The present invention relates to a head restraint position adjusting device and a head restraint position adjusting method which adjust a position of a head restraint attached to a seat of a vehicle like an automobile, and more specifically, a head restraint position adjusting device and a head restraint position adjusting method which automatically adjust a position of the head restraint to a comfortable position.
Conventionally, there are devices which adjust a position of a head restraint attached to a seat of a vehicle like an automobile. That is, patent literature 1 discloses a vehicular head restraint device that comprises an ECU which compares an amount of change in a capacitance detected by a capacitance sensor with a threshold set beforehand when a front portion of a head restraint is moved in a direction of fully-open position, and which determines that the front portion of the head restraint is moved closer to a head of a driver/passenger (human body) when the amount of change is greater than the threshold.
The ECU detects a change in capacitance per unit displacement of the capacitance sensor at a predetermined timing, changes the threshold based on a detection result, changes the threshold at a regular time interval, or changes the threshold based on a drive voltage for a motor. Accordingly, the ECU precisely detect that the front portion of the head restraint is moved close to the head of the driver/passenger.
Patent literature 2 discloses a device for adjusting a head restraint. Such a device comprises a sensor including two capacitor plates which are for detecting a position of a head of a driver/passenger, and which are arranged inside the head restraint. The two capacitor plates are arranged in the vertical direction inside the head restraint.
As far as a sensor signal (detection signal) from one capacitor plate increases while at the same a sensor signal from another capacitor plate decreases, a position of the head restraint in height is adjusted in such a manner as to be changed from a home position where the head restraint is retracted.
Patent literature 3 discloses a head restraint driving device that comprises support means for movably supporting a head restraint, drive means for reciprocatingly driving the head restraint, plural detection electrodes which are spaced apart one another inside a portion of an external cover of the head restraint supporting a head, capacitance detection means for detecting a capacitance formed by the plural detection electrodes relative to a common potential line, and position control means for controlling the drive means to move the head restraint in a direction in which the capacitance is balanced.
The head restraint is driven in such a way that the head is located at a center of the plural detection electrodes, in other words, the head restraint is moved in accordance with a motion of the head, and then a position of the head restraint is automatically adjusted. Patent literature 4 discloses a head restraint adjusting device that comprises a head restraint movable in the vertical direction by a motor and arranged on the top of a seat back (backrest), a head detection sensor which detects a position of a head of a user (driver/passenger) sitting down a seat, and a CPU which adjust a height of the head restraint in accordance with a position of the head of the user sitting down the seat based on a signal from the head detection sensor.
When the CPU detects that an ignition switch is turned on, a seating detection sensor detects that the user is seated, and a seatbelt buckle switch detects that a seat belt is fastened, an operation of adjusting the head restraint is started.
Patent Literature 1: JP2007-30676A
Patent Literature 2: JP2000-309242A
Patent Literature 3: JPS64-11512A
Patent Literature 4: JPH11-180200A
According to the vehicular head restraint device disclosed in patent literature 1 or the device for adjusting the head restraint disclosed in patent literature 2, however, a capacitance between the head and the detection electrode is measured and the measurement result is used for adjusting the position using one capacitance sensor in the case of the former device and two or three capacitor plates in the case of the latter device.
According to the head restraint driving device disclosed in patent literature 3 or the head restraint adjusting device disclosed in patent literature 4, the position of the head restraint is adjusted based on a capacitance between the head restraint and a roof or the like of the vehicle in the case of the former device, and based on an adjustment result of each part of the seat in the case of the latter device.
Accordingly, it is necessary to detect a center of the head while comparing an output balance of a sensor and an output peak of each detection electrode. This kind of detection fashion requires a detection operation of moving the head restraint having the detection electrode thereinside from bottom to top in the height direction to scan such a movement, and of specifying a position where an output of the sensor is balanced or of detecting an output peak of each detection electrode. Therefore, it is difficult to carry out position adjustment highly precisely within a short time.
In particular, according to the foregoing detection fashion, it is not considered that a factor other than a shape of the head may cause an output fluctuation as the head moves while the position thereof is being detected. Accordingly, it takes a certain amount of adjustment time to carry out position adjustment highly precisely, so that position adjustment cannot be carried out within a short time.
As an example,
As a result, as is clear from
The present invention has been made in view of the foregoing circumstance, and it is an object of the present invention to provide a head restraint position adjusting device and a head restraint position adjusting method which can automatically adjust a position of a head restraint highly precisely within a short time.
A head restraint position adjusting device according to an aspect of the present invention comprises: a plurality of detection electrodes arranged side by side in a line along a height direction of a head restraint attached to a seat of a vehicle, and each configured to detect a capacitance between a head of a human body sitting down the seat and the head restraint; a detection circuit configured to detect a reference position of the head in the height direction based on detection signals from the plurality of respective detection electrodes; and position adjusting means for adjusting a position of the head restraint relative to the seat with reference to the reference position of the head in the height direction in accordance with a detection result of the detection circuit, and the plurality of detection electrodes being provided by what corresponds to a number required for detecting the reference position of the head in the height direction with the head restraint being at a standstill.
The head restraint position adjusting device of the present invention having the foregoing configuration can automatically and appropriately adjust a position of the head restraint relative to the seat with reference to the reference position of the head in the height direction. Accordingly, it is possible to adjust a position of the head restraint highly precisely within a short time. Moreover, because a position of the head restraint relative to the seat is automatically adjusted, it is possible to suppress any accident like cervical spine injury of a driver/passenger when the vehicle collides under a condition in which a position of the head restraint is not adjusted.
The detection circuit may detect, for example, an estimated center position of the head in the height direction as the reference position, and the position adjusting means may adjust a position of the head restraint relative to the seat with reference to the estimated center position of the head in the height direction. This enables appropriate and automatic adjustment of a position of the head restraint relative to the seat with reference to the estimated center position of the head in the height direction.
The detection circuit may detect, as the reference position, the detection electrode having a detection signal with the highest output among the plurality of detection electrodes, and the position adjusting means may adjust a position of the head restraint relative to the seat so that the detection electrode having the detection signal with the highest output and detected by the detection circuit is located above a center position of the head restraint in the height direction. This enables appropriate and automatic adjustment of a position of the head restraint relative to the seat so that the detected detection electrode having the detection signal with the highest output is located above the center position of the head restraint in the height direction.
The plurality of detection electrodes may be each formed in a rectangular strip having a long side arranged in a width direction intersecting with the height direction of the head restraint at a front face side of the head restraint.
The plurality of detection electrodes may be arranged across the entire area of the head restraint in the height direction at an equal interval.
The plurality of detection electrodes may be arranged in the height direction of the head restraint at an equal interval for example, and a detection electrode group comprised of the plurality of detection electrodes may be so arranged as to be shifted as a whole in the height direction so that the detection electrode arranged in the vicinity of a center of the detection electrode group in the height direction is detected by the detection circuit as the detection electrode having a detection signal with the highest output.
The plurality of detection electrodes may be each formed in a rectangular strip having a long side in a width direction intersecting with the height direction of the head restraint along a front face thereof, and are arranged on the front face side of the head restraint.
At least five detection electrodes may be provided on a front face side of the head restraint.
The detection circuit may comprise: a plurality of capacitance detection circuits connected to the plurality of respective detection electrodes one by one, and each configured to output information indicating a capacitance detected by each detection electrode; and an arithmetic processing circuit configured to compare values of capacitances based on plural pieces of information from the plurality of respective capacitance detection circuits, calculate the reference position or detect the detection electrode having the largest detected capacitance, and output drive information for the head restraint to the position adjusting means in accordance with calculation result information or a detection result.
For example, the detection circuit may comprise: a time-sharing circuit connected to the plurality of detection electrodes; a capacitance detection circuit configured to output information indicating a capacitance detected by each of the plurality of detection electrodes through the time-sharing circuit in a different time; and an arithmetic processing circuit configured to compare values of capacitance based on plural pieces of information from the capacitance detection circuit, calculate the reference position or detect the detection electrode having the largest detected capacitance, and output drive information for the head restraint to the position adjusting means in accordance with calculation result information or a detection result.
A head restraint position adjusting method according to another aspect of the present invention comprises: detecting a capacitance between a head of a human body sitting down a seat of a vehicle and a head restraint attached to the seat through a plurality of detection electrodes arranged side by side in a line in the head restraint along a height direction of the head restraint, the plurality of detection electrodes being provided by what corresponds to a number required for detecting a reference position of the head of the human body sitting down the seat in the height direction with the head restraint being at a standstill; detecting the reference position of the head in the height direction based on detection signals each indicating a detected capacitance and output by each of the plurality of detection electrodes; and adjusting a position of the head restraint relative to the seat with reference to the detected reference position of the head in the height direction.
The head restraint position adjusting device of the present invention having the foregoing configuration can automatically and appropriately adjust a position of the head restraint from a standstill condition relative to the seat with reference to the reference position of the head in the height direction, thereby adjusting a position of the head restraint highly precisely within a short time. Moreover, because a position of the head restraint relative to the seat is automatically adjusted, it is possible to suppress any accident like cervical spine injury of a driver/passenger when the vehicle collides under a condition in which a position of the head restraint is not adjusted.
The head restraint position adjusting method may further comprise: detecting an estimated center position of the head in the height direction as the reference position based on, for example the detection signals; and adjusting a position of the head restraint relative to the seat with reference to the detected estimated center position of the head in the height direction.
The head restraint position adjusting method may further comprise: detecting the detection electrode having the detection signal with the highest output among the plurality of detection electrodes based on, for example, the detection signals; and adjusting a position of the head restraint relative to the seat so that the detected detection electrode having the detection signal with the highest output is located above a center position of the head restraint in the height direction.
According to the present invention, it is possible to provide a head restraint position adjusting device and a head restraint position adjusting method which appropriately and automatically adjust a position of the head restraint relative to the seat from a standstill condition with reference to the reference position of the head in the height direction, thereby adjusting a position of the head restraint highly precisely within a short time.
An explanation will be given of a preferred embodiment for a head restraint position adjusting device and a head restraint position adjusting method of the present invention in detail with reference to the accompanying drawings.
As shown in
The capacitance sensor unit 10 comprises plural detection electrodes 11 to 15 formed on one face of a board 19, and a detection circuit 20 formed on another face of the board 19, and detects a head 49 of a human body 48 sitting down the seat 40. That is, the capacitance sensor unit 10 detects a capacitance between the head 49 of the human body 48 and the head restraint 43 (more specifically, detection electrodes 11 to 15).
The board 19 comprises, for example, a flexible printed board, a rigid board, or a rigid-flexible board. The plural detection electrodes 11 to 15 are formed of copper, a copper alloy, or aluminum formed and patterned on the board 19 formed of an insulating body such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), or an epoxy resin.
The plural detection electrodes 11 to 15 are each formed in a rectangular strip having a long side in a width direction intersecting with the height direction of the head restraint 43 (width direction intersecting with the height direction along the front face of the head restraint 43) at the front face side of the head restraint 43, and are arranged side by side in a line in such a way that the loner sides of the respective detection electrodes 11 to 15 are line up along the height direction of the head restraint 43.
For example, electrode number 1 to 5 are allocated to the plural detection electrodes 11 to 15. There are five detection electrodes 11 to 15 in the embodiment, but for example, equal to five or greater detection electrodes can be provided by what corresponds to the number necessary to detect a reference position of the head 49 of the human body 48 sitting down the seat 40 in the height direction with the head restraint 43 being at a standstill.
The detection circuit 20 detects an estimated center position of the head 49 in the height direction as, for example, a reference position in the embodiment based on detection signals from the plural detection electrodes 11 to 15. As shown in
The plural capacitance detection circuits 21 to 25 each generates a pulse signal having a duty ratio changing in accordance with a capacitance between each detection electrode 11 to 15 and the head 49, and outputs such a signal having undergone smoothing as a detection signal. The arithmetic processing circuit 28 comprises a CPU, a RAM, a ROM, and the like, compares values of capacitance based on detection signals output by the individual capacitance detection circuits 21 to 25, detects an estimated center position of the head 49 in the height direction, and outputs a control signal (drive information) as information on the basis of a calculation result to the drive motor unit 30 which changes a position of the head restraint 43.
As shown in
The timer circuit 102 comprises, for example, two comparators 201, 202, an RS flip-flop circuit (hereinafter, “RS-FF”) 203 having a reset terminal R and a set terminal S into which outputs of the comparators 201, 202 are respectively input, a buffer 204 which outputs an output DIS of the RS-FF 203 to the LPF 103, and a transistor 205 which is turned on/off by the output DIS from the RS-FF 203.
The comparator 202 compares the trigger signal TG shown in
The output Q turns off the transistor 205 as the discharge signal DIS, and charges between the detection electrode 11 (12 to 15) and a ground at a speed defined by a time constant set by the capacitance C of each detection electrode 11 (12 to 15) and a resistor R4 connected between the input terminal and a power-supply line. Accordingly, a potential of an input signal Vin increases at a speed defined by the capacitance C.
If the input signal Vin becomes larger than a threshold Vth1 defined by the resistors R1, R2, and R3, an output of the comparator 201 is inverted, and an output of the RS-FF 203 is also inverted. As a result, the transistor 205 turns on, and a charge trapped in the detection electrode 11 (12 to 15) is discharged through the transistor 205.
Therefore, as shown in
In the embodiment, the drive motor unit 30 comprises a motor drive circuit which controls a non-illustrated drive motor based on a control signal from the arithmetic processing circuit 28 that has calculated an estimated center position of the head 49 in the height direction based on the detection signal Vout from each capacitance detection circuit 21 to 25, and which changes a position of the head restraint 43 relative to the backrest 41 of the seat 40 with reference to the estimated center position of the head 49 in the height direction, and the drive motor which actually changes the position of the head restraint 43 under the control of the motor drive circuit.
In the first embodiment, the drive motor drives the head restraint 43 freely movable in the vertical direction (height direction) through a support axis 43a, but in addition, may drive the head restraint 43 freely movable right and left and back and forth which are directions intersecting with the vertical direction. Note that the estimated center position of the head 49 in the height direction which is the reference position is not always consistent with the center position of the head 49, so that the estimated center position is acquired as follow.
That is, according to the head restraint position adjusting device 100 having the foregoing configuration, for example, the capacitance C between each detection electrode 11 to 15 of the capacitance sensor unit 10 and the head 49 is detected in an initial condition (a condition in which the head restraint 43 is positioned at the most closest position to the backrest 41), and the detection circuits 20 detects and compares peaks of respective such outputs one another, thereby acquiring the estimated center position of the head 49 in the height direction.
According to the tests carried out by the applicant of the present invention, in this case, an output (V) of each detection electrode 11 to 15 (electrode number 1 to 5) is as shown in
Therefore, the head restraint position adjusting device 100 of the first embodiment can acquire an estimated center position of the head 49 in the height direction without moving the head restraint 43 in a movable range between top and bottom from an initial condition, and can arrange the head restraint 43 at the best position relative to the head 49 through just one moving operation of the head restraint 43 regarding a position adjustment. Accordingly, it is possible to suppress any accident like cervical spine injury of the human body 48 when a vehicle collides under a condition in which a position of the head restraint 43 is not adjusted.
Note that the capacitance sensor unit 10 and the drive motor unit 30 in the head restraint position adjusting device 100 are electrically connected together via the harness 29 in the embodiment, but the drive motor unit 30 may be remotely-controlled via a wireless device or the like. Moreover, the drive motor unit 30 may be built together with the capacitance sensor unit 10, and may be arranged in the head restraint 43.
The detection circuit 20 may profile the shape of the head 49 using the arithmetic processing circuit 28, calculate an estimated center position from a profiling result, and move the head restraint 43 based on this calculation result, in addition to just moving the center position of the head restraint 43 to the estimated center position. Further, the detection circuit 20 may conform an arbitrary position of the head restraint 43 to the estimated center position based on, for example, profile information on the human body 48 (containing information on the shape of the head 49) or information on the shape of the head restraint 43 itself stored beforehand.
As shown in
According to such a configuration of the detection circuit 20, it becomes possible to scan capacitances by individual detection electrodes 11 to 15 in turns through the time-sharing circuit 26, and to acquire the estimated center position of the head 49 in the height direction as a reference position based on a scanning result. Therefore, using the detection circuit 20 with such a configuration also makes it possible to adjust a position of the head restraint 43 highly precisely within a short time.
Next, an explanation will be given of a second embodiment of the present invention.
As shown in
Like the first embodiment, electrode number 1 to 5 are allocated to the plural detection electrodes 11 to 15, and there are five detection electrodes in the second embodiment. Unlike the first embodiment, however, the detection electrodes are arranged by what corresponds to a fashion and a number that a detection electrode having a detected detection signal with the highest output is arranged above a center position P′ of the head restraint 43 in the height direction, and for example, equal to five or greater detection electrodes are provided.
The detection circuit 20 detects a detection electrode having a detection signal with the highest output among the detection electrodes 11 to 15 based on detection signals from respective plural detection electrodes 11 to 15. The detection circuit 20 has the same configuration as that explained with reference to
However, the difference is that the arithmetic processing circuit 28 compares values of capacitance indicated by information output by the respective capacitance detection circuits 21 to 25, detects a detection electrode having the largest detected capacitance, and outputs drive information on the head restraint 43 to the motor drive circuit of the drive motor unit 30 in accordance with the detection result. The configuration of each capacitance detection circuit 21 (22 to 25) and the operation waveform thereof are same as those explained with reference to
The drive motor unit 30 comprises a motor drive circuit which controls a non-illustrated drive motor based on a control signal from the arithmetic processing circuit 28 that has detected a detection electrode (hereinafter, “corresponded detection electrode”) having a detection signal with the highest (largest) output among detection signals Vout from the capacitance detection circuits 21 to 25, and which causes a non-illustrated drive motor to change a position of the head restraint 43 relative to the backrest 41 of the seat 40 in such a way that the corresponded detection electrode positions above the center position P′ of the head restraint 43 in the height direction, and a drive motor like the first embodiment.
As shown in
According to the head restraint position adjusting device 100 having the foregoing configuration, a capacitance C between each detection electrode 11 to 15 of the capacitance sensor unit 10 and the head 49 is detected in an initial condition like the first embodiment, and the detection circuit 20 detects and compares peaks of respective outputs one another, thereby detecting a corresponded detection electrode having the highest output. A position of the corresponded detection electrode is set to be a reference position, and position adjustment is carried out so that the reference position becomes an appropriate position of the head restraint 43 relative to the head 49 when the reference position is located above the center position P′ of the head rest 43 in the height direction.
An explanation will be given of a comparative example with respect to the head restraint position adjusting device 100 of the second embodiment. Note that an explanation will be given of an output when the detection electrodes 11 to 15 are arranged across the entire area of the head restraint 43 in the height direction at an equal interval. A center position P of the head 49 is set to be a center of a line connecting a tail of an eye and a center of an ear.
According to the tests carried out by the applicant of the present invention, as shown in
That is, an output of the detection electrode 13 having the electrode number 3 exceeds 0.75 V and is highest, and outputs of the detection electrodes 11, 15 having the electrode number 1, 5, respectively, are 0.25 V or so and are lowest. In this case, because the center position P of the head 49 is not coincident with the center position P′ of the head restraint 43 in the horizontal direction, it is difficult to say that the position of the head restraint 43 is an appropriate position.
Conversely, as shown in
An output of the detection electrode 14 having the electrode number 4 exceeds 0.75 V and is highest, and, an output of the detection electrode 11 having the electrode number 1 is below 0.25 V and is lowest. At this time, because the center positions P, P′ are consistent in the horizontal direction, it is possible to presume that the head restraint 43 is at an appropriate position.
The detection circuit 20 determines that a position of the head restraint 43 relative to the seat 40 (backrest 41) in this condition is appropriate, and outputs a control signal to the drive motor 30 for a position adjustment.
Therefore, the head restraint position adjusting device 100 of the second embodiment can set the center position P′ of the head restraint 43 in the height direction relative to the center position P of the head 49 without performing scanning by moving the head restraint 43 in a movable range from top to bottom from an initial condition for example. Accordingly, it is possible to arrange the head restraint 43 at the best position relative to the head 49 by just one moving operation of the head restraint 43 relating to a position adjustment in one direction.
Therefore, it becomes possible to adjust a position of the head restraint 43 highly precisely within a short time. Moreover, because the head restraint 43 is automatically moved to the best position, it is possible to suppress any accident like cervical spine injury of the human body 48 when a vehicle collides under a condition in which a position of the head restraint 43 is not adjusted.
The detection circuit 20 may profile the shape of the head 49 of a driver/passenger (human body) of a vehicle using the arithmetic processing circuit 28, store an appropriate position based on the profiling result beforehand, read out the stored profile when position adjustment is started, and move the head restraint 43 in accordance with each driver/passenger, in addition to merely detecting a detection electrode having a detection electrode with the highest output and moving the head restraint 43.
Furthermore, the detection circuit 20 may move an arbitrary position of the head restraint 43 in the height direction including the center position P′ to a position coincident with the center position P of the head 49 in the horizontal direction on the basis of profile information (including information on the shape of the head 49) on the human body 48 preset at the time of shipping of the head restraint position adjusting device 100 from a factory, information on the shape (size, surface contour and the like) of the head restraint 43, and the like.
Regarding a structure that the detection circuit 20 has one time-sharing circuit 26, a capacitance detection circuit 27, and an arithmetic processing circuit 28, it is same as one explained in the first embodiment with reference to
As shown in
Accordingly, as shown in
That is, an output of the detection electrode 13 having the electrode number 3 exceeds 0.75 V and is highest, and outputs of the detection electrodes 11, 15 having the electrode number 1, 5, respectively, are 0.25 V or so and are lowest. At this time, because the center positions P, P′ are coincident with each other in the horizontal direction, like the foregoing example in the second embodiment, it is possible to presume that the head restraint 43 is at an appropriate position, and the detection circuit 20 determines that a position of the head restraint 43 relative to the seat 40 (backrest 41) in this condition is appropriate, and outputs a control signal to the drive motor 30 for a position adjustment.
As explained above, according to the head restraint position adjusting device of the second embodiment, it is possible to set the center position P′ in the height direction relative to the center position P of the head 49 without performing scanning by moving the head restraint 43 in a movable range from top to bottom from an initial condition for example, and to arrange the head restraint 43 at the best position relative to the head 49 by just one moving operation of the head restraint 43 relating to a position adjustment in one direction, so that it becomes possible to adjust a position of the head restraint 43 highly precisely within a short time. Moreover, because the head restraint 43 is automatically moved to the best position, it is possible to suppress any accident like cervical spine injury of the human body 48 when a vehicle collides under a condition in which a position of the head restraint 43 is not adjusted.
Although the explanation has been given of the case where the head restraint position adjusting device is applied to the head restraint 43 of the seat 40 of a vehicle in the first and second embodiments, the head restraint position adjusting device 100 can be applied to, for example, a set for an amusement attraction and a seat for theatrical appreciation which can change a position of a head restraint.
The present invention is useful for carrying out position adjustment highly precisely within a short time by a device for a seat of a vehicle or the like which adjusts a position of a head restraint
Number | Date | Country | Kind |
---|---|---|---|
2007-113821 | Apr 2007 | JP | national |
2007-331510 | Dec 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/057902 | 4/24/2008 | WO | 00 | 1/12/2010 |