This application claims priority to Japanese Patent Application No. 2022-83570 filed in Japan on May 23, 2022. The entire disclosure of Japanese Patent Application No. 2022-83570 is hereby incorporated herein by reference.
The present invention generally relates to a head-mounted display device. More specifically, the present invention relates to a head-mounted display device that is worn on the head of a user during movement by a mobile body, and that comprises a housing, a display unit, and a control unit, and to a display method for a head-mounted display.
There are conventional head-mounted display devices that are worn on the head of a user during movement by a mobile body and that comprise a housing, a display unit, and a control unit (see, Japanese Laid-Open Patent Application Publication No. 2009-92810 (Patent Literature 1), for example).
The head-mounted display device described in Patent Literature 1 is a see-through type of head-mounted display device that is disposed in front of the user's eyes and comprises an optical system that guides to the user's eyes an image displayed by a display element, which is superimposed on the background of the user's field of view. This head-mounted display device is used when riding a motorcycle, etc. The display element of this head-mounted display device displays images indicating the traveling speed of the two-wheeled vehicle or other such information, or information such as the shape and type of the road or the current position of the traveling vehicle from a navigation system. With this head-mounted display device, a light beam emitted from the display element and incident inside a prism is guided to a half-mirror, is reflected by the half-mirror, and reaches the user's eyes as a virtual image of the displayed image. External light incident from ahead of the user passes through the half-mirror and the prism, and reaches the user's eyes together with the display light from the display element. Also, the prism and the half-mirror can be set so that external light incident from ahead of the driver can be sufficiently transmitted, and the virtual image of the displayed image will be positioned at a specific distance from the driver's eyes.
With the head-mounted display device described in Patent Literature 1, in which both the image displayed by the display element and the background of the field of view of the user can be seen, the position of the virtual image of the display image is set to be a specific distance away from the eyes regardless of the distance from the eyes to an object seen by the user (hereinafter referred to as the “gaze distance”). It takes some time for the human eye to focus on an object when viewing objects with greatly different gaze distances (when changing the gaze from a near position to a far position, or when changing the gaze from a far position to a near position). Therefore, when the gaze target is changed from an object in the field of view to the virtual image of the displayed image, if the gaze distance changes greatly, there will be a problem in that it takes time for the user to adjust the focal point.
One object of this application to provide a head-mounted display device with which it takes less time to adjust the user's focal point when the user's gaze target is changed from an object within the field of view to a virtual image of a display image, as well as a display method for a head-mounted display.
In view of the state of the known technology, a head-mounted display device according to a first aspect of this application comprises a display unit configured to display an image, a projection unit including a lens that is configured to project a virtual image of the image so as to overlap part of a field of view of a user, an imaging unit configured to image an eye of the user, a projection distance adjustment unit configured to adjust a projection distance of the virtual image, which is a distance from the eye to the virtual image seen by the user, and a control unit configured to acquire a first distance between a pupil and a lower eyelid of the eye imaged by the imaging unit, and configured to control the projection distance adjustment unit such that the projection distance of the virtual image corresponds to the first distance.
Selected embodiments will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
The configuration of a head-mounted display device (hereinafter referred to as “HMD device”) 100 according to this embodiment will be described with reference to
(HMD Device)
As shown in
(Image Information)
As shown in
As shown in
As shown in
The projection distance adjustment unit 15 is configured to adjust a projection distance D1 (see
As shown in
As shown in
The control unit 11 uses edge detection to acquire the MRD-2 value D4 from the image information of the eye 24 imaged by the infrared CCD 12. As shown in
The MRD-2 value D4 will be described with reference to
The storage unit 17 also stores, as a table, brightness setting values for the virtual image 60 that will be easy for the user 40 to see, in association with pupil diameters. Therefore, the control unit 11 can change the brightness of the virtual image 60 based on a change in the ambient brightness.
(Adjustment of Projection Distance)
The control unit 11 controls the projection distance adjustment unit 15 so that the projection distance D1 corresponds to the acquired MRD-2 value D4. The projection distance adjustment unit 15 is configured to increase the projection distance D1 of the virtual image 60 as the MRD-2 value D4 increases.
The control unit 11 is configured to acquire the gaze distance D2, which is the distance from the eye 24 to the object seen by the user 40, based on the MRD-2 value D4, and to adjust the projection distance D1 so that the gaze distance D2 and the projection distance D1 substantially coincide. As shown in
The positional relation between the gaze distance D2 of the user 40 and the virtual image 60 depends greatly on what kind of mobile object the user 40 is operating, and on the eye point D3 of that individual user (see
(Brightness Adjustment)
The control unit 11 uses edge detection to acquire the size D5 of the pupil 22 and the size D6 of the iris 25 (see
The control unit 11 is configured to perform control to adjust the display brightness of the display unit 14 based on both the size D5 of the pupil 22 and the size D6 of the iris 25 (see
(Display Method for Head-Mounted Display)
Next, the processing to display the virtual image 60 executed by the control unit 11 of the head-mounted display will be described with reference to
In step S1, the user 40 turns on the power to the head-mounted display (the HMD device 100).
In step S2, the infrared CCD 12 starts imaging the pupil 22.
In step S3, the control unit 11 determines whether or not the projection distance D1 of the virtual image 60 in
In step S3, if the control unit 11 determines that the projection distance D1 of the virtual image 60 is not appropriate, in step S4 the control unit 11 controls the projection distance adjustment unit 15 to change the projection distance D1 of the virtual image 60. After this, the processing goes back to step S2, the eye 24 is imaged again, and the processing returns to step S3.
In step S3, if the control unit 11 determines that the projection distance D1 of the virtual image 60 is appropriate, the processing proceeds to step S5.
In step S5, the control unit 11 determines whether or not the brightness of the display unit 14 is appropriate from the information about the pupil 22 of the eye 24 imaged in step S2. Whether or not this is appropriate is determined by whether or not the brightness value corresponding to the pupil diameter in
When the control unit 11 determines in step S5 that the virtual image brightness is not appropriate, the control unit 11 changes the brightness setting of the display unit 14 in step S6. After this, the processing returns to step S2 to capture an image of the eye 24 again, then returns to step S3, and processing up to step S5 is repeated.
If the control unit 11 determines in step S5 that the brightness of the display unit 14 is appropriate, the processing proceeds to step S7.
In step S7, the control unit 11 turns on the display unit 14.
When the power to the HMD device 100 is turned on in step S1, steps S2 to S8 are repeated as needed until the power is turned off in step S8. Also, in step S7, if the display unit 14 is already on, step S7 is skipped. Consequently, when the gaze distance D2 of the user 40 is changed, the virtual image 60 can be projected at the projection distance D1 corresponding to the gaze distance D2 of the user 40.
When the power is turned off in step S8, the power to the HMD device 100 is cut off.
The following effect can be obtained with this embodiment.
In this embodiment, as described above, the HMD device 100 includes the display unit 14 that displays an image, the HMD lens 16 that includes the lens 35 for projecting the virtual image 60 of the image so as to overlap part of the field of view of the user 40, the infrared CCD 12 that images the eye 24 of the user 40, and the projection distance adjustment unit 15 that adjusts the projection distance D1, which is the distance from the eye 24 to the virtual image 60 seen by the user 40, wherein the configuration is such that the MRD-2 value D4 between the pupil 22 and the lower eyelid 23 of the eye 24 imaged by the infrared CCD 12 is acquired, and the projection distance adjustment unit 15 is controlled so that the projection distance D1 corresponds to the acquired MRD-2 value D4. Consequently, the vertical position of the pupil 22 of the user 40 can be ascertained by acquiring the distance between the pupil 22 and the lower eyelid 23 of the user 40 from a captured image of the eye 24, so it can be estimated what the user 40 is looking at. Also, the control unit 11 adjusts the projection distance D1 of the virtual image 60 of the display image to the gaze distance D2, which is the distance to an object seen by the user 40. Consequently, the virtual image 60 of the display image is projected at the gaze distance D2 of the user 40. Accordingly, even if the gaze target of the user 40 is greatly changed, the position of the virtual image 60 of the display image will also be adjusted to the gaze distance D2 of the user 40 based on the change in the gaze target of the user 40. Therefore, it is possible to provide the HMD device 100 with which adjustment of the focal point of the user 40 takes less time when the gaze target of the user 40 is changed to the virtual image 60 of the display image.
In this embodiment, as described above, the control unit 11 is configured to control the projection distance adjustment unit 15 so that the projection distance D1 of the virtual image 60 increases as the MRD-2 value D4 increases. Consequently, when the MRD-2 value D4 of the user 40 is large, it can be estimated that the gaze distance D2 of the user 40 is far away, so if the projection distance D1 of the virtual image 60 of the display image is increased, then it will take less time to adjust the focal point of the user 40 even if the gaze target of the user 40 is changed to the virtual image 60 of the display image.
In this embodiment, as described above, the control unit 11 is configured to acquire the gaze distance D2, which is the distance from the eye 24 to an object seen by the user 40, based on the MRD-2 value D4, and to control the projection distance adjustment unit 15 so as to adjust the projection distance D1 so that the gaze distance D2 and the projection distance D1 substantially coincide. Consequently, acquiring the distance between the pupil 22 and the lower eyelid 23 of the user 40 tells us the position of the pupil 22 of the user 40, which makes it possible to estimate what the user 40 is looking at. As a result, the control unit 11 acquires the gaze distance D2 of the user 40, which is the distance from the eye 24 of the user 40 to an object seen by the user 40, adjusts the projection distance D1 of the projection distance adjustment unit 15, and performs control to make the gaze distance D2 of the user 40 substantially coincide with the projection distance D1 of the virtual image 60. Therefore, since the gaze distance D2 of the user 40 substantially coincides with the projection distance D1 of the virtual image 60 of the display image, there is no need to adjust the focal point of the user 40, so the time it would otherwise take for the user to adjust the focal point can be eliminated.
In this embodiment, as described above, the control unit 11 is configured to control the projection distance adjustment unit 15 so as to adjust the projection distance D1 so that the gaze distance D2 substantially coincides with the projection distance D1 when the MRD-2 value D4 is less than a specific distance, and is configured to control the projection distance adjustment unit 15 so as to adjust the projection distance D1 to infinity, or to fix the projection distance D1 at a specific upper limit distance, when the MRD-2 value D4 is greater than a specific distance. Consequently, when the gaze distance D2 of the user 40 is less than the specific distance, the projection distance D1 is changed so that the position of the virtual image 60 substantially coincides with the gaze distance D2 of the user 40. Therefore, by matching the position of the virtual image 60 of the display image to the gaze distance D2 of the user 40 up to a specific distance, even if the gaze target of the user 40 is changed to the projected virtual image 60 of the display image, the time it would otherwise take to adjust the focal point of the user 40 can be eliminated. Also, when the MRD-2 value D4 is greater than the specific distance, regardless of the gaze distance D2, the projection distance D1 is adjusted to infinity or to the upper limit distance. Thus, it will take less time to adjust the focal point of the user 40 with respect to the virtual image 60 of the display image.
In this embodiment, as described above, the display unit 14 is configured to display the navigation information image 63 including information about the movement route of the mobile body accompanying movement by the mobile body. Consequently, when the user 40 puts on the HMD device 100 and is operating an automobile or motorcycle, it will take less time to adjust the focal point of the user 40 with respect to the navigation information image 63 projected at the gaze distance D2 of the user 40.
In this embodiment, as described above, the control unit 11 is configured to perform control to adjust the display brightness of the display unit 14 based on both the size D5 of the pupil 22 and the size D6 of the iris 25 imaged by the infrared CCD 12. Consequently, it is possible to estimate the ambient brightness, which is the brightness of the surrounding area perceived by the user 40, from the size D5 of the pupil 22. Therefore, when the ambient brightness changes, the brightness of the virtual image 60 projected at the gaze distance D2 of the user 40 can be adjusted, so the user 40 can view the virtual image 60 projected at the gaze distance D2 of the user 40 at a brightness that is easy to see.
In this embodiment, as described above, the projection distance adjustment unit 15 is configured to adjust the projection distance D1 of the virtual image 60 by moving the display unit 14 or the lens 35. Consequently, the projection distance adjustment unit 15 can perform control to make the projection distance D1 of the virtual image 60 substantially coincide with the gaze distance D2 of the user 40 by moving the display unit 14 or the lens 35. Therefore, when the gaze target of the user 40 is changed to the virtual image 60 of the display image, it will take less time to adjust the focal point of the user 40.
As discussed above, the display method for a head-mounted display of this embodiment is provided with a step of displaying an image with the display unit 14, a step of projecting the image with the HMD lens 16 so as to partially overlap the field of view of the user 40, and a step of imaging the eye 24 of the user 40 to acquire the distance between the pupil 22 and the lower eyelid 23, and adjusting the projection distance D1 so that the projection distance D1 corresponds to the acquired distance. Consequently, when the gaze target of the user 40 is changed to the virtual image 60 of the display image, it will take less time to adjust the focal point of the user 40.
The embodiment disclosed herein is just an example in every respect, and should not be interpreted as being limiting in nature. The scope of the invention being indicated by the claims rather than by the above description of the embodiments, all modifications (modification examples) within the meaning and range of equivalency of the claims are included.
In the above embodiment, an example is given in which the HMD device 100 uses a drive means for moving the lens 35, but the present invention is not limited to this. In the present invention, as shown in
In the above embodiment, an example is given in which the HMD device 100 uses the stepping motor 36 as a drive means for moving the lens 35, but the present invention is not limited to this. In the present invention, something other than the stepping motor 36 may be used as the drive means for moving the lens 35. For example, a piezoelectric element, a magnet, or the like may be used for this drive.
In the above embodiment, an example is given in which the HMD device 100 adjusts the projection distance D1 to infinity when the MRD-2 value D4 is greater than the specific distance, but the present invention is not limited to this. In the present invention, as shown in
In the above embodiment, an example is given in which the HMD device 100 adjusts the projection distance D1 to infinity when the MRD-2 value D4 is greater than the specific distance, but the present invention is not limited to this. In the present invention, as shown in
In the above embodiment, an example is given in which the HMD device 100 is installed near the right eye, but the present invention is not limited to this. In the present invention, the HMD device 100 may instead be installed near the left eye.
In the above embodiment, an example is given in which the HMD device 100 displays the virtual image 60 at the upper right, but the present invention is not limited to this. In the present invention, the virtual image 60 may instead be displayed at some other position, such as at the lower right.
In the above embodiment, an example of the HMD device 100 is given in which the MRD-2 value D4 is the distance from the center 22a of the pupil 22 to the lower eyelid 23, but the present invention is not limited to this. In the present invention, the MRD-2 value D4 may instead be the distance from the lower part of the pupil 22 to the lower eyelid 23.
(1) In view of the state of the known technology, a head-mounted display device according to a first aspect of this application comprises: a display unit configured to display an image; a projection unit including a lens that is configured to project a virtual image of the image so as to overlap part of a field of view of a user; an imaging unit configured to image an eye of the user; a projection distance adjustment unit configured to adjust a projection distance of the virtual image, which is a distance from the eye to the virtual image seen by the user; and a control unit configured to acquire a first distance between a pupil and a lower eyelid of the eye imaged by the imaging unit, and configured to control the projection distance adjustment unit such that the projection distance of the virtual image corresponds to the first distance.
As described above, the head-mounted display device according to the first aspect of this application is configured such that an imaging unit is provided for capturing an image of the user's eye, a first distance between the pupil and the lower eyelid of the eye captured by the imaging unit is acquired, and the projection distance adjustment unit is controlled so that the projection distance will correspond to the acquired first distance. Consequently, because the distance between the user's pupil and the lower eyelid is acquired from the captured image of the eye, the position of the user's pupil in the vertical direction is known, so it can be estimated what the user is looking at. Also, the control unit adjusts the projection distance of the virtual image of the display image to the gaze distance, which is the distance to an object seen by the user. Consequently, a virtual image of the display image is projected at the gaze distance of the user. Accordingly, even if the user's gaze target is greatly changed, the position of the virtual image of the display image will be adjusted to the gaze distance of the user based on the change of the user's gaze target. Therefore, it is possible to provide a head-mounted display device with which it takes less time to adjust the user's focal point when the user's gaze target is changed to the virtual image of the display image.
(2) In accordance with a preferred embodiment according to the head-mounted display device mentioned above, the control unit is configured to control the projection distance adjustment unit so as to increase the projection distance of the virtual image as the first distance increases. With this configuration, when the first distance, which is the distance between the user's pupil and lower eyelid, is large, it can be assumed that the user's gaze distance is far, so the projection distance of the virtual image of the display image can be increased, which means that the user's focal point adjustment time can be shortened even if the user's gaze target is changed to the virtual image of the display image.
(3) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to control the projection distance adjustment unit so as to adjust the projection distance of the virtual image to substantially coincide with a second distance, which is a distance from the eye to an object seen by the user and is estimated based on the first distance. With this configuration, because the distance between the user's pupil and the lower eyelid is acquired, the position of the user's pupil is known, so it can be assumed what the user is looking at. Consequently, the control unit can acquire or estimate the user's gaze distance, which is the distance from the user's eye to an object seen by the user, adjust the projection distance of the projection distance adjustment unit, and perform control so that the user's gaze distance substantially coincides with the projection distance to the virtual image. Therefore, since the user's gaze distance and the virtual image of the display image substantially coincide, there is no need to adjust the user's focal point, which means that the time it would have taken to adjust the user's focal point can be saved.
(4) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to control the projection distance adjustment unit so as to adjust the projection distance of the virtual image to substantially coincide with the second distance when the first distance is less than a specific distance, and configured to control the projection distance adjustment unit so as to adjust the projection distance of the virtual image to infinity, or to fix the projection distance of the virtual image at a specific upper limit distance, when the first distance is greater than the specific distance. With this configuration, when the gaze distance of the user is less than the specific distance, the projection distance is changed so that the position of the virtual image substantially coincides with the gaze distance of the user. Therefore, because the position of the virtual image of the display image is aligned with the user's gaze distance up to a specific distance, even if the user's gaze target is changed to the virtual image of the projected display image, no time will be wasted in adjusting the user's focal point. Also, when the first distance is larger than the specific distance, regardless of the gaze distance, by adjusting the projection distance to infinity or to an upper limit distance, the time it takes to adjust the user's focal point with respect to the virtual image of the displayed image can be shortened.
(5) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the display unit is configured to display a navigation information image including information about a movement route of a mobile body accompanying movement by the mobile body. With this configuration, in a state in which the user is wearing the head-mounted display device, when the user is operating an automobile, a motorcycle, or the like, it will take less time to adjust the user's focal point on the navigation information image projected at the user's gaze distance.
(6) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to perform control to adjust a display brightness of the display unit based on both a size of the pupil and a size of an iris of the eye imaged by the imaging unit. With this configuration, it is possible to estimate the peripheral brightness, which is the brightness of the surrounding area perceived by the user, from the size of the pupil. Therefore, when there is a change in peripheral brightness, the brightness of the virtual image projected at the user's gaze distance can be adjusted, which allows the user to check the virtual image projected at the user's gaze distance at a brightness that is easy for the user to see.
(7) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the head-mounted display device further comprises a storage unit configured to store a table in which brightness setting values for the virtual image are associated with pupil diameters.
(8) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to acquire a pupil diameter of the eye based on a ratio between the size of the pupil and the size of the iris of the eye imaged by the imaging unit.
(9) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to adjust the display brightness of the display unit based on a brightness setting value for the virtual image determined based on the pupil diameter of the eye and the table stored by the storage unit.
(10) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the projection distance adjustment unit is configured to adjust the projection distance of the virtual image by moving the display unit or the lens. With this configuration, the projection distance adjustment unit can perform control to substantially match the projection distance of the virtual image to the user's gaze distance by moving the display unit or the lens. Therefore, when the user's gaze target is changed to the virtual image of the display image, it will take less time to adjust the user's focal point.
(11) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the projection distance adjustment unit includes an electronic actuator to move the display unit or the lens along an optical axis of the display unit or the lens.
(12) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to control the projection distance adjustment unit to move the display unit or the lens by a drive amount determined based on a relation between drive amounts of the display unit or the lens and projection distances of the virtual image.
(13) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the head-mounted display device further comprises a housing in which the display unit, the projection unit, the imaging unit, the projection distance adjustment unit and the control unit are at least partially housed.
(14) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the housing is attachable to a helmet worn by the user.
(15) In view of the state of the known technology, a display method for a head-mounted display according to a second aspect of the present application comprises displaying an image on a display unit; projecting a virtual image of the image from a projection unit so as to overlap part of a field of view of a user; acquiring a first distance between a pupil and a lower eyelid of an eye of the user by imaging the eye of the user; and adjusting a projection distance so as to correspond to the first distance.
With the display method for a head-mounted display according to the second aspect, as described above, a step is providing for acquiring the first distance between the pupil and the lower eyelid by imaging the user's eye, and adjusting the projection distance so as to correspond to the acquired first distance. Consequently, just as in the first aspect, it is possible to shorten the time it takes to adjust the user's focal point when the user's gaze target is changed to the virtual image of the display image.
(16) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the head-mounted display device further comprises a storage unit configured to store a table in which projection distances of the virtual image are associated with first distances.
(17) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to acquire the first distance and configured to control the projection distance adjustment unit to change the projection distance of the virtual image based on the first distance and the table stored by the storage unit.
(18) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to control the projection distance adjustment unit so as to increase the projection distance of the virtual image as the first distance increases when the first distance is smaller than a specific distance, and the control unit is configured to control the projection distance adjustment unit so as to decrease the projection distance of the virtual image as the first distance increases when the first distance is greater than the specific distance.
(19) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the control unit is configured to control the projection distance adjustment unit so as to increase the projection distance of the virtual image as the first distance increases when the first distance is smaller than a specific distance, and the control unit is configured to control the projection distance adjustment unit so as to maintain the projection distance of the virtual image when the first distance is greater than the specific distance.
(20) In accordance with a preferred embodiment according to any one of the head-mounted display devices mentioned above, the imaging unit includes an image sensor.
With the present application, there are provided a head-mounted display device and a display method for a head-mounted display with which it takes less time to adjust the user's focal point when the user's gaze target is changed from an object within the field of view to a virtual image of the displayed image.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts unless otherwise stated.
As used herein, the following directional terms “forward”, “rearward”, “front”, “rear”, “up”, “down”, “above”, “below”, “upward”, “downward”, “top”, “bottom”, “side”, “vertical”, “horizontal”, “perpendicular” and “transverse” as well as any other similar directional terms refer to those directions of a user wearing a helmet with an HMD device in an upright position on a horizontal surface. Accordingly, these directional terms, as utilized to describe the HMD device should be interpreted relative to a user wearing a helmet with an HMD device on a horizontal surface. The terms “left” and “right” are used to indicate the “right” when referencing from the right side as viewed from the rear side of the user, and the “left” when referencing from the left side as viewed from the rear side of the user.
The phrase “at least one of” as used in this disclosure means “one or more” of a desired choice. For one example, the phrase “at least one of” as used in this disclosure means “only one single choice” or “both of two choices” if the number of its choices is two. For another example, the phrase “at least one of” as used in this disclosure means “only one single choice” or “any combination of equal to or more than two choices” if the number of its choices is equal to or more than three. Also, the term “and/or” as used in this disclosure means “either one or both of”.
The term “attached” or “attaching”, as used herein, encompasses configurations in which an element is directly secured to another element by affixing the element directly to the other element; configurations in which the element is indirectly secured to the other element by affixing the element to the intermediate member(s) which in turn are affixed to the other element; and configurations in which one element is integral with another element, i.e. one element is essentially part of the other element. This definition also applies to words of similar meaning, for example, “joined”, “connected”, “coupled”, “mounted”, “bonded”, “fixed” and their derivatives. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean an amount of deviation of the modified term such that the end result is not significantly changed.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, unless specifically stated otherwise, the size, shape, location or orientation of the various components can be changed as needed and/or desired so long as the changes do not substantially affect their intended function. Unless specifically stated otherwise, components that are shown directly connected or contacting each other can have intermediate structures disposed between them so long as the changes do not substantially affect their intended function. The functions of one element can be performed by two, and vice versa unless specifically stated otherwise. The structures and functions of one embodiment can be adopted in another embodiment. It is not necessary for all advantages to be present in a particular embodiment at the same time. Every feature which is unique from the prior art, alone or in combination with other features, also should be considered a separate description of further inventions by the applicant, including the structural and/or functional concepts embodied by such feature(s). Thus, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2022-83570 | May 2022 | JP | national |