Embodiment described herein relate generally to a head-separated camera device in which an imaging unit and a control unit for controlling the imaging unit are separate from each other.
As is known well, a head-separated camera device is configured such that an imaging unit including a solid-state imaging element such as a complementary metal-oxide semiconductor (CMOS) sensor, and a control unit are constituted as separate members. The control unit supplies the solid-state imaging element of the imaging unit with a drive control signal and obtains a video signal by performing a signal processing on an output of the solid-state imaging element. The imaging unit and the control unit are connected through a cable which bundles plural signal lines.
In general, head-separated camera devices are developed for the purpose of, for example, inspecting narrow areas where people cannot enter in. Therefore, imaging elements thereof are demanded to be downsized as much as possible. Further, a cable which is used to connect the imaging unit and the control unit to each other is demanded to be long.
Jpn. Pat. Appln. KOKAI Publication No. 2005-311535 discloses a technique for receiving imaging data without a delay by a control unit in an imaging device comprising a pulse-delay detection unit and a phase-delay detection unit. The pulse-delay detection unit detects a delay amount from a time point when a control unit sends a control signal to a camera head unit to when the control signal returns to the control unit through the camera head unit. The phase-delay detection unit detects a phase difference between a clock signal generated by a timing generator provided in the camera head unit, and an imaging data signal based on a CCD.
In general, according to one embodiment, a head-separated camera device includes an imaging unit, a control unit configured to control the imaging unit, and a connection unit configured to connect the imaging unit with the control unit. The imaging unit includes a sensor configured to capture an image to provide a video signal, a synchronization signal, and a clock signal, a superimposition module configured to superimpose, on serial data, the video signal, the synchronization signal, and the clock signal, the serial data serving to reproduce the image captured by the sensor, and a transmitter configured to transmit the serial data to the control unit. The control unit includes a receiver configured to receive the serial data, a separation module configured to separate the serial data received by the receiver, into the video signal, the synchronization signal, and the clock signal, a video processor configured to perform a video processing by using the video signal, the synchronization signal, and the clock signal, and a timing signal generator configured to output, to the sensor, a sensor-driving synchronization signal and a sensor-driving clock signal.
According to an embodiment,
The imaging unit 10 comprises a sensor 101, a paralell/serial converter 102 and a low voltage differential signaling (LVDS) receiver 103. The control unit 20 comprises a micro processing unit (MPU) 201, a first clock oscilator 202, a second clock oscilator 203, a switching module 204, a timing generator (TG: timining signal generator) 205, a LVDS transmitter 206, an equalizer 207, a serial/parallel converter 208, a video signal processor 209, a video output module 210, and a switching module 211. The MPU 201 receives operation information externaly supplied from a user, and controls the imaging unit 10 and respective units constituting the control unit 20 so as to reflect the operation information. Broken lines in
Operation of respective units will now be described along signal flow. At frist, the first clock oscillator 202 oscillates a clock signal having a predetermined pulse characteristic. The second clock oscilator 203 oscillates a clock signal having a different pulse characteristic from that of the pulse characteristic of the first clock oscillator 202. Under control of the MPU 201, the switching module 204 supplies the TG 205 with a first clock signal (CLK1), by switching a clock signal oscillated by the first clock oscilator 202 and a clock signal oscillated by the second clock oscilator 203 from each other, as the CLK1. At least one of the first clock oscilator 202 or the second clock oscilator 203 may be provided in the control unit 20. The number of the clock oscilator may be increased depending on types of video outputs.
The TG 205 generates a drive control timing for the sensor 101 on the basis of the CLK1. The TG 205 generates a horizontal synchronization signal (HS), a vertical synchronization signal (VS), and a second clock signal (CLK2) for driving the sensor 101. Although the TG 205 is provided in the control unit 20 in view of downsizing of the imaging unit 10, the TG 205 may be provided in the imaging unit 10.
Under control of the MPU 201, the LVDS transmitter 206 supplies the LVDS receiver 102 of the imaging unit 10 with the HS, VS, and CLK2 through a control signal cable 301. Although the LVDS transmitter 206 and LVDS receiver 102 are used to transfer the HS, VS, and CLK2 at a high speed, any other interface may be used instead.
Under control of the MPU 201, the LVDS receiver 102 supplises the sensor 101 with the HS, VS, and CLK2. The sensor 101 includes, for example, a digital sensor such as a CMOS sensor. Based on the HS, VS, and CLK2, the sensor 101 converts an optical image formed on a light receiving surface of the sensor 101 into a corresponding video signal (VIDEO), a horizontal video synchronization signal (HD), and a third clock signal (CLK3) to recover optical image, and supplies the signals. The VIDEO, HD, and VD are sensor output signals.
Under control of the MPU 201, the parallel/serial converter 103 mixes and converts the VIDEO, HD, VD, and CLK3 into superimposed serial data. The parallel/serial converter 103 simultaneously transmits the CLK3 and the sensor output signals, with the sensor output signals embedded in the CLK3. The parallel/serial converter 103 supplies the equalizer 207 of the control unit 20 with the serial data through the data signal cable 302. The parallel/serial converter 103 also functions as a transmission module. Under control of the MPU 201, the equalizer 207 amplifies the serial data. In this embodiment, a serializer as the parallel/serial conversion unit 103, a deserializer as the serial/parallel conversion unit 208, and the equalizer 207 in a front side of the deserializer are provided. However, the equalizer 207 may be unused.
The serial/parallel converter 208 separates the serial data amplified by the equalizer 207 into parallel data conisitng of VIDEO, HD, VD, and CLK3. The serial/parallel converter 208 also functions as a receiving module. The serial/parallel converter 208 supplies the video signal processing unit 209 with the VIDEO, HD, and VD. The serial/parallel converter 208 supplies the switching module 211 with the CLK3. Under control of the MPU 201, the switching module 211 supplies the video signal processor 209 with the CLK1 or CLK3, switching adequately the CLK1 and the CLK3 from each other. In this embodiment, the signal supplied to the video signal processor 209 is referred to as CLK. The switching module 211 functions to keep outputting the video when the imaging unit 10 separates from the control unit 20.
The video signal processor 209 performs a preset predetermined signal processing on the VIDEO, HD, VD, and CLK. The video signal processor 209 supplies the video output module 210 with the VIDEO, HD, VD, and CLK subjected to the signal processing. The video output module 210 converts the VIDEO, HD, VD, and CLK into a video signal according to a predetermined standard, and outputs an image to an unillustrated monitor.
According to the first embodiment, the imaging unit 10 can transfer the VIDEO and CLK3 to the control unit 10 through one identical channel, and the number of cores of the data signal cable 302 can be therefore reduced.
According to the first embodiment, signal processing is performed by the video signal processor 209 in the control unit 20, with use of the VIDEO, HD and VD, and CLK3 having phases aligned with each other. Therefore, no disturbance is caused in images output from the video outputmodule 210. Also according to the first embodiment, images are output shifted from a drive timing generated by the TG 205 but do not involve any problem because only display timings delay as a whole.
Therefore, differential signals (LVDS) are 11 pairs in total. A general-purpose Power Over Camera Link standard cable is available as a camera cable 30. This cable consists of 11 pairs of 22 electric lines for differential signals, two electric lines for power supply, and two electric lines for GND, and so can be used as the camera cable 30. Accordingly, a low-price head-separated camera device can be supplied for users. Further, a narrow and soft camera cable 30 can be used for the head-separated camera device if the number of cores of the camera cable 30 is reduced.
Described next will be a transmission method for transferring serial data from the imaging unit 10 to the control unit 20. The imaging unit 10 converts serial data into differential signals on several pairs of channels (maximum 4 channels in the first embodiment), and then transfers the differential signals to the control unit 20 through a signal cable 302. The MPU 201 switches the number of channels to be used for transfer from the imaging unit 10 to the control unit 20, depending on resolution of the sensor unit 101. If the transfer rate changes depending on resolution of the sensor 101, the MPU 201 can change the clock frequency of CLK which is input to the serial/parallel converter 103. Accordingly, power consumption can be reduced. For example, if the resolution is 1080p, the frequency band is 148 MHz. Alternatively, if the resolution is 720p, the frequency band is 74 MHz.
Transfer channels have a frequency characteristic that the lower the frequency at which serial data is transferred is, the less the waveform of a transfer signal deteriorates, i.e., the longer the transfer distance is. In case where an equal amount of data is transferred, signal degradation on transfer channels can be more prevented by transfer on condition of
Next, the second embodiment will be described.
The imaging unit 10 transmits serial data to the control unit 20 by using CLK for sensor driving, which is generated by the TG 205. Therefore, the head-separated camera device according to the second embodiment can constitute a digital transfer system which is independent from CLK jitter performance of the sensor unit 101. Further, the transfer distance can be extended with the VIDEO, HD and VD, and CLK 2 stabled.
While certain embodiments s have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions. Any disclaimer of claim scope in the parent application is or the prosecution history thereof now rescinded and the claims in this application may be broader than any claim in the parent application.
Number | Date | Country | Kind |
---|---|---|---|
2009-167085 | Jul 2009 | JP | national |
This application is continuation application that is based upon and claims the benefit of priority from U.S. application Ser. No. 12/797,297, now abandoned, which is based upon and claims the benefit of priority from Japanese Patent Application No. 2009-167085, filed Jul. 15, 2009; the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6429901 | Kiyose et al. | Aug 2002 | B1 |
6631432 | Yamagishi | Oct 2003 | B1 |
6760062 | Ostromek et al. | Jul 2004 | B2 |
7046298 | Kuzumoto et al. | May 2006 | B2 |
7602419 | Kiuchi | Oct 2009 | B2 |
8233092 | Mino | Jul 2012 | B2 |
20010002842 | Ozawa | Jun 2001 | A1 |
20020008776 | Kuzumoto et al. | Jan 2002 | A1 |
20040070668 | Abe | Apr 2004 | A1 |
20040095509 | Okamoto et al. | May 2004 | A1 |
20040252235 | Ejima | Dec 2004 | A1 |
20050093972 | Higuchi | May 2005 | A1 |
20050243169 | Ono et al. | Nov 2005 | A1 |
20060055793 | Adler et al. | Mar 2006 | A1 |
20070146492 | Choi | Jun 2007 | A1 |
20070153126 | Sonobe | Jul 2007 | A1 |
20080122977 | Miyamoto | May 2008 | A1 |
20080303921 | Kim | Dec 2008 | A1 |
20090135262 | Ogasawara | May 2009 | A1 |
20090216080 | Nakamura | Aug 2009 | A1 |
20090290031 | Nakamura et al. | Nov 2009 | A1 |
20090295450 | Sugita | Dec 2009 | A1 |
20100007749 | Azuma et al. | Jan 2010 | A1 |
20100013941 | Berkey et al. | Jan 2010 | A1 |
20100020183 | Kimoto et al. | Jan 2010 | A1 |
20100091128 | Ogasawara et al. | Apr 2010 | A1 |
20100118158 | Boland et al. | May 2010 | A1 |
20100158100 | Fukuda | Jun 2010 | A1 |
20100296589 | Maeda | Nov 2010 | A1 |
20110013078 | Shinozaki et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
07-322118 | Dec 1995 | JP |
09-294223 | Nov 1997 | JP |
10-178583 | Jun 1998 | JP |
2005-311535 | Nov 2005 | JP |
2008-062466 | Mar 2008 | JP |
2008-137237 | Jun 2008 | JP |
2008-193511 | Aug 2008 | JP |
Entry |
---|
Japanese Patent Application No. 2009-167085, Notice of Reasons for Rejection, mailed Aug. 10, 2010, (with English Translation). |
U.S. Appl. No. 12/797,297, Non-Final Office Action, mailed Oct. 5, 2011. |
U.S. Appl. No. 12/797,297, Final Office Action, mailed May 2, 2012. |
Number | Date | Country | |
---|---|---|---|
20120293676 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12797297 | Jun 2010 | US |
Child | 13565634 | US |