Head-up display or HUD systems are known for presenting information to an operator of a vehicle without requiring the operator to look away from their usual viewpoint. As best illustrated in
A known issue with conventional HUD systems is that vibrations, especially at resonant frequencies of the mirror and its supporting components, can cause the mirror to be moved out of a desired position. Additionally, thermal expansion of the mirror and supporting components is known to interfere with positioning the mirror.
According to an aspect of the disclosure, a head-up display system for a vehicle is provided. The head-up display system includes a picture generating unit for projecting information. The head-up display system also includes a housing for being connected with a dashboard of the vehicle. A mirror is rotatably connected to the housing for reflecting the information from the picture generating unit toward a combiner panel such that the information may be viewed by an occupant of the vehicle. A first mirror leg extends from the mirror along a first axis and a second mirror leg extends from the mirror opposite the first mirror leg along a second axis. A first ball joint assembly pivotably connects the first mirror leg to the housing and a second ball joint assembly pivotably connects the second mirror leg to the housing.
Due to the first and second ball joint assemblies, the first and second mirror legs may be positioned at various orientations and at various heights relative to the housing while remaining fixed at a desired location even during rotation of the mirror. This provides flexibility in packaging the system and allows for fine tuning a range of mirror orientations.
According to another aspect of the disclosure, another head-up display system for a vehicle is provided. The head-up display system includes a picture generating unit for projecting information. The head-up display system also includes a housing for being connected with a dashboard of the vehicle. A mirror is rotatably connected to the housing for reflecting the information from the picture generating unit toward a combiner panel such that the information may be viewed by an occupant of the vehicle. A first mirror leg extends from the mirror along a first axis and a second mirror leg extends from the mirror opposite the first mirror leg along a second axis. The first and second mirror legs are rotatably coupled with the housing. At least one of the first and second mirror legs are translatable along the first or second axis relative to the housing.
Due to the ability to translate the first or second mirror leg relative to the housing, thermal expansion the mirror and mirror legs is accommodated, thus preventing misalignment of the first and second mirror legs during rotation of the mirror, and preventing component wear issues.
According to another aspect of the disclosure, another head-up display system for a vehicle is provided. The head-up display system includes a picture generating unit for projecting information. The head-up display system also includes a housing for being connected with a dashboard of the vehicle. A mirror is rotatably connected to the housing for reflecting the information from the picture generating unit toward a combiner panel such that the information may be viewed by an occupant of the vehicle. A first mirror leg extends from the mirror along a first axis and a second mirror leg extends from the mirror opposite the first mirror leg along a second axis. A first bearing rotatably connects the first leg to the housing and a second bearing rotatably connects the second leg to the housing.
Due to the first and second bearings, the mirror may easily be rotated to desired positions with a low friction, thereby allowing the use of fast and accurate actuators to control rotation of the mirror.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
The detailed description refers to the following drawings, in which like numerals refer to like items, and in which:
The invention is described more fully hereinafter with references to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure is thorough, and will fully convey the scope of the invention to those skilled in the art. It will be understood that for the purposes of this disclosure, “at least one of each” will be interpreted to mean any combination the enumerated elements following the respective language, including combination of multiples of the enumerated elements. For example, “at least one of X, Y, and Z” will be construed to mean X only, Y only, Z only, or any combination of two or more items X, Y, and Z (e.g., XYZ, XZ, YZ, X). Throughout the drawings and the detailed description, unless otherwise described, the same drawing reference numerals are understood to refer to the same elements, features, and structures. The relative size and depiction of these elements may be exaggerated for clarity, illustration, and convenience.
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a head-up display system 20 for a vehicle is generally shown. As best illustrated in
As best shown in
An optical mirror 38 is rotatably and pivotably connected to the base 30 for reflecting the information from the picture generating unit 36 through the window 34 of the housing 22 and toward a combiner panel. It should be appreciated that the combiner panel may be a windshield or other semi-transparent unit.
The mirror 40 extends between a first edge 42 and a second edge 44. A first mirror leg 46 extends from the first edge 42 along a first axis A. A second mirror leg 48 extends from the second mirror edge 50 along a second axis B. As best illustrated in
As best shown in
A first ball joint assembly 78 pivotably connects the first mirror leg 46 to the housing 22. Likewise, a second ball joint assembly 80 pivotably connects the second mirror leg 48 to the housing 22. It should be appreciated that the first and second ball joint assemblies 78 allow the mirror 40 to remain at a desired orientation during rotation of the mirror 40, even with the first and second mirror legs 46, 48 positioned such that they are not coplanar with one another. For example, as illustrated in
As best shown in
The first ball joint assembly 78 further includes a first mirror interface member 100 that is coupled with the first bearing 94. The first mirror interface member 100 includes a tube 102 that extends along the first axis A and is received by, and connected to the first bearing 94. As best shown in
One or more springs may be introduced between the first balls 82 and the first shoulder 104 to remove any gaps, and maintain a high coefficient of friction between the first outer bearing wall 98 and the first inner wall 92. This further helps to ensure that the first resonance frequency of the system 20 is relatively high.
The first mirror interface member 100 further includes a plurality of first connecting fins 106 that are flexibly connected to the shoulder and extend generally parallel to the first axis A. The first connecting fins 106 are positioned in circumferentially spaced relationship with one another. The first mirror leg 46 is received by the connecting fins 106 and moveable along the first axis A relative to the connecting fins 106. Axial movement of the first mirror leg 46 is limited by the first cylindrical portion 52 and the limiting tabs 60 of the first limiting legs 58. It should further be appreciated that the first connecting fins 106 allow for the translation of the first mirror leg 46 along the first axis while also allowing diameter expansion of the first mirror interface member 100 when the temperature arises. The first connecting fins 106 also provide for preloading on the first mirror axis A and easy assembly of the system 20, as the first mirror leg 46 may easily be snapped between the first connecting fins 106 during assembly.
It should also be appreciated that the arrangement of the first ball joint assembly 78 including a first bearing 94 advantageously allows the mirror 40 to easily rotate while the first and second mirror legs 46, 68 are held at a desired angle relative to the housing 22. It should further be appreciated that the first bearing 94 provides easy rotation of the mirror 40 with low friction, thereby allowing the use of fast and accurate actuators to control rotation of the mirror 40.
As best shown in
The second ball joint assembly 80 further includes a second bearing 118 that is fixedly received by the second channel 114 of the second body 108 and pivotable and rotatable about the second axis B. The second bearing 118 includes a second outer ring 120 and a plurality of second balls 122 positioned against an inner circumference of the second outer ring 120. The second outer ring 120 has a second outer bearing wall 124 that has a concave shape that is pivotably received by the second inner wall 116 of the second channel 114. The second outer bearing wall 124 is fitted snugly against the second inner wall 116 such that there is a high coefficient of friction between the second outer bearing wall 124 and the second inner wall 116 in order to inhibit pivoting movement of the mirror 40 from pivoting during normal vehicle operations once the system 20 is assembled and the mirror 40 is correctly aligned. This further helps to ensure that the first resonance frequency of the system 20 is relatively high. It should also be appreciated that the arrangement of the second ball joint assembly 80 including the second bearing 118 advantageously allows the mirror 40 to easily rotate while the first and second mirror legs 46, 68 are held at a desired angle relative to the housing 22.
The second ball joint assembly 80 further includes a second mirror interface member 128 that is coupled with the second bearing 118. The second mirror interface member 128 includes a second tube 130 that extends along the second axis B and is received by and connected to the second bearing 118. The second mirror interface member 128 further includes a second shoulder 132 that extends radially outwardly from the second tube 130. The second balls 122 abut the second shoulder 132 to provide rotation of the second mirror interface member 128 relative to the second body 108. One or more springs may be introduced between the second balls 128 and the second shoulder 132 to remove any gaps, and maintain a high friction between the second outer bearing wall 124 and the second inner wall 116. This further helps to ensure that the first resonance frequency of the system 20 is relatively high. The second mirror interface member 128 further includes a plurality of second connecting fins 134 flexibly connected to the second shoulder 132 and extending in an arc shape away from the second shoulder 132 in circumferentially spaced relationship with one another. A second ball 105 formed at an end of the second mirror leg 48 is received by the second connecting fins 134 and pivotable within the second connecting fins 134. The second connecting fins 134 act as a ball joint allowing pivoting of the second mirror leg 48 while inhibiting translation of the second mirror leg 48. The second connecting fins 134 provide for preloading on the second mirror axis B and easy assembly of the system 20, as the second mirror leg 48 may easily be snapped between the second connecting fins 134 during assembly.
As a person skilled in the art will readily appreciate, the above description is meant as an illustration of implementation of the principles this invention. This description is not intended to limit the scope or application of this invention in that the invention is susceptible to modification, variation and change, without departing from spirit of this invention, as defined in the following claims.