Information storage devices are used to retrieve and/or store data in computers and other consumer electronics devices. A magnetic hard disk drive is an example of an information storage device that includes one or more heads that can both read and write, but other information storage devices also include heads—sometimes including heads that cannot write. A head that can read may be referred to as a “read head” herein, even if it includes other structures and functions such as a transducer for writing, a heater, microactuator, electronic lapping guide, laser diode, etc.
In a modern magnetic hard disk drive device, each head is a sub-component of a head-gimbal assembly (HGA) that typically includes a laminated flexure to carry the electrical signals to and from the head. The HGA, in turn, is a sub-component of a head-stack assembly (HSA) that typically includes a plurality of HGAs, an actuator, and a flexible printed circuit (FPC). The plurality of HGAs are attached to various arms of the actuator.
Modern laminated flexures typically include conductive copper traces that are isolated from a stainless steel structural layer by a polyimide dielectric layer. So that the signals from/to the head can reach the FPC on the actuator body, each HGA flexure includes a flexure tail that extends away from the head along a corresponding actuator arm and ultimately attaches to the FPC adjacent the actuator body. That is, the flexure includes traces that extend from adjacent the head and continue along the flexure tail to electrical connection points. The FPC includes conductive electrical terminals that correspond to the electrical connection points of the flexure tail.
To facilitate electrical connection of the conductive traces of the flexure tails to the conductive electrical terminals of the FPC during the HSA manufacturing process, the flexure tails must first be properly positioned relative to the FPC so that the conductive traces of the flexure tails are aligned with the conductive electrical terminals of the FPC. Then the flexure tails must be held or constrained against the conductive electrical terminals of the FPC while the aforementioned electrical connections are made by ultrasonic bonding, solder jet bonding, solder bump reflow, or anisotropic conductive film (ACF) bonding.
Modern magnetic read heads are trending to include more and more additional structures and functions that require electrical connection. For example, electrical connections to the read head may be required for the read transducer (e.g. a tunneling magnetoresistive sensor), a write transducer (e.g. an inductive writer), a heater for dynamic flying height control, a microactuator for fine tracking control, an electronic lapping guide to enhance control of a head fabrication step, and/or a laser diode to heat a local region of an adjacent disk for so-called heat assisted magnetic recording. However, contemporary flexure tails have very little space in their bonding region for additional conductive layer traces, especially since contemporary flexure tails also include flexure bond pads in the conductive layer.
Certain past flexure tail designs have accommodated an increase in the number of electrical connections by adding a second conductive layer (e.g. a second copper layer) in addition to the needed structural layer (e.g. stainless steel) and the first conductive layer (e.g. the copper layer that includes the flexure bond pads). However, such an addition of a second conductive layer increases the cost and complexity of the flexure tail. Hence, there is a need in the art for a new flexure tail design that can accommodate an increased number of traces in a first conductive layer.
The disk drive 100 further includes an actuator 116 that is pivotably mounted on disk drive base 102. Voice coil motor 112 pivots the actuator 116 through a limited angular range so that at least one head gimbal assembly (HGA) 114 is desirably positioned relative to one or more tracks of information on a corresponding one of the disks 104. In the embodiment of
Each HGA 114 preferably includes a read head 150 for reading and writing from/to one of the disks 104. The head 150 may be referred to herein as a read head, even though it may also perform other functions and contain other structures such as a writer for writing data, a microactuator, a heater, a laser, a lapping guide, etc. The actuator 116 may occasionally be latched at an extreme angular position within the limited angular range, by latch 120. Electrical signals to/from the HGAs 114 are carried to other drive electronics via a flexible printed circuit that includes a flex cable 122 (preferably including a preamplifier circuit) and flex cable bracket 124.
Each HGA includes a read head for reading and/or writing to an adjacent disk surface (e.g. HGA 254 includes read head 280). The read head 280 is attached to a tongue portion 272 of a laminated flexure 270. The laminated flexure 270 is part of the HGA 254, and is attached to a load beam (the part of the HGA 254 to which the numerical label 254 points). The laminated flexure 270 may include a structural layer (e.g. stainless steel), a dielectric layer (e.g. polyimide), and a conductive layer into which traces are patterned (e.g. copper). The HSA 200 also includes a flexible printed circuit (FPC) 260 adjacent the actuator body 232. The FPC 260 includes a flex cable 262 and a preamplifier 266. The FPC 260 may comprise a laminate that includes two or more conventional dielectric and conductive layer materials (e.g. one or more polymeric materials, copper, etc.). The laminated flexure 270 includes a flexure tail 274 that runs along the actuator arm 238 to a terminal region 278 of the laminated flexure 270 that is electrically connected to bond pads of the FPC 260.
Methods of electrical connection of the flexure tails (e.g. flexure tail 274) to the FPC 260 include ultrasonic bonding of gold coatings thereon, solder reflow, solder ball jet (SBJ), and anisotropic conductive film (ACF) bonding, and are preferably but not necessarily automated. To electrically connect and securely attach the flexure tails to the FPC 260, the flexure tails are first aligned with the FPC 260, and then pressed against the FPC 260 (at least temporarily) while electrical connection is established and secure attachment is completed. Maintaining alignment and sufficient uniform pressure and temperature to groups of bond pads may be desirable during this process.
The FPC 260 may include an optional insulative cover layer 320 having windows exposing the regions where the flexure tail terminal regions and the pre-amplifier chip 315 are bonded thereto. The cover layer 320 is shown cut away in the view of
In the embodiment of
In the embodiment of
Advantageously, in the embodiment of
In the embodiment of
Now referring to
The thermode tool may optionally include a flat surface that is substantially larger than any of the plurality of flexure bond pads 412, 414. Preferably but not necessarily, the pressure between the flexure bond pads 412, 414 and the FPC bond pads 380 during the period of bonding may arrange the plurality of electrically conductive beads in a monolayer with each of the plurality of electrically conductive beads in electrical contact with a flexure bond pad 412, 414 and the corresponding FPC bond pad 380. The thermode tool may also transfer heat through the flexure 400 during the period of bonding, and raise the temperature of the adhesive material during such period, for example to accelerate curing of the adhesive material.
In certain embodiments, the force applied by the thermode is sufficient to cause the electrically conductive beads to be substantially elastically deformed in compression between the flexure bond pads 412, 414 and the corresponding FPC bond pads 380 during the period of thermal curing of the adhesive material. After the thermode tool is removed, the electrically conductive beads cool (with the cured adhesive) from an elevated curing temperature. Such cooling causes the electrically conductive beads to shrink relative to their expanded size during thermal curing of the adhesive material.
However, the force is preferably chosen to be great enough that the post-curing shrinkage of the electrically conductive beads cannot completely relieve the compressive deformation of the electrically conductive beads that was experienced during curing. Hence, after curing of the adhesive material, and after removal of the thermode tool, the electrically conductive beads may remain in compression (and somewhat compressively deformed) between the flexure bond pads 412, 414 and the corresponding FPC bond pad 380.
Although residual compression of the electrically conductive beads may correspond to some residual tension in the cured adhesive material, such residual compression of the electrically conductive beads may be desirable to enhance and ensure reliable electrical conductivity of the ACF. For example, in the case where the electrically conductive beads are spherical, the residual compression may cause small flat spots that can provide finite contact areas rather than point contacts, which may desirably reduce the electrical resistance of the ACF.
Now referring to
In the embodiment of
In the embodiment of
Advantageously, in the embodiment of
In the embodiment of
In the embodiment of
Now referring to the embodiment of
In the foregoing specification, the invention is described with reference to specific exemplary embodiments, but those skilled in the art will recognize that the invention is not limited to those. It is contemplated that various features and aspects of the invention may be used individually or jointly and possibly in a different environment or application. The specification and drawings are, accordingly, to be regarded as illustrative and exemplary rather than restrictive. For example, the word “preferably,” and the phrase “preferably but not necessarily,” are used synonymously herein to consistently include the meaning of “not necessarily” or optionally. “Comprising,” “including,” and “having,” are intended to be open-ended terms.
This application claims benefit as a continuation-in-part of U.S. patent application Ser. No. 13/897,609, filed 2013 May 20, entitled “Disk drive head gimbal assembly having a flexure tail with folded bond pads,” which is itself a divisional of U.S. patent application Ser. No. 12/916,237, filed 2010 Oct. 29, entitled “Disk drive head gimbal assembly having a flexure tail with folded bond pads,” (issued as U.S. Pat. No. 8,467,153), and to which priority is also claimed through the chain of priority.
Number | Name | Date | Kind |
---|---|---|---|
5103359 | Marazzo | Apr 1992 | A |
5235482 | Schmitz | Aug 1993 | A |
5465186 | Bajorek et al. | Nov 1995 | A |
5861661 | Tang et al. | Jan 1999 | A |
5903056 | Canning et al. | May 1999 | A |
6025988 | Yan | Feb 2000 | A |
6036813 | Schulz et al. | Mar 2000 | A |
6046889 | Berding et al. | Apr 2000 | A |
6052890 | Malagrino, Jr. et al. | Apr 2000 | A |
6061206 | Foisy et al. | May 2000 | A |
6076256 | Drake et al. | Jun 2000 | A |
6101876 | Brooks et al. | Aug 2000 | A |
6147831 | Kennedy et al. | Nov 2000 | A |
6151189 | Brooks | Nov 2000 | A |
6151197 | Larson et al. | Nov 2000 | A |
6185067 | Chamberlain | Feb 2001 | B1 |
6185074 | Wang et al. | Feb 2001 | B1 |
6208486 | Gustafson et al. | Mar 2001 | B1 |
6212046 | Albrecht et al. | Apr 2001 | B1 |
6215616 | Phan et al. | Apr 2001 | B1 |
6228689 | Liu | May 2001 | B1 |
6272694 | Knoth | Aug 2001 | B1 |
6288866 | Butler et al. | Sep 2001 | B1 |
6292333 | Blumentritt et al. | Sep 2001 | B1 |
6344950 | Watson et al. | Feb 2002 | B1 |
6349464 | Codilian et al. | Feb 2002 | B1 |
6351352 | Khan et al. | Feb 2002 | B1 |
6381099 | Mei | Apr 2002 | B1 |
6382499 | Satoh et al. | May 2002 | B1 |
6388873 | Brooks et al. | May 2002 | B1 |
6399889 | Korkowski et al. | Jun 2002 | B1 |
6417979 | Patton, III et al. | Jul 2002 | B1 |
6421208 | Oveyssi | Jul 2002 | B1 |
6441998 | Abrahamson | Aug 2002 | B1 |
6462914 | Oveyssi et al. | Oct 2002 | B1 |
6466398 | Butler et al. | Oct 2002 | B1 |
6469871 | Wang | Oct 2002 | B1 |
6502300 | Casey et al. | Jan 2003 | B1 |
6519116 | Lin et al. | Feb 2003 | B1 |
6529345 | Butler et al. | Mar 2003 | B1 |
6529351 | Oveyssi et al. | Mar 2003 | B1 |
6535358 | Hauert et al. | Mar 2003 | B1 |
6545382 | Bennett | Apr 2003 | B1 |
6549381 | Watson | Apr 2003 | B1 |
6560065 | Yang et al. | May 2003 | B1 |
6571460 | Casey et al. | Jun 2003 | B1 |
6574073 | Hauert et al. | Jun 2003 | B1 |
6580574 | Codilian | Jun 2003 | B1 |
6594111 | Oveyssi et al. | Jul 2003 | B1 |
6603620 | Berding | Aug 2003 | B1 |
6614623 | Nakamura et al. | Sep 2003 | B2 |
6618222 | Watkins et al. | Sep 2003 | B1 |
6624966 | Ou-Yang et al. | Sep 2003 | B1 |
6624980 | Watson et al. | Sep 2003 | B1 |
6624983 | Berding | Sep 2003 | B1 |
6628473 | Codilian et al. | Sep 2003 | B1 |
6634086 | Korkowski et al. | Oct 2003 | B2 |
6639757 | Morley et al. | Oct 2003 | B2 |
6654200 | Alexander et al. | Nov 2003 | B1 |
6656772 | Huang | Dec 2003 | B2 |
6657811 | Codilian | Dec 2003 | B1 |
6661597 | Codilian et al. | Dec 2003 | B1 |
6661603 | Watkins et al. | Dec 2003 | B1 |
6674600 | Codilian et al. | Jan 2004 | B1 |
6690637 | Codilian | Feb 2004 | B1 |
6693767 | Butler | Feb 2004 | B1 |
6693773 | Sassine | Feb 2004 | B1 |
6697217 | Codilian | Feb 2004 | B1 |
6698286 | Little et al. | Mar 2004 | B1 |
6700736 | Wu et al. | Mar 2004 | B1 |
6703566 | Shiraishi et al. | Mar 2004 | B1 |
6704167 | Scura et al. | Mar 2004 | B1 |
6707637 | Codilian et al. | Mar 2004 | B1 |
6707641 | Oveyssi et al. | Mar 2004 | B1 |
6708389 | Carlson et al. | Mar 2004 | B1 |
6710980 | Hauert et al. | Mar 2004 | B1 |
6710981 | Oveyssi et al. | Mar 2004 | B1 |
6728062 | Ou-Yang et al. | Apr 2004 | B1 |
6728063 | Gustafson et al. | Apr 2004 | B1 |
6731470 | Oveyssi | May 2004 | B1 |
6735033 | Codilian et al. | May 2004 | B1 |
6741426 | Girard | May 2004 | B2 |
6741428 | Oveyssi | May 2004 | B1 |
6751051 | Garbarino | Jun 2004 | B1 |
6754042 | Chiou et al. | Jun 2004 | B1 |
6757132 | Watson et al. | Jun 2004 | B1 |
6757137 | Mei | Jun 2004 | B1 |
6759784 | Gustafson et al. | Jul 2004 | B1 |
6781780 | Codilian | Aug 2004 | B1 |
6781787 | Codilian et al. | Aug 2004 | B1 |
6781791 | Griffin et al. | Aug 2004 | B1 |
6790066 | Klein | Sep 2004 | B1 |
6791791 | Alfred et al. | Sep 2004 | B1 |
6791801 | Oveyssi | Sep 2004 | B1 |
6795262 | Codilian et al. | Sep 2004 | B1 |
6798603 | Singh et al. | Sep 2004 | B1 |
6801389 | Berding et al. | Oct 2004 | B1 |
6801404 | Oveyssi | Oct 2004 | B1 |
6816342 | Oveyssi | Nov 2004 | B1 |
6816343 | Oveyssi | Nov 2004 | B1 |
6825622 | Ryan et al. | Nov 2004 | B1 |
6826009 | Scura et al. | Nov 2004 | B1 |
6831810 | Butler et al. | Dec 2004 | B1 |
6839199 | Alexander, Jr. et al. | Jan 2005 | B1 |
6844996 | Berding et al. | Jan 2005 | B1 |
6847504 | Bennett et al. | Jan 2005 | B1 |
6847506 | Lin et al. | Jan 2005 | B1 |
6856491 | Oveyssi | Feb 2005 | B1 |
6856492 | Oveyssi | Feb 2005 | B2 |
6862154 | Subrahmanyam et al. | Mar 2005 | B1 |
6862156 | Lin et al. | Mar 2005 | B1 |
6862176 | Codilian et al. | Mar 2005 | B1 |
6865049 | Codilian et al. | Mar 2005 | B1 |
6865055 | Ou-Yang et al. | Mar 2005 | B1 |
6867946 | Berding et al. | Mar 2005 | B1 |
6867950 | Lin | Mar 2005 | B1 |
6876514 | Little | Apr 2005 | B1 |
6879466 | Oveyssi et al. | Apr 2005 | B1 |
6888697 | Oveyssi | May 2005 | B1 |
6888698 | Berding et al. | May 2005 | B1 |
6891696 | Ou-Yang et al. | May 2005 | B1 |
6898052 | Oveyssi | May 2005 | B1 |
6900961 | Butler | May 2005 | B1 |
6906880 | Codilian | Jun 2005 | B1 |
6906897 | Oveyssi | Jun 2005 | B1 |
6908330 | Garrett et al. | Jun 2005 | B2 |
6922308 | Butler | Jul 2005 | B1 |
6930848 | Codilian et al. | Aug 2005 | B1 |
6930857 | Lin et al. | Aug 2005 | B1 |
6934126 | Berding et al. | Aug 2005 | B1 |
6937441 | Okamoto et al. | Aug 2005 | B2 |
6937444 | Oveyssi | Aug 2005 | B1 |
6940698 | Lin et al. | Sep 2005 | B2 |
6941642 | Subrahmanyam et al. | Sep 2005 | B1 |
6947251 | Oveyssi et al. | Sep 2005 | B1 |
6950275 | Ali et al. | Sep 2005 | B1 |
6950284 | Lin | Sep 2005 | B1 |
6952318 | Ngo | Oct 2005 | B1 |
6954329 | Ojeda et al. | Oct 2005 | B1 |
6958884 | Ojeda et al. | Oct 2005 | B1 |
6958890 | Lin et al. | Oct 2005 | B1 |
6961212 | Gustafson et al. | Nov 2005 | B1 |
6961218 | Lin et al. | Nov 2005 | B1 |
6963469 | Gustafson et al. | Nov 2005 | B1 |
6965500 | Hanna et al. | Nov 2005 | B1 |
6967800 | Chen et al. | Nov 2005 | B1 |
6967804 | Codilian | Nov 2005 | B1 |
6967820 | Horie et al. | Nov 2005 | B2 |
6970329 | Oveyssi et al. | Nov 2005 | B1 |
6972924 | Chen et al. | Dec 2005 | B1 |
6972926 | Codilian | Dec 2005 | B1 |
6975476 | Berding | Dec 2005 | B1 |
6979931 | Gustafson et al. | Dec 2005 | B1 |
6980391 | Haro | Dec 2005 | B1 |
6980401 | Narayanan et al. | Dec 2005 | B1 |
6982853 | Oveyssi et al. | Jan 2006 | B1 |
6989953 | Codilian | Jan 2006 | B1 |
6990727 | Butler et al. | Jan 2006 | B1 |
6992862 | Childers et al. | Jan 2006 | B2 |
6996893 | Ostrander et al. | Feb 2006 | B1 |
7000309 | Klassen et al. | Feb 2006 | B1 |
7006324 | Oveyssi et al. | Feb 2006 | B1 |
7013731 | Szeremeta et al. | Mar 2006 | B1 |
7031104 | Butt et al. | Apr 2006 | B1 |
7035050 | Kulangara | Apr 2006 | B1 |
7035053 | Oveyssi et al. | Apr 2006 | B1 |
7050270 | Oveyssi et al. | May 2006 | B1 |
7057852 | Butler et al. | Jun 2006 | B1 |
7062837 | Butler | Jun 2006 | B1 |
7064921 | Yang et al. | Jun 2006 | B1 |
7064922 | Alfred et al. | Jun 2006 | B1 |
7064932 | Lin et al. | Jun 2006 | B1 |
7075701 | Novotny et al. | Jul 2006 | B2 |
7085098 | Yang et al. | Aug 2006 | B1 |
7085108 | Oveyssi et al. | Aug 2006 | B1 |
7092216 | Chang et al. | Aug 2006 | B1 |
7092251 | Henry | Aug 2006 | B1 |
7099099 | Codilian et al. | Aug 2006 | B1 |
7099117 | Subrahmanyam et al. | Aug 2006 | B1 |
7113371 | Hanna et al. | Sep 2006 | B1 |
7142397 | Venk | Nov 2006 | B1 |
7145753 | Chang et al. | Dec 2006 | B1 |
7154708 | Chhabra et al. | Dec 2006 | B2 |
RE39478 | Hatch et al. | Jan 2007 | E |
7161768 | Oveyssi | Jan 2007 | B1 |
7161769 | Chang et al. | Jan 2007 | B1 |
7180711 | Chang et al. | Feb 2007 | B1 |
7193819 | Chen et al. | Mar 2007 | B1 |
7205484 | Shiraishi et al. | Apr 2007 | B2 |
7209317 | Berding et al. | Apr 2007 | B1 |
7209319 | Watkins et al. | Apr 2007 | B1 |
D542289 | Diebel | May 2007 | S |
7212377 | Ou-Yang et al. | May 2007 | B1 |
7215513 | Chang et al. | May 2007 | B1 |
7215514 | Yang et al. | May 2007 | B1 |
7224551 | Ou-Yang et al. | May 2007 | B1 |
D543981 | Diebel | Jun 2007 | S |
7227725 | Chang et al. | Jun 2007 | B1 |
7239475 | Lin et al. | Jul 2007 | B1 |
7245458 | Zhang et al. | Jul 2007 | B2 |
7271978 | Santini et al. | Sep 2007 | B1 |
7274534 | Choy et al. | Sep 2007 | B1 |
7280311 | Ou-Yang et al. | Oct 2007 | B1 |
7280317 | Little et al. | Oct 2007 | B1 |
7280319 | McNab | Oct 2007 | B1 |
7292406 | Huang | Nov 2007 | B1 |
7298584 | Yamada et al. | Nov 2007 | B1 |
7298593 | Yao et al. | Nov 2007 | B2 |
7327537 | Oveyssi | Feb 2008 | B1 |
7339268 | Ho et al. | Mar 2008 | B1 |
7342746 | Lin | Mar 2008 | B1 |
7344060 | Koh | Mar 2008 | B2 |
RE40203 | Hatch et al. | Apr 2008 | E |
7353524 | Lin et al. | Apr 2008 | B1 |
7359154 | Yao et al. | Apr 2008 | B2 |
7369368 | Mohajerani | May 2008 | B1 |
7372669 | Deguchi et al. | May 2008 | B2 |
7372670 | Oveyssi | May 2008 | B1 |
7375874 | Novotny et al. | May 2008 | B1 |
7375929 | Chang et al. | May 2008 | B1 |
7379266 | Ou-Yang et al. | May 2008 | B1 |
7381904 | Codilian | Jun 2008 | B1 |
7385784 | Berding et al. | Jun 2008 | B1 |
7388731 | Little et al. | Jun 2008 | B1 |
7388733 | Swanson et al. | Jun 2008 | B2 |
7394139 | Park et al. | Jul 2008 | B2 |
7414814 | Pan | Aug 2008 | B1 |
7420771 | Hanke et al. | Sep 2008 | B1 |
7434987 | Gustafson et al. | Oct 2008 | B1 |
7436625 | Chiou et al. | Oct 2008 | B1 |
7440234 | Cheng et al. | Oct 2008 | B1 |
7440236 | Bennin et al. | Oct 2008 | B1 |
7450346 | Arya et al. | Nov 2008 | B2 |
7477488 | Zhang et al. | Jan 2009 | B1 |
7477489 | Chen et al. | Jan 2009 | B1 |
7482800 | Ooyabu et al. | Jan 2009 | B2 |
7484291 | Ostrander et al. | Feb 2009 | B1 |
7505231 | Golgolab et al. | Mar 2009 | B1 |
7515240 | Lu et al. | Apr 2009 | B2 |
7518830 | Panchal et al. | Apr 2009 | B1 |
7525767 | Erpelding | Apr 2009 | B2 |
7525769 | Yao et al. | Apr 2009 | B2 |
7529064 | Huang et al. | May 2009 | B1 |
7538981 | Pan | May 2009 | B1 |
7561374 | Codilian et al. | Jul 2009 | B1 |
7567410 | Zhang et al. | Jul 2009 | B1 |
7576955 | Yang et al. | Aug 2009 | B1 |
7593181 | Tsay et al. | Sep 2009 | B1 |
7605999 | Kung et al. | Oct 2009 | B1 |
7609486 | Little | Oct 2009 | B1 |
7610672 | Liebman | Nov 2009 | B1 |
7616408 | Choi et al. | Nov 2009 | B2 |
7633721 | Little et al. | Dec 2009 | B1 |
7633722 | Larson et al. | Dec 2009 | B1 |
7652890 | Ohsawa et al. | Jan 2010 | B2 |
7656609 | Berding et al. | Feb 2010 | B1 |
7660075 | Lin et al. | Feb 2010 | B1 |
7672083 | Yu et al. | Mar 2010 | B1 |
7684155 | Huang et al. | Mar 2010 | B1 |
7686555 | Larson et al. | Mar 2010 | B1 |
7697102 | Hirakata et al. | Apr 2010 | B2 |
7709078 | Sevier et al. | May 2010 | B1 |
7715149 | Liebman et al. | May 2010 | B1 |
7729091 | Huang et al. | Jun 2010 | B1 |
7751145 | Lin et al. | Jul 2010 | B1 |
7764467 | Hanya et al. | Jul 2010 | B2 |
7826177 | Zhang et al. | Nov 2010 | B1 |
7852601 | Little | Dec 2010 | B1 |
7864488 | Pan | Jan 2011 | B1 |
7876664 | Tsukagoshi et al. | Jan 2011 | B2 |
7898770 | Zhang et al. | Mar 2011 | B1 |
7903369 | Codilian et al. | Mar 2011 | B1 |
7907369 | Pan | Mar 2011 | B1 |
7911742 | Chang et al. | Mar 2011 | B1 |
7926167 | Liebman et al. | Apr 2011 | B1 |
7957095 | Tsay et al. | Jun 2011 | B1 |
7957102 | Watson et al. | Jun 2011 | B1 |
7961436 | Huang et al. | Jun 2011 | B1 |
8004782 | Nojaba et al. | Aug 2011 | B1 |
8009384 | Little | Aug 2011 | B1 |
8015692 | Zhang et al. | Sep 2011 | B1 |
8018687 | Little et al. | Sep 2011 | B1 |
8030576 | Kamei et al. | Oct 2011 | B2 |
8031431 | Berding et al. | Oct 2011 | B1 |
8064168 | Zhang et al. | Nov 2011 | B1 |
8064170 | Pan | Nov 2011 | B1 |
8068314 | Pan et al. | Nov 2011 | B1 |
8081401 | Huang et al. | Dec 2011 | B1 |
8100017 | Blick et al. | Jan 2012 | B1 |
8111483 | Arai | Feb 2012 | B2 |
8116038 | Zhang et al. | Feb 2012 | B1 |
8120872 | Sekii et al. | Feb 2012 | B2 |
8125740 | Yang et al. | Feb 2012 | B1 |
8142671 | Pan | Mar 2012 | B1 |
8156633 | Foisy | Apr 2012 | B1 |
8159785 | Lee et al. | Apr 2012 | B1 |
8169746 | Rice et al. | May 2012 | B1 |
8189298 | Lee et al. | May 2012 | B1 |
8194348 | Jacoby et al. | Jun 2012 | B2 |
8194354 | Zhang et al. | Jun 2012 | B1 |
8194355 | Pan et al. | Jun 2012 | B1 |
8203806 | Larson et al. | Jun 2012 | B2 |
8223453 | Norton et al. | Jul 2012 | B1 |
8228631 | Tsay et al. | Jul 2012 | B1 |
8233239 | Teo et al. | Jul 2012 | B1 |
8248733 | Radavicius et al. | Aug 2012 | B1 |
8259417 | Ho et al. | Sep 2012 | B1 |
8274760 | Zhang et al. | Sep 2012 | B1 |
8276256 | Zhang et al. | Oct 2012 | B1 |
8279560 | Pan | Oct 2012 | B1 |
8284514 | Garbarino | Oct 2012 | B1 |
8289646 | Heo et al. | Oct 2012 | B1 |
8295013 | Pan et al. | Oct 2012 | B1 |
8295014 | Teo et al. | Oct 2012 | B1 |
8300352 | Larson et al. | Oct 2012 | B1 |
8305708 | Tacklind | Nov 2012 | B2 |
8320084 | Shum et al. | Nov 2012 | B1 |
8320086 | Moradnouri et al. | Nov 2012 | B1 |
8322021 | Berding et al. | Dec 2012 | B1 |
8325446 | Liu et al. | Dec 2012 | B1 |
8325447 | Pan | Dec 2012 | B1 |
8339748 | Shum et al. | Dec 2012 | B2 |
8345387 | Nguyen | Jan 2013 | B1 |
8363351 | Little | Jan 2013 | B1 |
8363353 | Yawata | Jan 2013 | B2 |
8369044 | Howie et al. | Feb 2013 | B2 |
8411389 | Tian et al. | Apr 2013 | B1 |
8416522 | Schott et al. | Apr 2013 | B1 |
8416524 | Saichi et al. | Apr 2013 | B2 |
8416534 | Heo et al. | Apr 2013 | B1 |
8422171 | Guerini | Apr 2013 | B1 |
8422175 | Oveyssi | Apr 2013 | B1 |
8432641 | Nguyen | Apr 2013 | B1 |
8437101 | German et al. | May 2013 | B1 |
8438721 | Sill | May 2013 | B1 |
8446688 | Quines et al. | May 2013 | B1 |
8451559 | Berding et al. | May 2013 | B1 |
8467153 | Pan et al. | Jun 2013 | B1 |
8472131 | Ou-Yang et al. | Jun 2013 | B1 |
8477459 | Pan | Jul 2013 | B1 |
8477460 | Liebman | Jul 2013 | B1 |
8488270 | Brause et al. | Jul 2013 | B2 |
8488280 | Myers et al. | Jul 2013 | B1 |
8499652 | Tran et al. | Aug 2013 | B1 |
8514514 | Berding et al. | Aug 2013 | B1 |
8530032 | Sevier et al. | Sep 2013 | B1 |
8542465 | Liu et al. | Sep 2013 | B2 |
8547664 | Foisy et al. | Oct 2013 | B1 |
8553356 | Heo et al. | Oct 2013 | B1 |
8553366 | Hanke | Oct 2013 | B1 |
8553367 | Foisy et al. | Oct 2013 | B1 |
8564909 | Dunn et al. | Oct 2013 | B1 |
8611052 | Pan et al. | Dec 2013 | B1 |
8616900 | Lion | Dec 2013 | B1 |
8665555 | Young et al. | Mar 2014 | B1 |
8665566 | Pan et al. | Mar 2014 | B1 |
8667667 | Nguyen et al. | Mar 2014 | B1 |
8693139 | Tian et al. | Apr 2014 | B2 |
8693140 | Weiher et al. | Apr 2014 | B1 |
8699179 | Golgolab et al. | Apr 2014 | B1 |
8702998 | Guerini | Apr 2014 | B1 |
8705201 | Casey et al. | Apr 2014 | B2 |
8705209 | Seymour et al. | Apr 2014 | B2 |
8711521 | Feng et al. | Apr 2014 | B2 |
8717706 | German et al. | May 2014 | B1 |
8743509 | Heo et al. | Jun 2014 | B1 |
8755148 | Howie et al. | Jun 2014 | B1 |
8756776 | Chen et al. | Jun 2014 | B1 |
8760800 | Brown et al. | Jun 2014 | B1 |
8760812 | Chen et al. | Jun 2014 | B1 |
8760814 | Pan et al. | Jun 2014 | B1 |
8760816 | Myers et al. | Jun 2014 | B1 |
8773812 | Gustafson et al. | Jul 2014 | B1 |
8780491 | Perlas et al. | Jul 2014 | B1 |
8780504 | Teo et al. | Jul 2014 | B1 |
8792205 | Boye-Doe et al. | Jul 2014 | B1 |
8797677 | Heo et al. | Aug 2014 | B2 |
8797689 | Pan et al. | Aug 2014 | B1 |
8824095 | Dougherty | Sep 2014 | B1 |
8824098 | Huang et al. | Sep 2014 | B1 |
20010017749 | Stefansky | Aug 2001 | A1 |
20050030670 | Ando et al. | Feb 2005 | A1 |
20050243472 | Kamigama et al. | Nov 2005 | A1 |
20060098347 | Yao et al. | May 2006 | A1 |
20060146262 | Yu et al. | Jul 2006 | A1 |
20060157869 | Huang et al. | Jul 2006 | A1 |
20070246251 | Shiraishi et al. | Oct 2007 | A1 |
20080002303 | Wang et al. | Jan 2008 | A1 |
20080068757 | Kamigama et al. | Mar 2008 | A1 |
20080088975 | Bennin et al. | Apr 2008 | A1 |
20080225439 | Komura | Sep 2008 | A1 |
20090151994 | Ohsawa et al. | Jun 2009 | A1 |
20090207529 | Yao | Aug 2009 | A1 |
20090211789 | Yeates et al. | Aug 2009 | A1 |
20090253233 | Chang et al. | Oct 2009 | A1 |
20100007993 | Contreras et al. | Jan 2010 | A1 |
20100118444 | Rothenberg et al. | May 2010 | A1 |
20100176827 | Yamazaki et al. | Jul 2010 | A1 |
20100188778 | Castagna | Jul 2010 | A1 |
20100195474 | Tsukuda et al. | Aug 2010 | A1 |
20100220414 | Klarqvist et al. | Sep 2010 | A1 |
20110122530 | Sekii et al. | May 2011 | A1 |
20110212281 | Jacoby et al. | Sep 2011 | A1 |
20110317309 | Shum et al. | Dec 2011 | A1 |
20120067626 | Mizutani | Mar 2012 | A1 |
20120200957 | Yawata | Aug 2012 | A1 |
20130038964 | Garbarino et al. | Feb 2013 | A1 |
20130050872 | Sekii et al. | Feb 2013 | A1 |
20130091698 | Banshak, Jr. et al. | Apr 2013 | A1 |
20130155546 | Heo et al. | Jun 2013 | A1 |
20130290988 | Watson et al. | Oct 2013 | A1 |
Entry |
---|
Notice of Allowance dated Apr. 11, 2012 from U.S. Appl. No. 13/078,829, 22 pages. |
Notice of Allowance dated May 21, 2012 from U.S. Appl. No. 13/164,936, 17 pages. |
Notice of Allowance dated May 21, 2012 from U.S. Appl. No. 13/398,578, 16 pages. |
Notice of Allowance dated May 29, 2012 from U.S. Appl. No. 13/164,959, 17 pages. |
Notice of Allowance dated Feb. 20, 2013 from U.S. Appl. No. 12/916,237, 7 pages. |
Office Action dated May 22, 2012 from U.S. Appl. No. 12/916,237, 8 pages. |
Tzong-Shii Pan, et al., U.S. Appl. No. 13/897,609, filed May 20, 2013, 23 pages. |
Tzong-Shii Pan, et al., U.S. Appl. No. 12/916,237, filed Oct. 29, 2010, 23 pages. |
Number | Date | Country | |
---|---|---|---|
20150356986 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12916237 | Oct 2010 | US |
Child | 13897609 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13897609 | May 2013 | US |
Child | 14492266 | US |