Head stack assembly with a flexible printed circuit having a mouth centered between arms

Abstract
A head stack assembly (HSA) includes a flexible printed circuit (FPC) having a mouth with an upper mouth edge and a lower mouth edge. The FPC includes a first plurality of conductive terminals immediately adjacent the upper mouth edge and a second plurality of conductive terminals immediately adjacent the lower mouth edge. The mouth is bisected by a mouth centerline that is substantially parallel to and substantially equidistant from first and second actuator arms of the HSA. A head gimbal assembly (HGA) is attached to each of the first and second actuator arms. Each HGA includes a flexure tail laminate having a dielectric layer disposed between a plurality of conductive traces and a structural layer. The plurality of conductive traces is electrically connected to either the first or second plurality of conductive terminals via a plurality of openings in the structural layer and in the dielectric layer.
Description
BACKGROUND

Information storage devices are used to retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive is an example of an information storage device that includes one or more heads that can both read and write, but other information storage devices also include heads—sometimes including heads that cannot write.


In a modern magnetic hard disk drive device, each head is a sub-component of a head-gimbal assembly (HGA) that typically includes a laminated flexure to carry the electrical signals to and from the head. The HGA, in turn, is a sub-component of a head-stack assembly (HSA) that typically includes a plurality of HGAs, an actuator, and a flexible printed circuit (FPC). The plurality of HGAs are attached to various arms of the actuator, and each of the laminated flexures of the HGAs has a flexure tail that is electrically connected to the FPC.


Modern laminated flexures typically include conductive copper traces that are isolated from a stainless steel structural layer by a polyimide dielectric layer. So that the signals from/to the head can reach the flex cable on the actuator body, each HGA flexure includes a flexure tail that extends away from the head along the actuator arm and ultimately attaches to the FPC adjacent the actuator body. That is, the flexure includes traces that extend from adjacent the head and continue along the flexure tail to electrical connection points. The FPC includes conductive electrical terminals that correspond to the electrical connection points of the flexure tail.


To facilitate electrical connection of the conductive traces of the flexure tails to the conductive electrical terminals of the FPC during the HSA manufacturing process, the flexure tails must first be properly positioned relative to the FPC so that the conductive traces of the flexure tails are aligned with the conductive electrical terminals of the FPC. Then the flexure tails must be held or constrained to maintain proper alignment while the aforementioned electrical connections are made. Practically obtaining and maintaining such proper relative alignment in a high-volume manufacturing environment is a non-trivial challenge for manufacturers that require fast, cost-effective, and robust manufacturing processes to survive in a highly competitive industry.


Accordingly, there is a need in the art for improved HSA designs, to facilitate relative positioning and electrical connection of the conductive traces of a flexure tail to the conductive electrical terminals of an FPC during HSA manufacture.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is top view of a disk drive capable of incorporating an embodiment of the present invention.



FIG. 2 is a perspective view of a head stack assembly according to the prior art.



FIG. 3 is a perspective view of a head stack assembly according to an embodiment of the present invention.



FIG. 4 depicts a close up perspective view of a portion of a head stack assembly according to an embodiment of the present invention.



FIG. 5 depicts a close up side view of a portion of a head stack assembly according to an embodiment of the present invention.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS


FIG. 1 is top view of a disk drive 100 capable of incorporating an embodiment of the present invention. The disk drive 100 includes a disk drive base 102, a spindle 104 attached to the disk drive base 102, and at least one annular magnetic disk 106 attached to the spindle 104. The spindle motor 104 rotates the disk 106 about a spindle axis of rotation 110 (oriented in & out of the page in FIG. 1). The disk 106 contains a plurality of magnetic tracks for storing data, disposed upon opposing first and second disk surfaces of the disk 106. The disk 106 includes a disk outer edge 108 (corresponding to the outer diameter of disk 106).


The disk drive 100 further includes a head stack assembly (HSA) 120 rotatably attached to the base 102. The HSA 120 includes an actuator body 122 having a bore and a pivot bearing cartridge 124 engaged within the bore for enabling the HSA 120 to rotate relative to the base 102 about actuator pivot axis 126. The actuator pivot axis 126 (oriented in & out of the page in FIG. 1) is substantially parallel to the spindle axis of rotation 110. One or more actuator arms 128 extend from the actuator body 122, and one or two head gimbal assemblies (HGA) 130 are attached to a distal end of each actuator arm 128.


Now referring to FIG. 2, a perspective view of a head stack assembly (HSA) 200 according to the prior art is shown. The head stack assembly 200 is electrically connected to disk drive channel and driver circuitry via a conventional flexible printed circuit (FPC) 250. The HSA 200 includes an actuator body 222 having a bore and a pivot bearing cartridge 224 engaged within the bore. Two actuator arms 218 and 228 extend from the actuator body 222. Head gimbal assembly (HGA) 230 is attached to the distal end of actuator arm 218, and HGA 232 is attached to the distal end of actuator arm 228. Each of HGAs 230 and 232 includes a head (e.g. head 240) for reading and writing data from and to a disk (e.g. disk 106). In magnetic hard disk drive applications, the head 240 comprises a body called a “slider” that carries a magnetic transducer on its trailing end (not visible given the scale of FIG. 2). The magnetic transducer may include an inductive write element and a magnetoresistive read element and during disk drive operation will be separated from the magnetic disk by a very thin hydrodynamic air bearing. The thickness of the air bearing at the location of the transducer is commonly referred to as “flying height.”


Still referring to FIG. 2, HGA 230 includes a load beam 234 and HGA 232 includes a load beam 236. Each of HGAs 230 and 232 also includes a laminated flexure. For example, HGA 232 includes a laminated flexure 238 attached to the load beam 236, with the head 240 attached to the laminated flexure 238. The purpose of the load beam 236 is to provide vertical compliance for the head 240 to follow vertical undulation of the surface of an adjacent disk as it rotates, and to preload the head 240 against the adjacent surface of that disk by a preload force that is commonly referred to as the “gram load.” A first purpose of the flexure 238 is to provide compliance for the head 240 to follow pitch and roll angular undulations of the surface of the disk as it rotates, while restricting relative motion between the head 240 and the load beam 236 in the lateral direction and about a yaw axis. A second purpose of the flexure 238 is to provide a plurality of electrical paths from the head 240 to the FPC 250 to facilitate signal transmission to/from the head 240.


For that second purpose, the flexure 238 includes a flexure tail 260 that extends away from the head 240 along the actuator arm 228 and ultimately attaches to the FPC 250 adjacent the actuator body 222. That is, the flexure 238 includes traces that extend from adjacent the head 240 to electrical connection points in a terminal region 270 of the flexure tail 260. Likewise, HGA 230 includes a flexure 242 that includes a flexure tail 262 that attaches to FPC 250 in a terminal region 272. As can be seen in FIG. 2, each flexure tail (e.g. flexure tail 260) is a distinct and smaller component, as compared with the FPC 250. The traces on the flexure tail 260 are electrically connected to the FPC 250, at terminal region 270 of the flexure tail 260. Methods of electrical connection of the flexure tail 260 to the FPC 250 include ultrasonic tab bonding, solder reflow, and solder jet bond (SJB).


Now referring to the embodiment of FIG. 3, a perspective view of a head stack assembly 300 according to an embodiment of the present invention is shown. The head stack assembly 300 is electrically connected to disk drive channel and driver circuitry via novel flexible printed circuit (FPC) 350. The HSA 300 includes an actuator body 322 having a bore and a pivot bearing cartridge 324 engaged within the bore. Two actuator arms 318 and 328 extend from the actuator body 322, but in other embodiments the HSA 300 may include a different number of actuator arms (e.g. four). Head gimbal assembly (HGA) 330 is attached to the distal end of actuator arm 318, and HGA 332 is attached to the distal end of actuator arm 328. Each of HGAs 330 and 332 includes a head (e.g. head 340) for reading and writing data from and to a disk (e.g. disk 106).


Still referring to the embodiment of FIG. 3, HGA 330 includes a load beam 334 and HGA 332 includes a load beam 336. Each of HGAs 330 and 332 also includes a laminated flexure. For example, HGA 332 includes a laminated flexure 338 attached to the load beam 336, with the head 340 attached to the laminated flexure 338. A first purpose of the flexure 338 is to provide compliance for the head 340 to follow pitch and roll angular undulations of the surface of the disk as it rotates, while restricting relative motion between the head 340 and the load beam 336 in the lateral direction and about a yaw axis. A second purpose of the flexure 338 is to provide a plurality of electrical paths from the head 340 to the FPC 350 to facilitate signal transmission to/from the head 340.


For that second purpose, the flexure 338 of the embodiment of FIG. 3 includes a flexure tail 360 that extends away from the head 340 along the actuator arm 328 and ultimately attaches to the FPC 350 adjacent the actuator body 322. Likewise, HGA 330 includes a flexure 342 that includes a flexure tail 362 that attaches to FPC 350. As can be seen in FIG. 3, each flexure tail (e.g. flexure tail 360) is a distinct and smaller component, as compared with the FPC 350. Each of the laminated flexures 338, 342 includes a plurality of electrically conductive traces that are isolated from a structural layer by a dielectric layer. For example, the conductive traces may comprise copper, the structural layer may comprise stainless steel, and the dielectric layer may comprise polyimide. Portions of the electrically conductive traces may also be coated with an insulative cover layer (e.g. a polymer layer).



FIG. 4 depicts a close up perspective view of a portion of a head stack assembly according to an embodiment of the present invention, and FIG. 5 depicts a close up side view of a portion of the head stack assembly of FIG. 4. In the embodiment of FIGS. 4 and 5, FPC 350 has a mouth 352 including an upper mouth edge 354 and a lower mouth edge 356. The FPC 350 includes a first plurality of conductive terminals 400 immediately adjacent the upper mouth edge 354 and a second plurality of conductive terminals 402 immediately adjacent the lower mouth edge 356. What is meant by “immediately” adjacent is that the terminals are close enough to the mouth edge to enable a 90-degree electrical bond/connection to be made between each terminal and a corresponding conductive trace of the corresponding flexure tail. Note that as used herein, not just any portion of a conductor may be considered as a “terminal”; rather, a terminal is considered to the terminus of a conductor of the FPC (i.e. where the conductor terminates and where an electrical connection to that conductor of the FPC is made). The mouth 352 defines and is bisected by a mouth centerline 500 disposed equidistant from the upper mouth edge 354 and the lower mouth edge 356. The mouth centerline 500 is substantially parallel to and substantially equidistant from the first and second actuator arms 318 and 328.


This positioning of the mouth centerline 500 may enable increased vertical deflection of the flexure tails, which may provide increased vertical preload during electrical connection (e.g. more reliable physical contact of solder bumps on mating parts during a solder reflow process). For example in the embodiment of FIG. 5, the flexure tail 362 includes a bend that defines an angular change θ, and preferably θ is in the range 6-20 degrees. Likewise, the flexure tail 360 includes a bend that defines an angular change θ that is preferably in the range 6-20 degrees. Also, in the embodiment of FIG. 5, the upper mouth edge 354 and the lower mouth edge 356 are at an angle φ relative to each other. It can be seen that, optionally but not necessarily in the embodiment of FIG. 5, φ=20. Preferably φ is in the range 12-40 degrees. In the embodiment of FIG. 4, the flexure tail 360 has an unsupported portion having a length L. Preferably, L is greater than 4 mm. The bends in the flexure tails and the relative angles of the mouth edges may serve to adequately preload the flexure tails against the upper and lower mouth edges, facilitating reliable contact between mating parts during the electrical connection process.


However, this positioning of the mouth 352, in a position that is substantially equidistant from the first and second actuator arms 318 and 328, stands in contradiction to conventional wisdom, which would instead lead to an alignment of the center of the mouth with either the first or second actuator arm to facilitate electrical interconnection (because the sides of the flexure tails that have conductive traces would then face towards, rather than away from, the FPC 350).


The consequences of this contradiction with conventional wisdom may be at least partially mitigated in the embodiment of FIG. 4 by specified openings in the flexure tails. Specifically, in the embodiment of FIG. 4, the plurality of conductive traces of flexure tail 362 are electrically connected to the first plurality of conductive terminals 400 via a first plurality of openings 420 in the structural layer and the dielectric layer of flexure tail 362. For example, the plurality of conductive traces of flexure tail 362 may be electrically connected to the first plurality of conductive terminals 400 via solder connections 430 through openings 420 in the structural layer and the dielectric layer of flexure tail 362. Likewise, the plurality of conductive traces of flexure tail 360 may be electrically connected to the second plurality of conductive terminals 402 via a second plurality of openings (not visible in FIG. 4) in the structural layer and the dielectric layer of flexure tail 360. These openings in the structural and dielectric layers of the flexure tails enable the mouth 352 to be positioned and aligned against conventional wisdom as described previously.


In the embodiment of FIGS. 4 and 5, the flexure tail 360 includes a slot 480, and tab 482 protrudes from the lower mouth edge 356 into the slot 480. Also in the embodiment of FIGS. 4 and 5, the FPC 350 includes a hole 490 and the flexure tail 360 includes a tab 492 that protrudes from the flexure tail 360 into the hole 490. These tabs, slots, and holes, shown in FIGS. 4 and 5, may serve to position the flexure tails relative to the upper and lower mouth edges, facilitating assembly.


In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. “Comprising,” “including,” and “having,” are intended to be open-ended terms.

Claims
  • 1. A head stack assembly (HSA) comprising: first and second actuator arms, the first actuator arm being substantially parallel to the second actuator arm;a first head gimbal assembly (HGA) attached to the first actuator arm, the first HGA including a first flexure tail laminate having a first dielectric layer separating a first plurality of conductive traces from a first structural layer;a second HGA attached to the second actuator arm, the second HGA including a second flexure tail laminate having a second dielectric layer separating a second plurality of conductive traces from a second structural layer; anda flexible printed circuit (FPC) having a mouth, the mouth including an upper mouth edge and a lower mouth edge, the FPC including a first plurality of conductive terminals immediately adjacent the upper mouth edge and a second plurality of conductive terminals immediately adjacent the lower mouth edge, the mouth defining and being bisected by a mouth centerline, the mouth centerline being spaced from and substantially parallel to and substantially equidistant from the first and second actuator arms;wherein the first plurality of conductive traces is electrically connected to the first plurality of conductive terminals via a first plurality of openings in the first structural layer and in the first dielectric layer, and the second plurality of conductive traces is electrically connected to the second plurality of conductive terminals via a second plurality of openings in the second structural layer and in the second dielectric layer.
  • 2. The HSA of claim 1 wherein the mouth centerline is disposed equidistant from the upper mouth edge and the lower mouth edge.
  • 3. The HSA of claim 1 wherein the first plurality of conductive traces is soldered to the first plurality of conductive terminals through the first plurality of openings.
  • 4. The HSA of claim 1 wherein the second plurality of conductive traces is soldered to the second plurality of conductive terminals through the second plurality of openings.
  • 5. The HSA of claim 1 wherein the first flexure tail laminate includes a bend that defines an angular change in the range 6-20 degrees.
  • 6. The HSA of claim 1 wherein the second flexure tail laminate has an unsupported portion having a length greater than 4 mm.
  • 7. The HSA of claim 1 wherein the upper mouth edge and the lower mouth edge are at an angle relative to each other in the range 12-40 degrees.
  • 8. The HSA of claim 1 further comprising a slot through the second flexure tail laminate and a corresponding tab protruding from the lower mouth edge into the slot.
  • 9. The HSA of claim 1 further comprising a hole in the FPC and a corresponding tab protruding from the second flexure tail laminate into the hole.
  • 10. The HSA of claim 1 further including a means for preloading the first and second flexure tails against the upper and lower mouth edges, respectively.
  • 11. The HSA of claim 1 further including a means for positioning the first and second flexure tails relative to the upper and lower mouth edges, respectively.
RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 12/195,288 to Tzong-Shii Pan, entitled “HEAD STACK ASSEMBLY WITH A FLEXIBLE PRINTED CIRCUIT HAVING A MOUTH CENTERED BETWEEN ARMS,” filed 2008 Aug. 20, pending.

US Referenced Citations (339)
Number Name Date Kind
5235482 Schmitz Aug 1993 A
5422764 McIlvanie Jun 1995 A
5668684 Palmer et al. Sep 1997 A
5872687 Arya et al. Feb 1999 A
5903413 Brooks, Jr. et al. May 1999 A
6046889 Berding et al. Apr 2000 A
6052890 Malagrino, Jr. et al. Apr 2000 A
6061206 Foisy et al. May 2000 A
6101876 Brooks et al. Aug 2000 A
6134770 Heeren et al. Oct 2000 A
6145188 Brooks, Jr. et al. Nov 2000 A
6147831 Kennedy et al. Nov 2000 A
6151189 Brooks Nov 2000 A
6151197 Larson et al. Nov 2000 A
6185067 Chamberlain Feb 2001 B1
6185074 Wang et al. Feb 2001 B1
6185075 Tsujino et al. Feb 2001 B1
6208486 Gustafson et al. Mar 2001 B1
6212046 Albrecht et al. Apr 2001 B1
6215616 Phan et al. Apr 2001 B1
6272694 Knoth Aug 2001 B1
6288866 Butler et al. Sep 2001 B1
6292333 Blumentritt et al. Sep 2001 B1
6344950 Watson et al. Feb 2002 B1
6349464 Codilian et al. Feb 2002 B1
6360426 Summers et al. Mar 2002 B1
6388873 Brooks et al. May 2002 B1
6399889 Korkowski et al. Jun 2002 B1
6417979 Patton, III et al. Jul 2002 B1
6421208 Oveyssi Jul 2002 B1
6441998 Abrahamson Aug 2002 B1
6462914 Oveyssi et al. Oct 2002 B1
6466398 Butler et al. Oct 2002 B1
6469871 Wang Oct 2002 B1
6502300 Casey et al. Jan 2003 B1
6519116 Lin et al. Feb 2003 B1
6529345 Butler et al. Mar 2003 B1
6529351 Oveyssi et al. Mar 2003 B1
6535358 Hauert et al. Mar 2003 B1
6545382 Bennett Apr 2003 B1
6549381 Watson Apr 2003 B1
6560065 Yang et al. May 2003 B1
6571460 Casey et al. Jun 2003 B1
6574073 Hauert et al. Jun 2003 B1
6580574 Codilian Jun 2003 B1
6594111 Oveyssi et al. Jul 2003 B1
6603620 Berding Aug 2003 B1
6618222 Watkins et al. Sep 2003 B1
6624966 Ou-Yang et al. Sep 2003 B1
6624980 Watson et al. Sep 2003 B1
6624983 Berding Sep 2003 B1
6628473 Codilian et al. Sep 2003 B1
6634086 Korkowski et al. Oct 2003 B2
6654200 Alexander et al. Nov 2003 B1
6657811 Codilian Dec 2003 B1
6661597 Codilian et al. Dec 2003 B1
6661603 Watkins et al. Dec 2003 B1
6674600 Codilian et al. Jan 2004 B1
6690637 Codilian Feb 2004 B1
6693767 Butler Feb 2004 B1
6693773 Sassine Feb 2004 B1
6697217 Codilian Feb 2004 B1
6698286 Little et al. Mar 2004 B1
6700736 Wu et al. Mar 2004 B1
6704167 Scura et al. Mar 2004 B1
6707637 Codilian et al. Mar 2004 B1
6707641 Oveyssi et al. Mar 2004 B1
6710980 Hauert et al. Mar 2004 B1
6710981 Oveyssi et al. Mar 2004 B1
6728062 Ou-Yang et al. Apr 2004 B1
6728063 Gustafson et al. Apr 2004 B1
6731470 Oveyssi May 2004 B1
6735033 Codilian et al. May 2004 B1
6741428 Oveyssi May 2004 B1
6751051 Garbarino Jun 2004 B1
6754042 Chiou et al. Jun 2004 B1
6757132 Watson et al. Jun 2004 B1
6759784 Gustafson et al. Jul 2004 B1
6781780 Codilian Aug 2004 B1
6781787 Codilian et al. Aug 2004 B1
6781791 Griffin et al. Aug 2004 B1
6790066 Klein Sep 2004 B1
6791791 Alfred et al. Sep 2004 B1
6791801 Oveyssi Sep 2004 B1
6795262 Codilian et al. Sep 2004 B1
6798603 Singh et al. Sep 2004 B1
6801389 Berding et al. Oct 2004 B1
6801404 Oveyssi Oct 2004 B1
6816342 Oveyssi Nov 2004 B1
6816343 Oveyssi Nov 2004 B1
6825622 Ryan et al. Nov 2004 B1
6826009 Scura et al. Nov 2004 B1
6831810 Butler et al. Dec 2004 B1
6839199 Alexander, Jr. et al. Jan 2005 B1
6844996 Berding et al. Jan 2005 B1
6847504 Bennett et al. Jan 2005 B1
6847506 Lin et al. Jan 2005 B1
6856491 Oveyssi Feb 2005 B1
6856492 Oveyssi Feb 2005 B2
6862154 Subrahmanyam et al. Mar 2005 B1
6862156 Lin et al. Mar 2005 B1
6862176 Codilian et al. Mar 2005 B1
6865049 Codilian et al. Mar 2005 B1
6865055 Ou-Yang et al. Mar 2005 B1
6867946 Berding et al. Mar 2005 B1
6867950 Lin Mar 2005 B1
6876514 Little Apr 2005 B1
6879466 Oveyssi et al. Apr 2005 B1
6888697 Oveyssi May 2005 B1
6888698 Berding et al. May 2005 B1
6891696 Ou-Yang et al. May 2005 B1
6898052 Oveyssi May 2005 B1
6900961 Butler May 2005 B1
6906880 Codilian Jun 2005 B1
6906897 Oveyssi Jun 2005 B1
6908330 Garrett et al. Jun 2005 B2
6922308 Butler Jul 2005 B1
6930848 Codilian et al. Aug 2005 B1
6930857 Lin et al. Aug 2005 B1
6934126 Berding et al. Aug 2005 B1
6937444 Oveyssi Aug 2005 B1
6940698 Lin et al. Sep 2005 B2
6941642 Subrahmanyam et al. Sep 2005 B1
6947251 Oveyssi et al. Sep 2005 B1
6950275 Ali et al. Sep 2005 B1
6950284 Lin Sep 2005 B1
6952318 Ngo Oct 2005 B1
6954329 Ojeda et al. Oct 2005 B1
6958884 Ojeda et al. Oct 2005 B1
6958890 Lin et al. Oct 2005 B1
6961212 Gustafson et al. Nov 2005 B1
6961218 Lin et al. Nov 2005 B1
6963469 Gustafson et al. Nov 2005 B1
6965500 Hanna et al. Nov 2005 B1
6967800 Chen et al. Nov 2005 B1
6967804 Codilian Nov 2005 B1
6970329 Oveyssi et al. Nov 2005 B1
6972924 Chen et al. Dec 2005 B1
6972926 Codilian Dec 2005 B1
6975476 Berding Dec 2005 B1
6979931 Gustafson et al. Dec 2005 B1
6980391 Haro Dec 2005 B1
6980401 Narayanan et al. Dec 2005 B1
6982853 Oveyssi et al. Jan 2006 B1
6989953 Codilian Jan 2006 B1
6990727 Butler et al. Jan 2006 B1
6996893 Ostrander et al. Feb 2006 B1
7000309 Klassen et al. Feb 2006 B1
7006324 Oveyssi et al. Feb 2006 B1
7013731 Szeremeta et al. Mar 2006 B1
7031104 Butt et al. Apr 2006 B1
7035053 Oveyssi et al. Apr 2006 B1
7050270 Oveyssi et al. May 2006 B1
7057852 Butler et al. Jun 2006 B1
7062837 Butler Jun 2006 B1
7064921 Yang et al. Jun 2006 B1
7064922 Alfred et al. Jun 2006 B1
7064932 Lin et al. Jun 2006 B1
7085098 Yang et al. Aug 2006 B1
7085108 Oveyssi et al. Aug 2006 B1
7092216 Chang et al. Aug 2006 B1
7092251 Henry Aug 2006 B1
7099099 Codilian et al. Aug 2006 B1
7110222 Erpelding Sep 2006 B2
7113371 Hanna et al. Sep 2006 B1
7142397 Venk Nov 2006 B1
7145753 Chang et al. Dec 2006 B1
RE39478 Hatch et al. Jan 2007 E
7161768 Oveyssi Jan 2007 B1
7161769 Chang et al. Jan 2007 B1
7180711 Chang et al. Feb 2007 B1
7193819 Chen et al. Mar 2007 B1
7209317 Berding et al. Apr 2007 B1
7209319 Watkins et al. Apr 2007 B1
D542289 Diebel May 2007 S
7212377 Ou-Yang et May 2007 B1
7215513 Chang et al. May 2007 B1
7215514 Yang et al. May 2007 B1
7224551 Ou-Yang et al. May 2007 B1
D543981 Diebel Jun 2007 S
7227725 Chang et al. Jun 2007 B1
7239475 Lin et al. Jul 2007 B1
7271978 Santini et al. Sep 2007 B1
7274534 Choy et al. Sep 2007 B1
7280311 Ou-Yang et al. Oct 2007 B1
7280317 Little et al. Oct 2007 B1
7280319 McNab Oct 2007 B1
7292406 Huang Nov 2007 B1
7298584 Yamada et al. Nov 2007 B1
7327537 Oveyssi Feb 2008 B1
7339268 Ho et al. Mar 2008 B1
7342746 Lin Mar 2008 B1
RE40203 Hatch et al. Apr 2008 E
7353524 Lin et al. Apr 2008 B1
7369368 Mohajerani May 2008 B1
7372670 Oveyssi May 2008 B1
7375929 Chang et al. May 2008 B1
7379266 Ou-Yang et al. May 2008 B1
7381904 Codilian Jun 2008 B1
7385784 Berding et al. Jun 2008 B1
7388731 Little et al. Jun 2008 B1
7420771 Hanke et al. Sep 2008 B1
7434987 Gustafson et al. Oct 2008 B1
7436625 Chiou et al. Oct 2008 B1
7440234 Cheng et al. Oct 2008 B1
7477488 Zhang et al. Jan 2009 B1
7477489 Chen et al. Jan 2009 B1
7484291 Ostrander et al. Feb 2009 B1
7505231 Golgolab et al. Mar 2009 B1
7529064 Huang et al. May 2009 B1
7538981 Pan May 2009 B1
7561374 Codilian et al. Jul 2009 B1
7567410 Zhang et al. Jul 2009 B1
7576955 Yang et al. Aug 2009 B1
7593181 Tsay et al. Sep 2009 B1
7605999 Kung et al. Oct 2009 B1
7609486 Little Oct 2009 B1
7610672 Liebman Nov 2009 B1
7633721 Little et al. Dec 2009 B1
7633722 Larson et al. Dec 2009 B1
7656609 Berding et al. Feb 2010 B1
7660075 Lin et al. Feb 2010 B1
7672083 Yu et al. Mar 2010 B1
7684155 Huang et al. Mar 2010 B1
7686555 Larson et al. Mar 2010 B1
7709078 Sevier et al. May 2010 B1
7715149 Liebman et al. May 2010 B1
7729091 Huang et al. Jun 2010 B1
7751145 Lin et al. Jul 2010 B1
7826177 Zhang et al. Nov 2010 B1
7852601 Little Dec 2010 B1
7864488 Pan Jan 2011 B1
7898770 Zhang et al. Mar 2011 B1
7903369 Codilian et al. Mar 2011 B1
7907369 Pan Mar 2011 B1
7911742 Chang et al. Mar 2011 B1
7926167 Liebman et al. Apr 2011 B1
7957095 Tsay et al. Jun 2011 B1
7957102 Watson et al. Jun 2011 B1
7961436 Huang et al. Jun 2011 B1
8004782 Nojaba et al. Aug 2011 B1
8009384 Little Aug 2011 B1
8018687 Little et al. Sep 2011 B1
8031431 Berding et al. Oct 2011 B1
8064168 Zhang et al. Nov 2011 B1
8064170 Pan Nov 2011 B1
8068314 Pan et al. Nov 2011 B1
8081401 Huang et al. Dec 2011 B1
8100017 Blick et al. Jan 2012 B1
8116038 Zhang et al. Feb 2012 B1
8125740 Yang et al. Feb 2012 B1
8142671 Pan Mar 2012 B1
8156633 Foisy Apr 2012 B1
8159785 Lee et al. Apr 2012 B1
8189298 Lee et al. May 2012 B1
8194348 Jacoby et al. Jun 2012 B2
8194354 Zhang et al. Jun 2012 B1
8194355 Pan et al. Jun 2012 B1
8203806 Larson et al. Jun 2012 B2
8223453 Norton et al. Jul 2012 B1
8228631 Tsay et al. Jul 2012 B1
8233239 Teo et al. Jul 2012 B1
8248733 Radavicius et al. Aug 2012 B1
8259417 Ho et al. Sep 2012 B1
8274760 Zhang et al. Sep 2012 B1
8276256 Zhang et al. Oct 2012 B1
8279560 Pan Oct 2012 B1
8284514 Garbarino Oct 2012 B1
8289646 Heo et al. Oct 2012 B1
8300352 Larson et al. Oct 2012 B1
8305708 Tacklind Nov 2012 B2
8320086 Moradnouri et al. Nov 2012 B1
8322021 Berding et al. Dec 2012 B1
8345387 Nguyen Jan 2013 B1
8363351 Little Jan 2013 B1
8369044 Howie et al. Feb 2013 B2
8411389 Tian et al. Apr 2013 B1
8416522 Schott et al. Apr 2013 B1
8416534 Heo et al. Apr 2013 B1
8422171 Guerini Apr 2013 B1
8422175 Oveyssi Apr 2013 B1
8432641 Nguyen Apr 2013 B1
8437101 German et al. May 2013 B1
8438721 Sill May 2013 B1
8446688 Quines et al. May 2013 B1
8451559 Berding et al. May 2013 B1
8467153 Pan et al. Jun 2013 B1
8472131 Ou-Yang et al. Jun 2013 B1
8477460 Liebman Jul 2013 B1
8488270 Brause et al. Jul 2013 B2
8488280 Myers et al. Jul 2013 B1
8499652 Tran et al. Aug 2013 B1
8514514 Berding et al. Aug 2013 B1
8530032 Sevier et al. Sep 2013 B1
8542465 Liu et al. Sep 2013 B2
8547664 Foisy et al. Oct 2013 B1
8553356 Heo et al. Oct 2013 B1
8553366 Hanke Oct 2013 B1
8553367 Foisy et al. Oct 2013 B1
8616900 Lion Dec 2013 B1
8665555 Young et al. Mar 2014 B1
8667667 Nguyen et al. Mar 2014 B1
8693139 Tian et al. Apr 2014 B2
8693140 Weiher et al. Apr 2014 B1
8699179 Golgolab et al. Apr 2014 B1
8702998 Guerini Apr 2014 B1
8705201 Casey et al. Apr 2014 B2
8705209 Seymour et al. Apr 2014 B2
8717706 German et al. May 2014 B1
8743509 Heo et al. Jun 2014 B1
8755148 Howie et al. Jun 2014 B1
8756776 Chen et al. Jun 2014 B1
8760800 Brown et al. Jun 2014 B1
8760814 Pan et al. Jun 2014 B1
8760816 Myers et al. Jun 2014 B1
8773812 Gustafson et al. Jul 2014 B1
8780491 Perlas et al. Jul 2014 B1
8780504 Teo et al. Jul 2014 B1
8792205 Boye-Doe et al. Jul 2014 B1
8797677 Heo et al. Aug 2014 B2
8797689 Pan et al. Aug 2014 B1
8824095 Dougherty Sep 2014 B1
8824098 Huang et al. Sep 2014 B1
20050268456 Hashimoto Dec 2005 A1
20060146447 Ho Jul 2006 A1
20060246748 Suzuki Nov 2006 A1
20070153427 Izumi et al. Jul 2007 A1
20070279805 Komura Dec 2007 A1
20070279807 Kobayashi et al. Dec 2007 A1
20080225439 Komura Sep 2008 A1
20090244782 Kagawa Oct 2009 A1
20110109996 Nakamura May 2011 A1
20110212281 Jacoby et al. Sep 2011 A1
20120075741 Ho Mar 2012 A1
20130038964 Garbarino et al. Feb 2013 A1
20130091698 Banshak, Jr. et al. Apr 2013 A1
20130155546 Heo et al. Jun 2013 A1
20130290988 Watson et al. Oct 2013 A1
20160019918 Juman Jan 2016 A1
Non-Patent Literature Citations (7)
Entry
Tzong-Shii Pan, et al., U.S. Appl. No. 12/195,288, filed Aug. 20, 2008, 16 pages.
Notice of Allowance dated Jan. 6, 2016 from U.S. Appl. No. 12/195,288, 2 pages.
Notice of Allowance dated Dec. 23, 2015 from U.S. Appl. No. 12/195,288, 7 pages.
Patent Board Decision dated Oct. 2, 2015 from U.S. Appl. No. 12/195,288, 8 pages.
Examiner's Answer to Appeal Brief dated Oct. 16, 2012 from U.S. Appl. No. 12/195,288, 5 pages.
Office Action dated Apr. 17, 2012 from U.S. Appl. No. 12/195,288, 14 pages.
Office Action dated Sep. 23, 2011 from U.S. Appl. No. 12/195,288, 10 pages.
Related Publications (1)
Number Date Country
20160086624 A1 Mar 2016 US
Continuations (1)
Number Date Country
Parent 12195288 Aug 2008 US
Child 14954486 US