This invention generally relates to electronic displays and more particularly relates to a wearable electronic display that forms a virtual image.
Head-Mounted Displays (HMDs), which include near eye displays in a form resembling conventional eyeglasses or sunglasses, are being developed for a range of diverse uses, including military, commercial, industrial, fire-fighting, and entertainment applications. For many of these applications, there is particular value in forming a virtual image that can be visually superimposed over the real-world image that lies in the field of view of the HMD user.
In general, HMD optics must meet a number of basic requirements for viewer acceptance, including the following:
Aspects (i)-(iii) relate to the eyebox. The eyebox relates to the volume within which the eye of the observer can comfortably view the image. The size of the eyebox depends in part on the length of the path of the light from the image source to where the image is viewed and image source size, and in part on the divergence of the image source and/or the collimation of the light after its emission by the image source. The desirable size of the eye box depends largely on the quality of viewing experience that is desired from the display.
In addition to optical requirements, HMD designs must also address practical factors such as variable facial geometry, acceptable form factor with expectations of reduced size for wearing comfort, weight, and cost, and ease of use.
A goal for most HMD systems is to make the imaging/relay system as compact as possible; however, when using conventional optics, there are basic limits. The output of the optic system must have a pupil that is large enough to support a reasonably sized virtual image and also allow for some movement of the eye. In a binocular system there is also the issue of varying intraocular distance (IOD) among different users and the need for the output pupil of the optical system to allow for this. Especially for the case of wide FOV of 60 degrees of greater, eye movement, user variations of IOD, and human pupil size may require horizontal output pupil size of 20 mm or greater. Although this may be achieved in very large immersive displays having long paths from the image source to where the image is viewed (e.g. U.S. Pat. No. 6,416,181 to Kessler et al), compact HMD's having short optical paths impose significant challenges on the divergence of the collimated virtual image. As a result, wide FOV compact HMD's often require the use of fast optics which can be bulky, complex, costly, and exhibit spherical and other aberrations.
Wide FOV imaging systems having “monocentric” designs using ball lenses have been described in the prior art for very large systems (as in the previously mentioned U.S. Pat. No. 6,416,181 to Kessler et al). Due to the long projection distances, large systems such as these can easily produce large output pupil sizes in spite of relatively narrow beam divergence. The image projected by the symmetric ball lens optics is in the path between the observer and collimating mirror, preventing the use of additional beam expanding elements. More compact HMD optics that use ball lenses and monocentric optical designs have also been proposed (see, for example, U.S. Pat. No. 6,522,474 B2 to Cobb et al). In those cases, however, ball lenses forming the image located at the focal plane of by a spherical mirror requires a large beam divergence to achieve the large output pupils given the short eye distances. Unfortunately, ball lenses or other monocentric optics used at high diverging angles exhibit significant spherical aberration which degrades the virtual image and ultimately compromises the required image resolution for high definition content.
Compact HMD's using concave mirrors and a “semitransmissive” elements for projecting an images have been described (see, for example, U.S. Pat. No. 5,812,323 to Takahashi, and U.S. Pat. No. 6,487,021 BI to Ophey). In these cases, glass prismatic elements with planar or flat surfaces are able to project an image produced by a display (e.g. OLED, LCOS) coupled into one of the facets of the semitransmissive element. In order to achieve wide FOV's greater than 50 degrees, the image display must be of significant size, e.g. 20 mm or more. Since cost of semiconductor display technology increases dramatically with size, such displays can be very costly. This negatively impacts HMD price. Furthermore, the prism-like geometries of the semitransmissive elements complicate their use in augmented reality configurations, since their curved or angled surfaces refract light from the direct “see-through” or ambient environment. Therefore, in order for these systems to be used in augmented reality modes, either corrective optics or digital imagers must be used, increasing cost, size, and weight.
For these reasons, conventional HMD designs fail to provide economical solutions to simultaneously achieving high FOV, very large output pupils, means to simply achieve augmented reality and digital high definition content, with compact geometries for wearability.
It is an object of the present disclosure to advance the art of virtual image presentation using compact head-mounted devices. Advantageously, embodiments of the present disclosure provide an enlarged pupil size presenting high resolution wide FOV content to viewers having wide range of IOD's with minimal or no optical adjustment required.
These and other aspects, objects, features and advantages of the present invention will be more clearly understood and appreciated from a review of the following detailed description of the preferred embodiments and appended claims, and by reference to the accompanying drawings.
According to an aspect of the present disclosure, there is provided a head-mounted imaging apparatus that comprises:
While the specification concludes with claims particularly pointing out and distinctly claiming the subject matter of the present invention, it is believed that the invention will be better understood from the following description when taken in conjunction with the accompanying drawings.
The present description is directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.
Where they are used herein, the terms “first”, “second”, and so on, do not necessarily denote any ordinal, sequential, or priority relation, but are simply used to more clearly distinguish one element or set of elements from another, unless specified otherwise. The terms “top” and “bottom” do not necessarily designate spatial position but provide relative information about a structure, such as to distinguish opposing surfaces of a planar (flat) waveguide.
In the context of the present disclosure, the terms “viewer”, “operator”, “observer”, and “user” are considered to be equivalent and refer to the person who wears the HMD viewing device.
As used herein, the term “energizable” relates to a device or set of components that perform an indicated function upon receiving power and, optionally, upon receiving an enabling signal.
The term “actuable” has its conventional meaning, relating to a device or component that is capable of effecting an action in response to a stimulus, such as in response to an electrical signal, for example.
The term “set”, as used herein, refers to a non-empty set, as the concept of a collection of elements or members of a set is widely understood in elementary mathematics. The term “subset”, unless otherwise explicitly stated, is used herein to refer to a non-empty proper subset, that is, to a subset of the larger set, having one or more members. For a set S, a subset may comprise the complete set S. A “proper subset” of set S, however, is strictly contained in set S and excludes at least one member of set S.
In the context of the present disclosure, the term “oblique” means at an angle that is not an integer multiple of 90 degrees. Two lines, linear structures, or planes, for example, are considered to be oblique with respect to each other if they diverge from or converge toward each other at an angle that is at least about 5 degrees or more away from parallel, or at least about 5 degrees or more away from orthogonal.
In the context of the present disclosure, the term “coupled” is intended to indicate a physical association, connection, relation, or linking, between two or more components, such that the disposition of one component affects the spatial disposition of a component to which it is coupled. For mechanical coupling, two components need not be in direct contact, but can be linked through one or more intermediary components. A component for optical coupling allows light energy to be input to, or output from, an optical apparatus. The terms “beam expander” and “pupil expander” are considered to be synonymous, used interchangeably herein.
As an alternative to real image projection, an optical system can produce a virtual image display. In contrast to methods for forming a real image, a virtual image is not formed on a display surface. That is, if a display surface were positioned at the perceived location of a virtual image, no image would be formed on that surface. A virtual image display has a number of inherent advantages for an augmented reality display. For example, the apparent size of a virtual image is not limited by the size or location of a display surface. Additionally, the source object for a virtual image may be small; a magnifying glass, as a simple example, provides a virtual image of its object. In comparison with systems that project a real image, a more realistic viewing experience can be provided by forming a virtual image that appears to be some distance away. Providing a virtual image also obviates any need to compensate for screen artifacts, as may be necessary when projecting a real image.
Embodiments of the present disclosure provide an optical system for providing a virtual image with an enlarged view pupil.
The image space f/# of a projector depends on the distance to the image divided by the diameter of the system stop (approximated by the aperture size of the last optic). A projector at greater than f/2.6 over a reasonable distance would be too bulky for an HMD system. A more compact projector with an exit aperture diameter of 8 mm or less projecting at a >f/3.5 distance does not properly fill the aperture. The challenge for system optics is to provide an optical solution that provides an increased f/# without appreciably adding to the bulk of the optical system.
The schematic side view of
With respect to the view of
The lenslet array can be provided on a glass substrate or on a plastic substrate. Curvature of the lenslet array can be provided by permanently bending the array or by mounting the array in a frame that causes the array to bend to an appropriate shape. The projector can use a solid-state light source, such as a light-emitting diode (LED) coupled with one or more light modulating display panels such as liquid crystal on silicon (LCOS) or digital light processor (DLP), for example. Light-conditioning optics 40 can include lenses, mirrors, prism-based waveguides, or other devices to direct, shape, and modify the image-bearing light from the projector 20 to lenslet array 30. Image field or Petzval curvature can be achieved with proper design of all elements of light conditioning optics 40.
Embodiments of the present disclosure allow the use of a small projector device for displaying a virtual image to the observer with a large eye box.
The invention has been described in detail with particular reference to a presently preferred embodiment, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims, and all changes that come within the meaning and range of equivalents thereof are intended to be embraced therein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/012376 | 1/6/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/112128 | 7/14/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5483307 | Anderson | Jan 1996 | A |
5701132 | Kollin et al. | Dec 1997 | A |
5757544 | Tabata et al. | May 1998 | A |
5812323 | Takahashi | Sep 1998 | A |
5984477 | Weissman et al. | Nov 1999 | A |
6369952 | Rallison | Apr 2002 | B1 |
6416181 | Kessler et al. | Jul 2002 | B1 |
6487021 | Ophey | Nov 2002 | B1 |
6522474 | Cobb et al. | Feb 2003 | B2 |
20050007673 | Chaoulov et al. | Jan 2005 | A1 |
20050013005 | Rogers | Jan 2005 | A1 |
20070217018 | Fredriksson | Sep 2007 | A1 |
20120105310 | Sverdrup | May 2012 | A1 |
20120154920 | Anderson | Jun 2012 | A1 |
20140204003 | Deering et al. | Jul 2014 | A1 |
20150009550 | Misago et al. | Jan 2015 | A1 |
20170235154 | Uchida | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1894617 | Jan 2007 | CN |
1798587 | Jun 2007 | EP |
2194418 | Jun 2010 | EP |
2858068 | Jan 2005 | FR |
H08190072 | Jul 1996 | JP |
H10301055 | Nov 1998 | JP |
2004101197 | Apr 2004 | JP |
2010145745 | Jul 2010 | JP |
2010145745 | Jul 2010 | JP |
2010145922 | Jul 2010 | JP |
2014026088 | Feb 2014 | JP |
1020130116547 | Oct 2013 | KR |
2005062105 | Jul 2005 | WO |
2009066408 | May 2009 | WO |
2013146096 | Oct 2013 | WO |
Entry |
---|
International Search Report and Written Opinion from corresponding International Application No. PCT/US2016/012376. |
Chinese Patent Office, First Search Report (with English translation), CN Application No. 201680004239.3, dated Jun. 21, 2019. |
European Patent Office, Supplementary European Search Report, EP Application No. 16 73 5371, dated Jul. 26, 2018. |
Japanese Patent Office, Search Report, JP Application No. 2017-531501, dated Oct. 16, 2019. |
Number | Date | Country | |
---|---|---|---|
20180003977 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62100355 | Jan 2015 | US |