shown in
FIG. 12A
, the wiper
3
rises to the wiping position and then returns to the retracted position when the cylindrical cam rotates counterclockwise.
The cap driving region
53
comprises a slope portion
61
contiguous to the horizontally extending connecting region
55
and slanted upward at a predetermined angle, an upper horizontal portion
62
contiguous to an upper end of the slope portion
61
and extending horizontally, and a lower horizontal portion
63
formed in parallel to and below the upper horizontal portion
62
. Also, the cap driving region
53
further comprises a guide portion
64
for guiding the cap driving pin
13
, which is disposed at adjacent the second dead end
54
of the upper horizontal portion
62
, to the lower horizontal portion
63
when the cylindrical cam
11
rotates counterclockwise.
In a state in which the cap driving pin
13
is disposed in the connecting region
55
shown in
FIG. 12A
, the head cap
2
is disposed in the retracted position
2
A (see FIG.
7
). In this state, when the cylindrical cam
11
rotates clockwise, the cap driving pin
13
rises along the slope portion
61
to reach the upper horizontal portion
62
. This state corresponds to an ink sucking position
2
B in which the head cap
2
caps the nozzle surface
101
in a state, in which the vent valve mechanism
35
is closed, as shown in FIG.
8
. In contrast, a state, in which the cap driving pin
13
is disposed in the lower horizontal portion
63
, corresponds to an idle sucking position
2
C, in which the head cap
2
caps the nozzle surface
101
in a state, in which the vent valve mechanism
35
is opened, as shown in FIG.
9
.
Here, as seen from
FIG. 12B
, a groove depth H1 is deepest in the connecting region
55
, the slope portion
61
, and the upper horizontal portion
62
, while a groove depth of the upper horizontal portion
62
gradually decreases from a portion on a side of the second dead end
54
and is made constant over a portion up to the second dead end
54
. Also, a groove side of a lower portion of the upper horizontal portion
62
is cut out in a stepwise manner to form a lower horizontal portion
63
having a small groove depth H2. The lower horizontal portion
63
extends between the second dead end
54
and the slope portion
61
.
The guide portion
64
is formed by cutting out a bottom surface of the lower horizontal portion
63
while leaving a lower portion
63
a
, and comprises a portion
64
a
having a groove depth H3 between groove depths of the portions
62
,
63
, and a portion
64
b
, of which groove depth gradually decreases from the portion
64
a
to the slope portion
61
. An end of the portion
64
a
is situated near the portion at which the groove depth of the upper horizontal portion
62
starts decreasing, or the portion at which the groove depth of the upper horizontal portion
62
is decreasing. An end of the portion
64
b
is continuous to the lower horizontal portion
63
FIG. 13
is a view showing a movement of the cap driving pin
13
, which moves along the cap driving region
53
provided with these portions
61
to
64
. Explained with reference to the figure, when the cylindrical cam
11
rotates in a clockwise direction A, the cap driving pin
13
moves along the slope portion
61
from a position
13
(
1
) in the connecting region
55
as shown by an arrow “a” to be guided into the upper horizontal portion
62
to reach the second dead end
54
.
When the cylindrical cam
11
rotates in a counterclockwise direction B in a state in which the cap driving pin
13
is disposed in the position
13
(
2
), the cap driving pin
13
moves in an opposite direction along the upper horizontal portion
62
as shown by an arrow “b” and when reaching the guide portion
64
, the cap driving pin falls onto the guide portion
64
from the upper horizontal portion
62
to descend along the portion to reach the lower horizontal portion
63
.
When the cylindrical cam
11
rotates in the clockwise direction A again in a state in which the cap driving pin
13
is disposed in the position
13
(
3
), the cap driving pin
13
moves in the lower horizontal portion
63
along the narrow groove bottom
63
a
to reach a position
13
(
4
) on the second dead end
54
.
Here, the teeth
24
of the intermittent gear
25
formed on the cylindrical cam
11
are formed over an angular range from an angular position near the second dead end
54
in the cam groove
12
to an angular position near the slope portion
61
(see FIG.
12
C). In other words, in the case where the cylindrical cam
11
rotates clockwise, in a rotating angle position immediate before the cap driving pin
13
moving relative to and along the cam groove
12
abuts against the second dead end
54
of the cam groove
12
, one end
24
a
of the teeth
24
of the intermittent gear
25
passes the reduction gear
23
to be released of meshing with the reduction gear
23
. Also, in the case where the cylindrical cam
11
rotates counterclockwise, in a rotating angle position immediate before the wiper driving pin
14
moving relative to and along the cam groove
12
abuts against the first dead end
51
of the cam groove
12
, the other end
24
b
of the teeth
24
of the intermittent gear
25
passes the reduction gear
23
to be released of meshing with the reduction gear
23
.
Next, operation of the head maintenance mechanism
1
according to the embodiment will be described mainly with reference to
FIGS. 14
to
16
. First, an explanation will be given to the operation when the head cap
2
is moved to the ink sucking position
2
B from the retracted position
2
A. The cap driving pin
13
and the wiper driving pin
14
are disposed in initial positions shown in
FIG. 12
, and
FIG. 16A
shows the positional relationship of respective parts in the initial positions. One end
24
b
of the teeth
24
of the intermittent gear
25
is in a position slightly offset counterclockwise relative to the reduction gear
23
.
When the stepping motor
5
is reversely rotated in this state (point of time t0), the reduction gear
23
rotates counterclockwise. The pump gear
16
meshing with the reduction gear
23
rotates clockwise A, and the cylindrical cam
11
connected to the pump gear
16
via the frictional clutch mechanism
18
also rotates clockwise A. When the cylindrical cam
11
rotates clockwise A, the teeth
24
of the intermittent gear
25
shift to a state of meshing with the reduction gear
23
in the meantime (point of time t1), and thereafter torque of the stepping motor
5
is transmitted to the cylindrical cam
11
not through the frictional clutch mechanism
18
. Therefore, the cylindrical cam
11
can be surely rotated even when load on the cylindrical cam
11
increases.
Owing to clockwise rotation of the cylindrical cam
11
, the wiper driving pin
14
sliding relative to the cam groove
12
slides along the wiper driving region
52
of the cam groove
12
to lift the wiper
3
to the wiping position from the retracted position (from point of time t2 to point of time t4). At this point of time t3, the print head
100
is moved via the position of the wiper
3
to thereby permit the wiper blade
3
a
to wipe the nozzle surface
101
.
When the cylindrical cam
11
rotates further, the wiper
3
descends and returns to the retracted position (point of time t5), the cap driving pin
13
begins ascending along the slope portion
61
of the cam groove
12
. Thereby, the head cap
2
begins ascending from the retracted position
2
A. Before a point of time t6 which is immediate before a point of time t7 when the cap driving pin
13
reaches the upper horizontal portion
62
of the cam groove
12
, the cap body
31
of the head cap
2
is put in a state to cap the nozzle surface
101
of the print head
100
having stood by immediately above, and thereafter only the cap holder
32
ascends and the cap body
31
is relatively depressed downward. As a result, the vent valve mechanism
35
of the head cap
2
shifts to a closed state at a point of time t6, and thereafter the head cap
2
reaches the ink sucking position
2
B. This state is shown in
FIGS. 8 and 16B
.
Subsequently, when the cylindrical cam
11
rotates further clockwise, one end
24
a
of the teeth
24
of the intermittent gear
25
of the cylindrical cam
11
passes the reduction gear
23
, so that meshing of the intermittent gear
25
and the reduction gear
23
is released (point of time t8). Thereafter, the cylindrical cam
11
rotates together with the pump gear
16
via the frictional clutch mechanism
18
, and the cap driving pin
13
is disposed at the second dead end
54
of the cam groove
12
at a point of time t9.
In this state, the stopper wall
11
d
of the cylindrical cam
11
strikes against the projection
8
b
of the upper wall
8
to inhibit rotation of the cylindrical cam
11
. Accordingly, slip is then generated in the frictional clutch mechanism
18
, so that the cylindrical cam
11
makes no rotation and is held in a stop state and only the pump gear
16
continues to rotate.
FIG. 16C
shows this state. When the pump gear
16
makes substantially one revolution from the initial position, the pump gear
16
engages with the roller driving disk
44
of the tube pump
4
(a point of time t10), and the tube pump
4
is then drivingly rotated clockwise. As a result, the pair of rollers
45
,
46
revolve while flattening the ink tube
47
as shown in
FIG. 10
, and ink suction is performed in the head cap
2
capped in a state in which the vent valve mechanism
35
is closed. As a result, ink is sucked from the nozzle orifice on the print head
100
to be discharged outside.
When the stepping motor
5
is rotated forward after the ink sucking action is terminated, a reverse operation to the above is effected and the respective parts are returned to an initial state. More specifically, the cylindrical cam
11
rotates counterclockwise to a position where the wiper driving pin
14
is disposed at the first dead end
51
of the cam groove
12
(state at a point of time t0). In a state in which the wiper driving pin
14
is disposed at the first dead end
51
of the cam groove
12
, the stopper wall
11
e
of the cylindrical cam
11
strikes against the projection
8
b
of the upper wall
8
to inhibit rotation of the cylindrical cam
11
. Accordingly, slip is then generated in the frictional clutch mechanism
18
so that the cylindrical cam
11
is held in that position. Meanwhile, the pump gear
16
continues to rotate counterclockwise to rotate the tube pump
4
counterclockwise, and the pair of rollers
45
,
46
retract radially inward to establish a pump release state in which flattening of the ink tube
47
is released. This state is shown in
FIG. 16D
, the relative positions of the respective parts being the same as those in the initial state shown in FIG.
16
A.
Next, an explanation will be given to the operation when the head cap
2
is moved to the idle sucking position
2
C with reference to FIG.
15
. In this case, the operation until the point of time t9 in
FIG. 15
is also the same as described above. At the point of time t9, the head cap
2
reaches the ink sucking position
2
B and the cap driving pin
13
is disposed at the second dead end
54
of the cam groove
12
.
Thereafter, at the point of time t11, the rotation of the stepping motor
5
is reversed in a forward direction (clockwise direction) for a predetermined period of time (from the point of time t11 to a point of time t13). As a result, the cylindrical cam
11
rotates counterclockwise such that the cap driving pin
13
moves within the cam groove
12
along a path indicated by an arrow b in
FIG. 13
, and reach the lower horizontal portion
63
at the point of time t13. Here, since the cap holder
32
of the head cap
2
descends, the cap body
31
pressed against the nozzle surface
101
is relatively pushed upward while being kept in the capping state, and the vent valve mechanism
35
having been in a closed state returns to an open state at the point of time t12 immediate before the point of time t13.
When the stepping motor
5
is reversely driven in the counterclockwise direction at the point of time t13, the cylindrical cam
11
rotates clockwise to cause the cap driving pin
13
to slide along the lower horizontal portion
63
of the cam groove
12
to be disposed at the second dead end
54
(at a point of time t14). After this time of point, only the pump gear
16
rotates while the cylindrical cam
11
stops. After a point of time t15, the pump gear
16
engages with the roller driving disk
44
of the tube pump
4
to drive the tube pump
4
, thus starting the ink suction. In this state, since the vent valve mechanism
35
of the head cap
2
is opened, ink is not sucked from the nozzle orifice but ink contained in the ink absorbing member
33
is sucked and discharged outside (that is, idle suction is performed).
After the idle suction is performed, rotating the stepping motor
5
forwardly, the cylindrical cam
11
rotates counterclockwise, so that the cap driving pin
13
situated in the second dead end
54
is moved along the lower horizontal portion
63
to the initial position via the slope portion
61
.
As described above, with the head maintenance mechanism
1
of the ink jet printer in the embodiment, rotation of the stepping motor
5
is transmitted to the cylindrical cam
11
through the reduction gear mechanism
19
, the pump gear
16
, and the frictional clutch mechanism
18
. Also, in an operating state, in which there is no need of causing the cylindrical cam
11
to move the head cap
2
and the wiper
3
, the stopper walls
11
d
,
11
e
of the cylindrical cam
11
are made to strike against the projection
8
b
of the upper wall
8
to inhibit rotation of the cylindrical cam
11
to generate slip in the frictional clutch mechanism
18
, thereby enabling rotation of only the pump gear
16
for driving of the tube pump.
Accordingly, the cylindrical cam
11
rotates clockwise or counterclockwise only in a range of rotating angle prescribed by the stopper walls
11
d
,
11
e
, and so can be constantly returned to the initial or reference position. Therefore, unlike the case where a cylindrical cam continuously rotated in the same direction by one direction of a motor is used to drive a head cap, wiper or an ink suction pump, there is no need of providing a detector for detecting the position of a cylindrical cam and the respective parts can be operatively controlled on the basis of the number of steps in the stepping motor
5
. As a result, it is possible to realize inexpensive drive control of good controllability.
Also, it is possible to use the tube pump
4
to control an amount of ink as sucked on the basis of the number of steps in the stepping motor
5
.
Further, since the pump gear
16
is rotated clockwise and counterclockwise, the tube pump
4
can be switched between a pumping state, in which the rollers
45
,
46
revolve while flattening the ink tube
47
, and a pump release state, in which the rollers
45
,
46
retract from the ink tube
47
. Therefore, unlike a head maintenance mechanism, in which an ink suction pump is driven only in rotation in one direction, a state of a pump can be switchingly controlled by forward and rearward rotation of a motor.
Besides, since play of about 360 degrees is present between the pump gear
16
and the tube pump
4
, the tube pump
4
does not operate when only the capping action and the wiping action from the pump release state are made. Therefore, an unnecessary action of the tube pump
4
, that is, the flattening action of the ink tube
47
can be avoided, so that it is possible to maintain durability of the ink tube
47
. Also, since the ink tube
47
is not flattened in the capping state, there is obtained an effect that there is no deformation of the ink tube
47
.
Also, the upper horizontal portion
62
and the lower horizontal portion
63
are formed in the cam groove
12
of the cylindrical cam
11
so that when the cylindrical cam
11
is rotated counterclockwise, the cap driving pin
13
disposed at the upper horizontal portion
62
is guided to the lower horizontal portion
63
through the guide portion
64
. Accordingly, a state, in which capping of the head cap
2
is made in a closed state to permit ink to be sucked from the nozzle orifice, and a state, in which capping of the head cap
2
is made in an atmospheric opening state to permit ink to be sucked from the ink absorbing member
33
but not to permit ink to be sucked from the nozzle orifice can be realized without separate provision of a drive mechanism for driving of the vent valve mechanism
35
.
Besides, with the embodiment, the pump gear
16
and the tube pump
4
are provided below the cylindrical cam
11
in a coaxial manner, so that an installation space therefor, in particular, an installation area in a lateral direction can be considerably reduced so that a very compact head maintenance mechanism can be realized.
Further, with the embodiment, the rotation stop position of the cylindrical cam
11
is prescribed by engagement between the stopper walls
11
d
,
11
e
of the cylindrical cam
11
and the projection
8
b
of the upper wall
8
. Rotation of the cylindrical cam can be restricted by engagement of the cap driving pin
13
and the second dead end
54
and engagement of the wiper driving pin
14
and the first dead end
51
. In this case, clutch forces are applied on the respective pins
13
,
14
to cause movements of the head cap
2
and the wiper
3
, so that failure of positioning relative to the print head
100
or the like is liable to occur, and fixing portions (mount portions) of the respective pins
13
,
14
are also liable to cause a problem in durability. In the embodiment, the projection
8
b
formed on the upper wall
8
fixed to the housing
7
receives forces for stopping the rotation of the cylindrical cam, so that failure of positioning of the head cap
2
and the wiper
3
can be avoided and mount portions of the respective pins
13
,
14
cause no problem in durability.
While a tube pump is used as an ink suction pump in the above embodiment, other ink suction pumps can be also used.
Also, while a stepping motor drives the head cap, wiper and the tube pump in the above embodiment, the invention can be likewise applied to, for example, the head maintenance mechanism configured to drive only the head cap and the ink suction pump.
Further, while the cam groove is a single cam groove extending substantially continuously over an angular range of at most 360 degrees, it can be formed as a cam groove comprising a portion for driving of a wiper and a portion for driving of a head cap, which portions are discontinuous or separate. Also, the angular range of the cam groove can be 360 degrees or more.
Also, while the intermittent gear can be used in the above embodiment to smoothly and surely rotate the cylindrical cam even when a large load is applied on the cylindrical cam, it is possible to omit the intermittent gear in the case where load applied on the cylindrical cam is small.
In addition, in the case where a force for preventing rotation of the cylindrical cam
11
is small, it is also possible in the above embodiment to omit the stopper walls
11
d
,
11
e
and the projection
8
b
of the upper wall
8
for restricting the cylindrical cam
11
and then to restrict the rotation of the cylindrical cam
11
by engagement of the respective pins
13
,
14
and the respective dead ends
54
,
51
.
Claims
- 1. A maintenance mechanism for a print head having a nozzle surface in which are formed a plurality of nozzles, comprising:a head cap, reciprocally movable between a capping position for covering the nozzles and a retracted position separated from the nozzle surface; a pump, connected to the head cap; a drive source; a pump gear, rotated by the drive source to drive the pump; a cylindrical cam, reciprocally rotatable between a first position and a second position to reciprocally move the head cap; and a frictional clutch, which rotates the cylindrical cam together with the pump gear, but rotates only the pump gear when the cylindrical cam reaches each one of the first position and the second position.
- 2. The maintenance mechanism as set forth in claim 1, wherein:a cam groove is formed on an outer peripheral surface of the cylindrical cam in a predetermined circumferential angular range; and the maintenance mechanism further comprises a cap driving pin slidably movable along the cam groove to reciprocally move the head cap.
- 3. The maintenance mechanism as set forth in claim 2, wherein a rotation of the cylindrical cam in a first direction is stopped when the cap driving pin reaches at a first dead end of the cam groove, and a rotation of the cylindrical cam in a second direction is stopped when the cap driving pin reaches at a second dead end of the cam groove.
- 4. The maintenance mechanism as set forth in claim 2, wherein the head cap includes:a cap body having an opening which faces the nozzle surface; a cap holder, which holds the cap body; an urging member, disposed in the cap holder to urge the cap body in a direction that the cap body is projected from the cap holder; and a vent valve, closed when the cap body of the head cap placed at the capping position is pushed toward the cap holder by a predetermined amount against an urging force of the urging member, so that an interior space of the head cap is isolated from atmosphere.
- 5. The maintenance mechanism as set forth in claim 4, wherein the cam groove includes:a first portion which moves the cap driving pin so as to place the cap holder at a first capping position where the cap body covers the nozzles and the vent valve is closed; and a second portion which moves the cap driving pin so as to place the cap holder at a second capping position where the cap body covers the nozzles and the vent valve is opened.
- 6. The maintenance mechanism as set forth in claim 5, wherein:the cam groove includes a guide portion which guides the cap driving pin situated in the first portion to the second portion; and wherein the cap driving pin situated in the vicinity of one end of the first portion is guided to the second portion via the guide portion, when the cap driving pin is moved away from the one end of the first portion.
- 7. The maintenance mechanism as set forth in claim 6, wherein:the first portion includes a depth-decreasing portion in which a depth thereof gradually decreases toward the one end thereof; and the guide portion connects a part in the first portion in the vicinity of the depth-decreasing portion and the second portion.
- 8. The maintenance mechanism as set forth in claim 2, wherein the cam groove is one continuous groove, and the predetermined circumferential angular range is 360 degrees or less.
- 9. The maintenance mechanism as set forth in claim 2, further comprising:a wiper, reciprocally movable between a wiping position for wiping the nozzle surface and a standby position; and a wiper driving pin, slidably moving along the cam groove to reciprocally move the wiper, wherein the cam groove includes: a first dead end portion, at which the wiper driving pin is placed when a rotation of the cylindrical cam in a first direction is stopped; a wiper driving portion, continued from the first dead end portion, which moves the wiper driving pin to reciprocally move the wiper; a second dead end portion, at which the cap driving pin is placed when a rotation of the cylindrical cam in a second direction is stopped; and a cap driving portion, continued from the second dead end portion, which moves the cap driving pin to reciprocally move the head cap.
- 10. The maintenance mechanism as set forth in claim 9, wherein the pump is a tube pump which performs a sucking operation only when the cylindrical cam is rotated in the second direction.
- 11. The maintenance mechanism as set forth in claim 10, wherein the pump is arranged coaxially with the cylindrical cam.
- 12. The maintenance mechanism as set forth in claim 9, further comprising an intermittent gear arranged coaxially with the cylindrical cam, so as to rotate integrally with the cylindrical cam,wherein a driving force of the drive source is transmitted to the intermittent gear only in a predetermined circumferential angular range of the cylindrical cam between the first dead end portion and the second dead end portion of the cam groove.
- 13. The maintenance mechanism as set forth in claim 2, further comprising an urging member which urges the cap driving pin toward a bottom surface of the cam groove.
- 14. The maintenance mechanism as set forth in claim 1, wherein:a first engagement member and a second engagement member are provided with the cylindrical cam, and a third engagement member is disposed at a predetermined position; and a rotation of the cylindrical cam in a first direction is stopped when the first engagement member engages with the third engagement member, and a rotation of the cylindrical cam in a second direction is stopped when the second engagement member engages with the third engagement member.
- 15. The maintenance mechanism as set forth in claim 14, wherein the pump gear and the cylindrical cam are coaxially arranged.
- 16. The maintenance mechanism as set forth in claim 15, wherein the frictional clutch includes an urging member which presses one circular end surface of the pump gear and one circular end surface of the cylindrical cam together.
- 17. The maintenance mechanism as set forth in claim 14, wherein the pump is a tube pump which performs a sucking operation only when the cylindrical cam is rotated in either one of the first direction and the second direction.
- 18. The maintenance mechanism as set forth in claim 17, wherein the pump is arranged coaxially with the cylindrical cam.
- 19. The maintenance mechanism as set forth in claim 1, further comprising an intermittent gear arranged coaxially with the cylindrical cam, so as to rotate integrally with the cylindrical cam,wherein a driving force of the drive source is transmitted to the intermittent gear only in a predetermined circumferential angular range of the cylindrical cam between the first position and the second position.
- 20. An ink jet printer comprising the maintenance mechanism as set forth in claim 1.
Priority Claims (1)
| Number |
Date |
Country |
Kind |
| P2001-359921 |
Nov 2001 |
JP |
|
US Referenced Citations (9)
Foreign Referenced Citations (9)
| Number |
Date |
Country |
| 0 850 773 |
Jul 1998 |
EP |
| 0 972 648 |
Jan 2000 |
EP |
| 2-263655 |
Oct 1990 |
JP |
| 6-262768 |
Sep 1994 |
JP |
| 9-109380 |
Apr 1997 |
JP |
| 2000-141673 |
May 2000 |
JP |
| 2001-270126 |
Oct 2001 |
JP |
| 2002-036604 |
Feb 2002 |
JP |
| 2002-137408 |
May 2002 |
JP |