Head up display with an angled light pipe

Information

  • Patent Grant
  • 10705337
  • Patent Number
    10,705,337
  • Date Filed
    Monday, April 15, 2019
    6 years ago
  • Date Issued
    Tuesday, July 7, 2020
    5 years ago
Abstract
A head up display includes a light pipe and a waveguide combiner. The light pipe is configured to expand a pupil in a first direction and includes an input grating and an output put grating. The light pipe also includes four elongated surfaces, and the input grating and the output grating are provided in one or more planes parallel to two of the elongated surfaces. The waveguide combiner is configured to expand the pupil in a second direction perpendicular to the first direction. The first light pipe is disposed at an angle with respect to a waveguide combiner.
Description
BACKGROUND

Embodiments of the inventive concepts disclosed herein relate to substrate guided displays including but not limited to head up displays (HUDs), such as, fixed HUDs and worn displays (e.g., head worn displays, helmet mounted displays, virtual glasses).


HUDs provide significant safety and operational benefits including precise energy management and conformal flight paths. These safety and operational benefits are enjoyed by operators of air transport aircraft, military aircraft, regional aircraft and high end business jets where HUDs are generally employed. These safety and operational benefits are also desirable in smaller aircraft.


Conventional HUDs are generally large, expensive and difficult to fit into smaller aircraft, such as, business and regional jets as well as general aviation airplanes. Often, conventional HUDs rely on large optical components to form adequate field of view and viewing eye box. The large optical components are often associated with collimating or non-collimating projectors and include lens, prisms, mirrors, etc. The volume of the packages including the optical components of the HUD is too large to fit within the constrained space in the cockpit of smaller aircraft. Further, conventional HUDs rely upon optical components which are generally too expensive for the cost requirements of smaller aircraft and worn displays.


Substrate guided HUDs have been proposed which use waveguide technology with diffraction gratings to preserve eye box size while reducing size of the HUD. U.S. Pat. No. 4,309,070 issued St. Leger Searle and U.S. Pat. No. 4,711,512 issued to Upatnieks disclose substrate waveguide HUDs. U.S. Pat. No. 8,634,139 discloses a catadioptric collimator for HUDs. The U.S. patent applications listed in the Cross Reference to Related Applications above disclose compact HUDS and near eye HUDs using multiple gratings, multiple waveguides, light pipes, and/or multiple waveguide layers for pupil expansion and are incorporated herein by reference in their entireties and assigned to the assignee of the present application.


SUMMARY

In one aspect, embodiments of the inventive concepts disclosed herein relate to a head up display. The head up display includes a light pipe and a waveguide combiner. The light pipe is configured to expand a pupil in a first direction and includes an input grating and an output grating. The light pipe also includes four elongated surfaces, and the input grating and the output grating are provided in one or more planes parallel to two of the elongated surfaces. The waveguide combiner is configured to expand the pupil in a second direction perpendicular to the first direction. The first light pipe is disposed at an angle with respect to a waveguide combiner.


In a further aspect, embodiments of the inventive concepts disclosed herein relate to a method of providing information to a user. The method includes providing light from a projector and providing the light from the projector to a light pipe and expanding the pupil in the first direction in the first light pipe. The method also includes providing light from the light pipe to a waveguide combiner. The light pipe has an elongated surface disposed at an angle and spaced apart from a main surface of the waveguide combiner.


In a still further aspect, embodiments of the inventive concepts disclosed herein relate to a head up display. The head up display system includes at least one light pipe, and a waveguide combiner. The at least one light pipe is spaced apart from and disposed at an angle with respect to the waveguide combiner. The light pipe is configured to expand a pupil in a first direction and provide light to an input grating on the waveguide combiner. The waveguide combiner is configured to expand the pupil in a second direction.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the inventive concepts disclosed herein are described with reference to the accompanying drawings, wherein like numerals denote like elements; and:



FIG. 1 is a top view schematic drawing of a head up display (HUD) display system in accordance with some exemplary embodiments of the inventive concepts disclosed herein;



FIG. 2 is a perspective view schematic drawing of the HUD system illustrated in FIG. 1;



FIG. 3 is a top view schematic drawing of a head up display (HUD) display system in accordance with some exemplary embodiments of the inventive concepts disclosed herein;



FIG. 4 is a perspective view schematic drawing of the HUD system illustrated in FIG. 3;



FIG. 5 is a top view schematic drawing of a head up display (HUD) display system in accordance with some exemplary embodiments of the inventive concepts disclosed herein;



FIG. 6 is a perspective view schematic drawing of the HUD system illustrated in FIG. 5;



FIG. 7 is a top view schematic drawing of a head up display (HUD) display system in accordance with some exemplary embodiments of the inventive concepts disclosed herein; and



FIG. 8 is a perspective view schematic drawing of the HUD system illustrated in FIG. 7.





DETAILED DESCRIPTION

Before describing embodiments of the inventive concepts disclosed herein in detail the, it should be observed that the inventive concepts disclosed herein include, but are not limited to, a novel structural combination of optical components and not in the particular detailed configurations thereof. Accordingly, the structure, methods of manufacture and use, functions, control and arrangement of components have been illustrated in the drawings by readily understandable block representations and schematic drawings, in order not to obscure the disclosure with structural details which will be readily apparent to those skilled in the art, having the benefit of the description herein. Further, the inventive concepts disclosed herein are not limited to the particular embodiments depicted in the exemplary diagrams, but should be construed in accordance with the language in the claims.


In some embodiments, a head up display (HUD) is designed using a light pipe that does not suffer from less than desirable refractive index differences between the light pipe and the planar waveguide. In some embodiments, the light pipe is separated from the planar waveguide by an airgap and is not attached to planar waveguide with an adhesive as conventional wisdom dictates. The separation between the two optical components the HUD reduces constraints on planarity between the two optical components, thereby making the device easier to manufacture and test because the two optical components can be tested separately in some embodiments. Poor co-planarity in conventional systems can cause double images. In some embodiments, the light pipe uses a two grating design (an input grating and output grating) and does not use a turning grating or reflective array, thereby reducing drawbacks in the field of view due to very high skew ray angles in light pipe. In some embodiments, the HUD achieves a field of view (FOV) of 36 degrees (circular or square) which is greater than a conventional 25 degree circular or square FOV.


With reference to FIGS. 1 and 2, a head up display (HUD) system 100 can be utilized in various applications, including aviation, medical, naval, targeting, ground based, military, etc. The term HUD as used herein refers to a fixed HUD, a near eye display, a worn display, a helmet mounted display or any type of display using a combiner for overlaying images from an image source over a real world scene.


The HUD system 100 is configured for use in smaller cockpit environments and in worn display applications and yet provides an appropriate field of view and eye box for avionic applications in some embodiments. The HUD system 100 can be configured for use with worn components, such as, glasses, goggles, hats, helmets, etc. or be a HUD system with a fixed combiner in some embodiments. The HUD system 100 can have a variety of sizes and have a variety of display areas. A worn version of the HUD system 100 can have a display area of 40 centimeter squared or less, and a fixed version of the HUD system 100 can have a display area of more than 50 centimeters squared.


As shown in the embodiment of FIGS. 1 and 2, the HUD system 100 includes a projector 102 and a substrate waveguide system 104. The projector 102 provides light (an image) to the substrate waveguide system 104 which operates as a combiner. As shown in the embodiment of FIGS. 1 and 2, the substrate waveguide system 104 includes a light pipe 106 and a substrate combiner 108. The substrate waveguide system 104 is a transparent combiner for viewing the real world scene through main surfaces or sides 112 and 114 of the substrate combiner 108. The sides 112 and 114 are planar, flat surfaces. The substrate waveguide system 104 achieves close to a 90 degree angle between the two directions of pupil expansion and therefore provides a compact and high efficiency system with large unvignetted eye box with dispersion compensation in some embodiments. In some embodiments, the light enters the light pipe 106 as collimated light and leaves the light pipe 106 and the substrate combiner 108 as collimated light.


As shown in the embodiment of FIGS. 1 and 2, the light pipe 106 is a glass elongated rectangular prism with four elongated sides and two square or rectangular ends. The material for the light pipe 106 has a high index of refraction (e.g., greater than 1.5 in some embodiments) (e.g., 1.52). Other suitable optical materials can be used for the light pipe 106. The light pipe 106 includes an input grating 116, a beam splitter 118, and an output grating 120. The substrate combiner 108 is a glass or plastic material having a high index of refraction (e.g., greater than 1.5 in some embodiments) (e.g., 1.52). The substrate combiner 108 includes an input grating 130, a beam splitter 132, and an output grating 134.


In operation, the HUD system 100 provides images from the projector 102 via the substrate waveguide system 104 to a pilot or other operator so that the pilot or other operator simultaneously views the images and a real world scene in some embodiments. The images can include graphic and/or text information (e.g., flight path vector) related to avionic information in some embodiments. In addition, the images can include synthetic or enhanced vision images. In some embodiments, collimated light is provided to the substrate waveguide system 104 so that the pilot can view the image conformally on the real world scene through the substrate waveguide system 104.


The projector 102 includes an image source and collimating optics in some embodiments. The projector 102 provides an image from the image source and collimates the image via collimating optics for display on the substrate waveguide system 104. The projector 102 can be a collimating optical system including but not limited to any one of the collimators described in the applications incorporated herein by reference, such as, U.S. patent application Ser. No. 15/136,684, U.S. patent application Ser. No. 14/715,332, U.S. patent application Ser. No. 14/814,020, U.S. patent application Ser. No. 13/432,662, and U.S. Pat. No. 8,634,139. The projector 102 can use light emitting diode (LED) illumination, or can be a digital light projector-based (DLP-based), projector, a liquid crystal on silicon-based (LCOS-based) projector, or a laser-based projector in some embodiments. In some embodiments, the projector 102 is a monochrome projector or a color projector using a separate waveguide system 104 for each color.


As shown in the embodiment of FIGS. 1 and 2, the projector 102 and the user are disposed on respective opposing sides 112 and 114 of the substrate combiner 108. The light pipe 106 is disposed between the projector 102 and the main side 112 of the substrate combiner 108.


The input grating 116 of the light pipe 106 is disposed on an end portion 122 of faces or surfaces 142 or 144 (or surfaces parallel to the surfaces 142 and 144) of the light pipe 106 in some embodiments. As shown in the embodiment of FIGS. 1 and 2, the surfaces 142 and 144 are two of the four elongated surfaces of the light pipe 106 and are parallel to each other. The beam splitter 118 is disposed in the light pipe 106 perpendicular to the faces or surfaces 142 and 144 and between the input grating 116 and the output grating 120. The output grating 120 is disposed near an end portion 124 of the light pipe 106. The input grating 116 and the output grating 120 are matched, reciprocal gratings in some embodiments. The input grating 116 and the output grating 120 are matched in spatial frequency (e.g., have the same period) in some embodiments. The light from the projector 102 is diffracted into the light pipe 106 by the input grating 116 and propagates down the light pipe 106 by total internal reflection until it reaches the output grating 120 where it is ejected from the light pipe 106 to the input grating 130 of the substrate combiner 108.


As shown in the embodiment of FIGS. 1 and 2, the substrate combiner 108 is a rectangular prism with four elongated sides and two ends. The main sides 112 and 114 are two of the four elongated surfaces and provide a display surface. The substrate combiner 108 includes the input grating 130 disposed on a top portion 136 of main sides 112 or 114 (or a surface parallel to the sides 112 or 114) of the substrate combiner 108 in some embodiments. The beam splitter 132 is disposed in the substrate combiner 108 parallel with the sides 112 and 114 and between the input grating 130 and the output grating 134. The output grating 134 is disposed at a bottom portion 138 of the substrate combiner 108 on the sides 112 and 114 (or their parallel) in some embodiments. The input grating 130 and the output grating 134 are matched, reciprocal gratings in some embodiments. The input grating 130 and the output grating 134 are matched in spatial frequency in some embodiments. The light from the output grating 120 of the light pipe 106 is diffracted into the substrate combiner 108 by the input grating 130 and propagates down the light pipe 106 by total internal reflection until it reaches the output grating 134 where it is ejected from the substrate combiner 108 toward the user.


The input gratings 116 and 130 and the output gratings 120 and 134 can be placed on or within the local planes of the light pipe 106 and the substrate combiner 108. The input gratings 116 and 130 and the output gratings 120 and 134 can include but are not limited to volume holograms, replicated gratings or surface relief gratings. In some embodiments, the input gratings 116 and 130 and the output gratings 120 and 134 are encapsulated gratings such as those described in U.S. Pat. No. 9,519,089, incorporated herein by reference in its entirety. The input gratings 116 and 130 and the output gratings 120 and 134 are reflection type or transmission type gratings in some embodiments. In some embodiments, the output gratings 120 and 134 are rolled-K-vector output gratings. Rolled K-vector output gratings include volumetric diffraction gratings with different K vectors and the same grating period in some embodiments.


By making the gratings reciprocal, skewed rays are prevented from diffracting. The design only needs to consider the fields coming from the input couplers that are incident on the output couplers at the same angles they left the input couplers. The use of turning gratings, as used in other conventional systems, relies on the ability of the turning grating to efficiently diffract skew rays. In practice, gratings fail to perform well when the skew angle exceeds 45 degrees, especially at the higher angles >70. This puts limitations on the total FOV that can be viewed with a waveguide system containing a turning grating.


In some embodiments, an air gap or low index of refraction material is disposed between the light pipe 106 and the substrate combiner 108. The provision of the air gap provides a higher numerical aperture (NA) which results in a larger field of view. NA=square root (n2light pipe−n2air) where: nlight pipe is the index of refraction of the glass material associated with the light pipe (e.g., greater than 1.52, and equal to approximately 1.6 in some embodiments); and flair is the index of refraction associated with the air gap (e.g., 1.0). If the light pipe 106 is adhered to the substrate combiner 108, the NA is decreased because the adhesive and material associated with the substrate combiner 108 have a higher index of refraction than air. The refractive index of the adhesive is greater than 1.33 in some systems. The field of view is increased by approximately 50 percent using the HUD system 100 with an air gap in some embodiments.


In addition, the air gap between the light pipe 106 and the substrate combiner 108 increases the alignment tolerances by orders of magnitude and allows for an angle to be disposed between an elongated surface (the surface 142) of the light pipe 106 and the sides 112 and 114 of the substrate combiner 108. Light pipe 106 can advantageously be built and tested separately from the substrate combiner 108 due to the separation. Further, rotating the light pipe 106 with respect to the substrate combiner 108 enables a new degree of freedom in aligning the desired field of view within the numerical aperture of the light pipe 106 which improves field of view. In some embodiments, planar waveguide combiners can be angled strategically for better fit into aircraft or other environments.


As shown in the embodiment of FIGS. 1 and 2, an angle θ between the elongated surfaces 142 and 144 of the light pipe 106 and the sides 112 and 114 is between 0 and plus or minus 45 degrees (e.g., between 5 and 25 degrees). In some embodiments, the angle between the output lens of the projector 102 and the light pipe 106 is similarly angled. In some embodiments, the angle θ1 between the output lens of the projector 102 and the light pipe 106 is a different angle than angle θ. In some embodiments, the angle between the output lens of the projector 102 and line normal to the elongated surface of the light pipe 106 is perpendicular. By rotating the light pipe 106 with respect to the substrate combiner 108 and by aligning the output grating 120 correctly, fields of view are all sent down the waveguide system 104 in one mode which eliminates multiple images in the output field. The rotation allows the field of view to be set within the desired numerical aperture of the light pipe 106 in some embodiments.


A frame or bracket can be used to secure the light pipe 106 and the substrate combiner 108 at the appropriate angle. In some embodiments, the bracket holds the light pipe 106 at its ends and the substrate combiner 108 at its top or on its sides. The bracket is plastic or metal in some embodiments.


With reference to FIGS. 3 and 4, a HUD system 100a is similar to the HUD system 100. The HUD system 100a includes a projector 102a and substrate waveguide system 104a. The user is disposed on the side 114a of the substrate combiner 108a in some embodiments. A light pipe 106a is disposed in front of (e.g., the user's side of) the main side 114a of the substrate combiner 108a. The projector 102a and the substrate combiner 108a are disposed behind the side 112a in some embodiments.


With reference to FIGS. 5 and 6, a HUD system 100b is similar to the HUD system 100. The HUD system 100b includes a projector 102b and substrate waveguide system 104b. The user is disposed on the side 112b of substrate combiner 108b in some embodiments. A light pipe 106b is disposed between the main side 114b of the substrate combiner 108b and the projector 102b. The elongated side 144b faces the main side 114b, and the elongated side 142b faces the output of the projector 102b.


With reference to FIGS. 7 and 8, a HUD system 100c is similar to the HUD system 100. The HUD system 100c includes a projector 102c and a substrate waveguide system 104c. The user is disposed on the main side 114c of substrate combiner 108c in some embodiments. A light pipe 106c is disposed behind the main side 112c of the substrate combiner 108c, and the projector 102c is disposed in front of the elongated surface 142c of the light pipe 106c.


The HUD systems 100 and 100a-c can be rotated at any angle to provide different orientations (upside down, rotate 90 degrees, 270 degrees). The same reference numerals with different suffixes a-c in FIGS. 1-8 are intended to show components that have identical or similar structure and functionality. In some embodiments, the projector 102 is one of the projectors 30, 500, 700 and 750 described in Exhibit B of the provisional application incorporated herein by reference in its entirety. In some embodiments, the projector 102 is configured to provide an exit pupil between 3 mm and 5 mm in diameter and has a cubic beam splitter with a physical size of 4.5 mm to 15 mm per side for HWDs. In some embodiments, the projector 30 is configured to provide an exit pupil between 2 mm and 25 mm in diameter.


It is understood that while the detailed drawings, specific examples, material types, thicknesses, dimensions, and particular values given provide exemplary embodiments of the inventive concepts disclosed herein, the exemplary embodiments are for the purpose of illustration only. The inventive concepts disclosed herein are not limited to the precise details and conditions disclosed. For example, although specific types of optical component, shapes, dimensions and angles are mentioned, other components, dimensions and angles can be utilized. Various changes may be made to the details disclosed without departing from the spirit of the inventive concepts disclosed herein which are defined by the following claims.

Claims
  • 1. A head up display, comprising: a light pipe configured to expand a pupil in a first direction, the light pipe comprising four elongated surfaces comprising at least two elongated surfaces that are parallel to each other, wherein the light pipe is configured so that light travels through the light pipe in a fashion where the four elongated surfaces are struck by the light as the light travels from a first end to a second end in the first direction; anda waveguide combiner in optical communication with the light pipe and comprising a main surface disposed at an angle with respect to the two elongated surfaces that are parallel to each other, the waveguide combiner being configured to expand the pupil in a second direction along the main surface.
  • 2. The head up display of claim 1, wherein the angle is greater than 0 degrees and less than 45 degrees, and wherein the waveguide combiner is spaced apart from the light pipe.
  • 3. The head up display of claim 2, further comprising a light pipe input grating and a light pipe output grating disposed on the light pipe, wherein the light pipe input grating and the light pipe output grating are matched.
  • 4. The head up display of claim 3, wherein the light pipe input grating and the light pipe output grating are reciprocal.
  • 5. The head up display of claim 1, wherein the angle is more than 5 degrees and less than 25 degrees.
  • 6. The head up display of claim 1, wherein the waveguide combiner comprises a waveguide input grating and a waveguide output grating, wherein the waveguide input grating and the waveguide output grating are provided in one or more planes parallel to the main surface or on the main surface.
  • 7. The head up display of claim 3, further comprising: a collimator disposed in front of the light pipe input grating.
  • 8. The head up display of claim 7, wherein the light pipe and the waveguide combiner are part of a head worn display.
  • 9. The head up display of claim 8, wherein the light pipe comprises a first beam splitter disposed between the light pipe input grating and the light pipe output grating, the first beam splitter being disposed in a plane perpendicular to the two elongated surfaces that are parallel to each other, and wherein the waveguide combiner comprises two main surfaces, a waveguide input grating, a waveguide output grating, and a second beam splitter disposed between the waveguide input grating and the waveguide output grating, and wherein the waveguide input grating and the waveguide output grating are disposed in a plane parallel to at least one of the main surfaces.
  • 10. A method of providing information to a user, the method comprising: providing light from a projector;providing the light from the projector to a light pipe, wherein the light travels through the light pipe in a fashion where four elongated surfaces elongated surfaces of the light pipe are struck by the light as the light travels from a first end to a second end in a first direction; andproviding the light from the light pipe to a waveguide combiner having a main surface, wherein at least one of the elongated surfaces is disposed at an angle and spaced apart from the main surface of the waveguide combiner, wherein the light travels through the waveguide combiner in a second direction.
  • 11. The method of claim 10, wherein the light pipe comprises an input grating and an output grating associated with the at least one elongated surface.
  • 12. The method of claim 11, wherein the input grating and the output grating are matched reciprocal gratings.
  • 13. The method of claim 10, further comprising: diffracting light out of the waveguide combiner and expanding a pupil in the second direction, the second direction being perpendicular to the first direction.
  • 14. A head up display system, comprising: at least one light pipe having four elongated surfaces, wherein a first pair of the elongated surfaces are parallel to each other and a second pair of the elongated surfaces are perpendicular to the first pair of the elongated surfaces, wherein light travels through the light pipe in a fashion where the four elongated surfaces are struck by the light as the light travels from a first end to a second end in a first direction; anda waveguide combiner having a main surface for viewing an image and an input grating, the waveguide combiner being disposed such that the first pair of the elongated surfaces are spaced apart from and disposed at an angle with respect to the main surface of the waveguide combiner, wherein the at least one light pipe is configured to expand a pupil in the first direction and provide the light to the input grating of the waveguide combiner, the waveguide combiner being configured to expand the pupil in a second direction on the main surface.
  • 15. The head up display system of claim 14, wherein the at least one light pipe comprises a volumetric input grating and a volumetric output grating.
  • 16. The head up display system of claim 14, wherein an output grating of the waveguide combiner is a reciprocal grating to the input grating.
  • 17. The head up display system of claim 14 further comprising a collimator.
  • 18. The head up display system of claim 15, wherein the waveguide combiner comprises a first beam splitter disposed between the input grating on the waveguide combiner and an output grating on the waveguide combiner and wherein the light pipe comprises a second beam splitter disposed between the volumetric input grating and the volumetric output grating.
  • 19. The head up display system of claim 14, wherein the head up display system is a fixed head up display or a head worn display.
  • 20. The head up display system of claim 15, wherein the volumetric output grating is a rolled k vector output grating.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/429,569, filed on Feb. 10, 2017, entitled “A READ UP DISPLAY WITH AN ANGLED LIGHT PIPE”, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/451,041, filed on Jan. 26, 2017, entitled “A HEAD UP DISPLAY (HUD) USING A LIGHT PIPE WITH ANGLED ORIENTATION WITH RESPECT TO THE COMBINER AND MICRO COLLIMATOR SYSTEM AND METHOD FOR A HEAD UP DISPLAY (HUD)”, incorporated herein by reference in its entirety, and is related to U.S. Pat. No. 9,519,089, filed on Jan. 30, 2014, entitled “HIGH PERFORMANCE VOLUME PHASE GRATINGS”, incorporated herein by reference in its entirety and assigned to the assignee of the present application, U.S. patent application Ser. No. 15/136,684, filed on Apr. 22, 2016, entitled “A HEAD UP DISPLAY (HUD) USING A LIGHT PIPE”, incorporated herein by reference in its entirety and assigned to the assignee of the present application, which is a continuation in-part of U.S. patent application Ser. No. 14/715,332, now U.S. Pat. No. 10,088,675), filed on May 18, 2015, entitled “A TURNING LIGHT PIPE FOR A PUPIL EXPANSION SYSTEM AND METHOD,” incorporated herein by reference in its entirety and assigned to the assignee of the present application, and U.S. Pat. No. 9,523,852 filed on Jul. 30, 2015, entitled “MICRO COLLIMATOR SYSTEM AND METHOD FOR A HEAD UP DISPLAY (HUD)”, incorporated herein by reference in its entirety and assigned to the assignee of the present application, which is related to U.S. Pat. No. 9,366,864 filed on Mar. 28, 2012 entitled “SYSTEM FOR AND METHOD OF CATADIOPTRIC COLLIMATION IN A COMPACT HEAD UP DISPLAY (HUD),” incorporated herein by reference in its entirety and assigned to the assignee of the present application, which is a continuation-in-part application of: U.S. Pat. No. 8,634,139 filed on Sep. 30, 2011 entitled “SYSTEM FOR AND METHOD OF CATADIOPTRIC COLLIMATION IN A COMPACT HEAD UP DISPLAY (HUD),” incorporated herein by reference in its entirety and assigned to the assignee of the present application; “U.S. patent application Ser. No. 13/250,940, entitled, “HEAD UP DISPLAY (HUD) UTILIZING DIFFRACTIVE GRATINGS HAVING OPTIMIZED EFFICIENCY,” filed on Sep. 30, 2011, incorporated herein by reference in its entirety, and assigned to the assignee of the present application, now abandoned; U.S. Pat. No. 9,715,067, entitled, “ULTRA-COMPACT HUD UTILIZING WAVEGUIDE PUPIL EXPANDER WITH SURFACE RELIEF GRATINGS IN HIGH REFRACTIVE INDEX MATERIALS,” filed on Sep. 30, 2011, incorporated herein by reference in its entirety, and assigned to the assignee of the present application; U.S. Pat. No. 8,903,207, entitled, “SYSTEM FOR AND METHOD OF EXTENDING VERTICAL FIELD OF VIEW IN HEAD UP DISPLAY UTILIZING A WAVEGUIDE COMBINER,” filed on Sep. 30, 2011, incorporated herein by reference in its entirety, and assigned to the assignee of the present application; U.S. Pat. No. 8,937,772, entitled, “SYSTEM FOR AND METHOD OF STOWING HUD COMBINERS,” filed on Sep. 30, 2011 and assigned to the assignee of the present application, incorporated herein by reference in its entirety; and U.S. Pat. No. 8,749,890, entitled, “COMPACT HEAD UP DISPLAY (HUD) FOR COCKPITS WITH CONSTRAINED SPACE ENVELOPES,” filed on Sep. 30, 2011, incorporated herein by reference herein in its entirety and assigned to the assignee of the present application.

US Referenced Citations (590)
Number Name Date Kind
2141884 Sonnefeld Dec 1938 A
3620601 Waghorn Nov 1971 A
3851303 Muller Nov 1974 A
3885095 Wolfson et al. May 1975 A
3940204 Withrington Feb 1976 A
4082432 Kirschner Apr 1978 A
4099841 Ellis Jul 1978 A
4178074 Heller Dec 1979 A
4218111 Withrington et al. Aug 1980 A
4232943 Rogers Nov 1980 A
4309070 St. Leger Searle Jan 1982 A
4647967 Kirschner et al. Mar 1987 A
4711512 Upatnieks Dec 1987 A
4714320 Banbury Dec 1987 A
4743083 Schimpe May 1988 A
4749256 Bell et al. Jun 1988 A
4775218 Wood et al. Oct 1988 A
4799765 Ferrer Jan 1989 A
4854688 Hayford et al. Aug 1989 A
4928301 Smoot May 1990 A
4946245 Chamberlin et al. Aug 1990 A
5007711 Wood et al. Apr 1991 A
5035734 Honkanen et al. Jul 1991 A
5076664 Migozzi Dec 1991 A
5079416 Filipovich Jan 1992 A
5117285 Nelson et al. May 1992 A
5124821 Antier et al. Jun 1992 A
5148302 Nagano et al. Sep 1992 A
5151958 Honkanen Sep 1992 A
5153751 Ishikawa et al. Oct 1992 A
5159445 Gitlin et al. Oct 1992 A
5160523 Honkanen et al. Nov 1992 A
5183545 Branca et al. Feb 1993 A
5187597 Kato et al. Feb 1993 A
5210624 Matsumoto et al. May 1993 A
5218360 Goetz et al. Jun 1993 A
5243413 Gitlin et al. Sep 1993 A
5289315 Makita et al. Feb 1994 A
5295208 Caulfield et al. Mar 1994 A
5303085 Rallison Apr 1994 A
5317405 Kuriki et al. May 1994 A
5341230 Smith Aug 1994 A
5351151 Levy Sep 1994 A
5359362 Lewis et al. Oct 1994 A
5363220 Kuwayama et al. Nov 1994 A
5369511 Amos Nov 1994 A
5400069 Braun et al. Mar 1995 A
5408346 Trissel et al. Apr 1995 A
5418584 Larson May 1995 A
5438357 McNelley Aug 1995 A
5455693 Wreede et al. Oct 1995 A
5471326 Hall et al. Nov 1995 A
5473222 Thoeny et al. Dec 1995 A
5496621 Makita et al. Mar 1996 A
5500671 Andersson et al. Mar 1996 A
5510913 Hashimoto et al. Apr 1996 A
5515184 Caulfield et al. May 1996 A
5524272 Podowski et al. Jun 1996 A
5532736 Kuriki et al. Jul 1996 A
5537232 Biles Jul 1996 A
5572248 Allen et al. Nov 1996 A
5579026 Tabata Nov 1996 A
5583795 Smyth Dec 1996 A
5604611 Saburi et al. Feb 1997 A
5606433 Yin et al. Feb 1997 A
5612733 Flohr Mar 1997 A
5612734 Nelson et al. Mar 1997 A
5619254 McNelley Apr 1997 A
5629259 Akada et al. May 1997 A
5631107 Tarumi et al. May 1997 A
5633100 Mickish et al. May 1997 A
5646785 Gilboa et al. Jul 1997 A
5648857 Ando et al. Jul 1997 A
5661577 Jenkins et al. Aug 1997 A
5661603 Hanano et al. Aug 1997 A
5665494 Kawabata et al. Sep 1997 A
5668907 Veligdan Sep 1997 A
5682255 Friesem et al. Oct 1997 A
5694230 Welch Dec 1997 A
5701132 Kollin et al. Dec 1997 A
5706108 Ando et al. Jan 1998 A
5707925 Akada et al. Jan 1998 A
5724189 Ferrante Mar 1998 A
5726782 Kato et al. Mar 1998 A
5727098 Jacobson Mar 1998 A
5729242 Margerum et al. Mar 1998 A
5731060 Hirukawa et al. Mar 1998 A
5731853 Taketomi et al. Mar 1998 A
5742262 Tabata et al. Apr 1998 A
5751452 Tanaka et al. May 1998 A
5760931 Saburi et al. Jun 1998 A
5764414 King et al. Jun 1998 A
5790288 Jager et al. Aug 1998 A
5812608 Valimaki et al. Sep 1998 A
5822127 Chen et al. Oct 1998 A
5841507 Barnes Nov 1998 A
5856842 Tedesco Jan 1999 A
5868951 Schuck et al. Feb 1999 A
5886822 Spitzer Mar 1999 A
5892598 Asakawa et al. Apr 1999 A
5898511 Mizutani et al. Apr 1999 A
5903395 Rallison et al. May 1999 A
5907416 Hegg et al. May 1999 A
5907436 Perry et al. May 1999 A
5917459 Son et al. Jun 1999 A
5926147 Sehm et al. Jul 1999 A
5929946 Sharp et al. Jul 1999 A
5937115 Domash Aug 1999 A
5942157 Sutherland et al. Aug 1999 A
5945893 Plessky et al. Aug 1999 A
5949302 Sarkka Sep 1999 A
5966223 Friesem et al. Oct 1999 A
5985422 Krauter Nov 1999 A
5991087 Rallison Nov 1999 A
5999314 Asakura et al. Dec 1999 A
6042947 Asakura et al. Mar 2000 A
6043585 Plessky et al. Mar 2000 A
6075626 Mizutani et al. Jun 2000 A
6078427 Fontaine et al. Jun 2000 A
6115152 Popovich et al. Sep 2000 A
6127066 Ueda et al. Oct 2000 A
6137630 Tsou et al. Oct 2000 A
6156243 Kosuga et al. Dec 2000 A
6169613 Amitai et al. Jan 2001 B1
6176837 Foxlin Jan 2001 B1
6195206 Yona et al. Feb 2001 B1
6222675 Mall et al. Apr 2001 B1
6222971 Veligdan et al. Apr 2001 B1
6249386 Yona et al. Jun 2001 B1
6259423 Tokito et al. Jul 2001 B1
6259559 Kobayashi et al. Jul 2001 B1
6285813 Schultz et al. Sep 2001 B1
6317083 Johnson et al. Nov 2001 B1
6317227 Mizutani et al. Nov 2001 B1
6321069 Piirainen Nov 2001 B1
6327089 Hosaki et al. Dec 2001 B1
6333819 Svedenkrans Dec 2001 B1
6340540 Ueda et al. Jan 2002 B1
6351333 Araki et al. Feb 2002 B2
6356172 Koivisto et al. Mar 2002 B1
6359730 Tervonen Mar 2002 B2
6359737 Stringfellow Mar 2002 B1
6366378 Tervonen et al. Apr 2002 B1
6392812 Howard May 2002 B1
6409687 Foxlin Jun 2002 B1
6470132 Nousiainen et al. Oct 2002 B1
6486997 Bruzzone et al. Nov 2002 B1
6504518 Kuwayama et al. Jan 2003 B1
6524771 Maeda et al. Feb 2003 B2
6545778 Ono et al. Apr 2003 B2
6550949 Bauer et al. Apr 2003 B1
6557413 Nieminen et al. May 2003 B2
6560019 Nakai May 2003 B2
6563648 Gleckman et al. May 2003 B2
6580529 Amitai et al. Jun 2003 B1
6583873 Goncharov et al. Jun 2003 B1
6587619 Kinoshita Jul 2003 B1
6598987 Parikka Jul 2003 B1
6608720 Freeman Aug 2003 B1
6611253 Cohen Aug 2003 B1
6624943 Nakai et al. Sep 2003 B2
6646810 Harter et al. Nov 2003 B2
6661578 Hedrick Dec 2003 B2
6674578 Sugiyama et al. Jan 2004 B2
6686815 Mirshekarl-Syahkal et al. Feb 2004 B1
6690516 Aritake et al. Feb 2004 B2
6721096 Bruzzone et al. Apr 2004 B2
6741189 Gibbons, II et al. May 2004 B1
6744478 Asakura et al. Jun 2004 B1
6748342 Dickhaus Jun 2004 B1
6750941 Satoh et al. Jun 2004 B2
6750995 Dickson Jun 2004 B2
6757105 Niv et al. Jun 2004 B2
6771403 Endo et al. Aug 2004 B1
6776339 Piikivi Aug 2004 B2
6781701 Sweetser et al. Aug 2004 B1
6805490 Levola Oct 2004 B2
6825987 Repetto et al. Nov 2004 B2
6829095 Amitai Dec 2004 B2
6833955 Niv Dec 2004 B2
6836369 Fujikawa et al. Dec 2004 B2
6844212 Bond et al. Jan 2005 B2
6844980 He et al. Jan 2005 B2
6847274 Salmela et al. Jan 2005 B2
6847488 Travis Jan 2005 B2
6853491 Ruhle et al. Feb 2005 B1
6864861 Schehrer et al. Mar 2005 B2
6864927 Cathey Mar 2005 B1
6885483 Takada Apr 2005 B2
6903872 Schrader Jun 2005 B2
6909345 Salmela et al. Jun 2005 B1
6917375 Akada et al. Jul 2005 B2
6922267 Endo et al. Jul 2005 B2
6926429 Barlow et al. Aug 2005 B2
6940361 Jokio et al. Sep 2005 B1
6950173 Sutherland et al. Sep 2005 B1
6950227 Schrader Sep 2005 B2
6951393 Koide Oct 2005 B2
6952312 Weber et al. Oct 2005 B2
6958662 Salmela et al. Oct 2005 B1
6987908 Bond et al. Jan 2006 B2
7003187 Frick et al. Feb 2006 B2
7018744 Otaki et al. Mar 2006 B2
7021777 Amitai Apr 2006 B2
7026892 Kajiya Apr 2006 B2
7027671 Huck et al. Apr 2006 B2
7034748 Kajiya Apr 2006 B2
7053735 Salmela et al. May 2006 B2
7058434 Wang et al. Jun 2006 B2
7095562 Peng et al. Aug 2006 B1
7101048 Travis Sep 2006 B2
7110184 Yona et al. Sep 2006 B1
7123418 Weber et al. Oct 2006 B2
7126418 Hunton et al. Oct 2006 B2
7126583 Breed Oct 2006 B1
7132200 Ueda et al. Nov 2006 B1
7149385 Parikka et al. Dec 2006 B2
7151246 Fein et al. Dec 2006 B2
7158095 Jenson et al. Jan 2007 B2
7181105 Teramura et al. Feb 2007 B2
7181108 Levola Feb 2007 B2
7184615 Levola Feb 2007 B2
7190849 Katase Mar 2007 B2
7199934 Yamasaki Apr 2007 B2
7205960 David Apr 2007 B2
7205964 Yokoyama et al. Apr 2007 B1
7206107 Levola Apr 2007 B2
7230767 Walck et al. Jun 2007 B2
7242527 Spitzer et al. Jul 2007 B2
7248128 Mattila et al. Jul 2007 B2
7259906 Islam Aug 2007 B1
7268946 Wang Sep 2007 B2
7285903 Cull et al. Oct 2007 B2
7286272 Mukawa Oct 2007 B2
7289069 Ranta Oct 2007 B2
7299983 Piikivi Nov 2007 B2
7313291 Okhotnikov et al. Dec 2007 B2
7319573 Nishiyama Jan 2008 B2
7320534 Sugikawa et al. Jan 2008 B2
7323275 Otaki et al. Jan 2008 B2
7336271 Ozeki et al. Feb 2008 B2
7339737 Urey et al. Mar 2008 B2
7339742 Amitai et al. Mar 2008 B2
7375870 Schorpp May 2008 B2
7391573 Amitai Jun 2008 B2
7394865 Borran et al. Jul 2008 B2
7395181 Foxlin Jul 2008 B2
7397606 Peng et al. Jul 2008 B1
7401920 Kranz et al. Jul 2008 B1
7404644 Evans et al. Jul 2008 B2
7410286 Travis Aug 2008 B2
7411637 Weiss Aug 2008 B2
7415173 Kassamakov et al. Aug 2008 B2
7418170 Mukawa et al. Aug 2008 B2
7433116 Islam Oct 2008 B1
7436568 Kuykendall, Jr. Oct 2008 B1
7454103 Parriaux Nov 2008 B2
7457040 Amitai Nov 2008 B2
7466994 Pihlaja et al. Dec 2008 B2
7479354 Ueda et al. Jan 2009 B2
7480215 Makela et al. Jan 2009 B2
7482996 Larson et al. Jan 2009 B2
7483604 Levola Jan 2009 B2
7492512 Niv et al. Feb 2009 B2
7496293 Shamir et al. Feb 2009 B2
7500104 Goland Mar 2009 B2
7528385 Volodin et al. May 2009 B2
7545429 Travis Jun 2009 B2
7550234 Otaki et al. Jun 2009 B2
7567372 Schorpp Jul 2009 B2
7570429 Maliah et al. Aug 2009 B2
7572555 Takizawa et al. Aug 2009 B2
7573640 Nivon et al. Aug 2009 B2
7576916 Amitai Aug 2009 B2
7577326 Amitai Aug 2009 B2
7579119 Ueda et al. Aug 2009 B2
7588863 Takizawa et al. Sep 2009 B2
7589900 Powell Sep 2009 B1
7589901 DeJong et al. Sep 2009 B2
7592988 Katase Sep 2009 B2
7593575 Houle et al. Sep 2009 B2
7597447 Larson et al. Oct 2009 B2
7599012 Nakamura et al. Oct 2009 B2
7600893 Laino et al. Oct 2009 B2
7602552 Blumenfeld Oct 2009 B1
7616270 Hirabayashi et al. Nov 2009 B2
7618750 Ueda et al. Nov 2009 B2
7629086 Otaki et al. Dec 2009 B2
7639911 Lee et al. Dec 2009 B2
7643214 Amitai Jan 2010 B2
7656585 Powell et al. Feb 2010 B1
7660047 Travis et al. Feb 2010 B1
7672055 Amitai Mar 2010 B2
7710654 Ashkenazi et al. May 2010 B2
7724441 Amitai May 2010 B2
7724442 Amitai May 2010 B2
7724443 Amitai May 2010 B2
7733572 Brown et al. Jun 2010 B1
7747113 Mukawa et al. Jun 2010 B2
7751122 Amitai Jul 2010 B2
7764413 Levola Jul 2010 B2
7777819 Simmonds Aug 2010 B2
7778305 Parriaux et al. Aug 2010 B2
7778508 Hirayama Aug 2010 B2
7847235 Krupkin et al. Dec 2010 B2
7864427 Korenaga et al. Jan 2011 B2
7865080 Hecker et al. Jan 2011 B2
7872804 Moon et al. Jan 2011 B2
7884985 Amitai et al. Feb 2011 B2
7887186 Watanabe Feb 2011 B2
7903921 Ostergard Mar 2011 B2
7907342 Simmonds et al. Mar 2011 B2
7920787 Gentner et al. Apr 2011 B2
7944428 Travis May 2011 B2
7969644 Tilleman et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7976208 Travis Jul 2011 B2
7999982 Endo et al. Aug 2011 B2
8000491 Brodkin et al. Aug 2011 B2
8004765 Amitai Aug 2011 B2
8016475 Travis Sep 2011 B2
8022942 Bathiche et al. Sep 2011 B2
RE42992 David Dec 2011 E
8079713 Ashkenazi Dec 2011 B2
8082222 Rangarajan et al. Dec 2011 B2
8086030 Gordon et al. Dec 2011 B2
8089568 Brown et al. Jan 2012 B1
8107023 Simmonds et al. Jan 2012 B2
8107780 Simmonds Jan 2012 B2
8132948 Owen et al. Mar 2012 B2
8132976 Odell et al. Mar 2012 B2
8136690 Fang et al. Mar 2012 B2
8137981 Andrew et al. Mar 2012 B2
8149086 Klein et al. Apr 2012 B2
8152315 Travis et al. Apr 2012 B2
8155489 Saarikko et al. Apr 2012 B2
8159752 Wertheim et al. Apr 2012 B2
8160409 Large Apr 2012 B2
8160411 Levola et al. Apr 2012 B2
8186874 Sinbar et al. May 2012 B2
8188925 Dejean May 2012 B2
8189263 Wang et al. May 2012 B1
8189973 Travis et al. May 2012 B2
8199803 Hauske et al. Jun 2012 B2
8213065 Mukawa Jul 2012 B2
8233204 Robbins et al. Jul 2012 B1
8253914 Kajiya et al. Aug 2012 B2
8254031 Levola Aug 2012 B2
8295710 Marcus Oct 2012 B2
8301031 Gentner et al. Oct 2012 B2
8305577 Kivioja et al. Nov 2012 B2
8306423 Gottwald et al. Nov 2012 B2
8314819 Kimmel et al. Nov 2012 B2
8321810 Heintze Nov 2012 B2
8335040 Mukawa et al. Dec 2012 B2
8351744 Travis et al. Jan 2013 B2
8354806 Travis et al. Jan 2013 B2
8355610 Simmonds Jan 2013 B2
8369019 Baker et al. Feb 2013 B2
8384694 Powell et al. Feb 2013 B2
8398242 Yamamoto et al. Mar 2013 B2
8403490 Sugiyama et al. Mar 2013 B2
8422840 Large Apr 2013 B2
8427439 Larsen et al. Apr 2013 B2
8432363 Saarikko et al. Apr 2013 B2
8432372 Butler et al. Apr 2013 B2
8447365 Imanuel May 2013 B1
8472119 Kelly Jun 2013 B1
8472120 Border et al. Jun 2013 B2
8477261 Travis et al. Jul 2013 B2
8491121 Tilleman et al. Jul 2013 B2
8491136 Travis et al. Jul 2013 B2
8493366 Bathiche et al. Jul 2013 B2
8493662 Noui Jul 2013 B2
8508848 Saarikko Aug 2013 B2
8547638 Levola Oct 2013 B2
8578038 Kaikuranta et al. Nov 2013 B2
8581831 Travis Nov 2013 B2
8582206 Travis Nov 2013 B2
8593734 Laakkonen Nov 2013 B2
8611014 Valera et al. Dec 2013 B2
8619062 Powell et al. Dec 2013 B2
8633786 Ermolov et al. Jan 2014 B2
8634139 Brown et al. Jan 2014 B1
8639072 Popovich et al. Jan 2014 B2
8643691 Rosenfeld et al. Feb 2014 B2
8649099 Schultz et al. Feb 2014 B2
8654420 Simmonds Feb 2014 B2
8659826 Brown et al. Feb 2014 B1
8670029 McEldowney Mar 2014 B2
8693087 Nowatzyk et al. Apr 2014 B2
8736802 Kajiya et al. May 2014 B2
8736963 Robbins et al. May 2014 B2
8749886 Gupta Jun 2014 B2
8749890 Wood et al. Jun 2014 B1
8767294 Chen et al. Jul 2014 B2
8810600 Bohn et al. Aug 2014 B2
8814691 Haddick et al. Aug 2014 B2
8830584 Saarikko et al. Sep 2014 B2
8830588 Brown et al. Sep 2014 B1
8903207 Brown et al. Dec 2014 B1
8913324 Schrader Dec 2014 B2
8937772 Burns et al. Jan 2015 B1
8938141 Magnusson Jan 2015 B2
8964298 Haddick et al. Feb 2015 B2
9097890 Miller et al. Aug 2015 B2
9244280 Tiana et al. Jan 2016 B1
9341846 Popovich et al. May 2016 B2
9366864 Brown et al. Jun 2016 B1
9456744 Popovich et al. Oct 2016 B2
9523852 Brown Dec 2016 B1
9632226 Waldern et al. Apr 2017 B2
9933684 Brown et al. Apr 2018 B2
20010036012 Nakai et al. Nov 2001 A1
20020012064 Yamaguchi Jan 2002 A1
20020021461 Ono et al. Feb 2002 A1
20020127497 Brown et al. Sep 2002 A1
20020131175 Yagi et al. Sep 2002 A1
20030030912 Gleckman et al. Feb 2003 A1
20030039442 Bond et al. Feb 2003 A1
20030063042 Friesem et al. Apr 2003 A1
20030149346 Arnone et al. Aug 2003 A1
20030228019 Eichler et al. Dec 2003 A1
20040047938 Kosuga et al. Mar 2004 A1
20040075830 Miyake et al. Apr 2004 A1
20040089842 Sutherland et al. May 2004 A1
20040130797 Leigh Travis Jul 2004 A1
20040188617 Devitt et al. Sep 2004 A1
20040208446 Bond et al. Oct 2004 A1
20040208466 Mossberg et al. Oct 2004 A1
20050135747 Greiner et al. Jun 2005 A1
20050136260 Garcia Jun 2005 A1
20050259302 Metz et al. Nov 2005 A9
20050269481 David et al. Dec 2005 A1
20060093793 Miyakawa et al. May 2006 A1
20060114564 Sutherland et al. Jun 2006 A1
20060119916 Sutherland et al. Jun 2006 A1
20060132914 Weiss et al. Jun 2006 A1
20060215244 Yosha et al. Sep 2006 A1
20060221448 Nivon et al. Oct 2006 A1
20060228073 Mukawa et al. Oct 2006 A1
20060279662 Kapellner et al. Dec 2006 A1
20060291021 Mukawa Dec 2006 A1
20070019152 Caputo et al. Jan 2007 A1
20070019297 Stewart et al. Jan 2007 A1
20070041684 Popovich et al. Feb 2007 A1
20070045596 King et al. Mar 2007 A1
20070052929 Allman et al. Mar 2007 A1
20070089625 Grinberg et al. Apr 2007 A1
20070133920 Lee et al. Jun 2007 A1
20070133983 Traff Jun 2007 A1
20070188837 Shimizu et al. Aug 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20080043334 Itzkovitch et al. Feb 2008 A1
20080106775 Amitai et al. May 2008 A1
20080136923 Inbar et al. Jun 2008 A1
20080151379 Amitai Jun 2008 A1
20080186604 Amitai Aug 2008 A1
20080198471 Amitai Aug 2008 A1
20080278812 Amitai Nov 2008 A1
20080285140 Amitai Nov 2008 A1
20080309586 Vitale Dec 2008 A1
20090010135 Ushiro et al. Jan 2009 A1
20090017424 Yoeli et al. Jan 2009 A1
20090019222 Verma et al. Jan 2009 A1
20090052046 Amitai Feb 2009 A1
20090052047 Amitai Feb 2009 A1
20090067774 Magnusson Mar 2009 A1
20090097122 Niv Apr 2009 A1
20090097127 Amitai Apr 2009 A1
20090121301 Chang May 2009 A1
20090122413 Hoffman et al. May 2009 A1
20090122414 Amitai May 2009 A1
20090128902 Niv et al. May 2009 A1
20090128911 Itzkovitch et al. May 2009 A1
20090153437 Aharoni Jun 2009 A1
20090190222 Simmonds et al. Jul 2009 A1
20090213208 Glatt Aug 2009 A1
20090237804 Amitai et al. Sep 2009 A1
20090303599 Levola Dec 2009 A1
20090316246 Asai et al. Dec 2009 A1
20100039796 Mukawa Feb 2010 A1
20100060551 Sugiyama et al. Mar 2010 A1
20100060990 Wertheim et al. Mar 2010 A1
20100079865 Saarikko et al. Apr 2010 A1
20100092124 Magnusson et al. Apr 2010 A1
20100096562 Klunder et al. Apr 2010 A1
20100103078 Mukawa et al. Apr 2010 A1
20100136319 Imai et al. Jun 2010 A1
20100141555 Rorberg et al. Jun 2010 A1
20100165465 Levola Jul 2010 A1
20100171680 Lapidot et al. Jul 2010 A1
20100177388 Cohen et al. Jul 2010 A1
20100214659 Levola Aug 2010 A1
20100231693 Levola Sep 2010 A1
20100231705 Yahav et al. Sep 2010 A1
20100232003 Baldy et al. Sep 2010 A1
20100246003 Simmonds et al. Sep 2010 A1
20100246004 Simmonds Sep 2010 A1
20100246993 Rieger et al. Sep 2010 A1
20100265117 Weiss Oct 2010 A1
20100277803 Pockett et al. Nov 2010 A1
20100284085 Laakkonen Nov 2010 A1
20100284180 Popovich et al. Nov 2010 A1
20100296163 Saarikko Nov 2010 A1
20100315719 Saarikko et al. Dec 2010 A1
20100321781 Levola et al. Dec 2010 A1
20110002143 Saarikko et al. Jan 2011 A1
20110013423 Selbrede et al. Jan 2011 A1
20110019250 Aiki et al. Jan 2011 A1
20110019874 Jarvenpaa et al. Jan 2011 A1
20110026128 Baker et al. Feb 2011 A1
20110026774 Flohr et al. Feb 2011 A1
20110038024 Wang et al. Feb 2011 A1
20110050548 Blumenfeld et al. Mar 2011 A1
20110096401 Levola Apr 2011 A1
20110157707 Tilleman et al. Jun 2011 A1
20110164221 Tilleman et al. Jul 2011 A1
20110211239 Mukawa et al. Sep 2011 A1
20110232211 Farahi Sep 2011 A1
20110235179 Simmonds Sep 2011 A1
20110235365 McCollum et al. Sep 2011 A1
20110238399 Ophir et al. Sep 2011 A1
20110242349 Izuha et al. Oct 2011 A1
20110242661 Simmonds Oct 2011 A1
20110242670 Simmonds Oct 2011 A1
20110299075 Meade et al. Dec 2011 A1
20110310356 Vallius Dec 2011 A1
20120007979 Schneider et al. Jan 2012 A1
20120033306 Valera et al. Feb 2012 A1
20120044572 Simmonds et al. Feb 2012 A1
20120044573 Simmonds et al. Feb 2012 A1
20120062850 Travis Mar 2012 A1
20120099203 Boubis et al. Apr 2012 A1
20120105634 Meidan et al. May 2012 A1
20120120493 Simmonds et al. May 2012 A1
20120127577 Desserouer May 2012 A1
20120224062 Lacoste et al. Sep 2012 A1
20120235884 Miller et al. Sep 2012 A1
20120235900 Border et al. Sep 2012 A1
20120242661 Takagi et al. Sep 2012 A1
20120280956 Yamamoto et al. Nov 2012 A1
20120294037 Holman et al. Nov 2012 A1
20120300311 Simmonds et al. Nov 2012 A1
20120320460 Levola Dec 2012 A1
20130069850 Mukawa et al. Mar 2013 A1
20130093893 Schofield et al. Apr 2013 A1
20130101253 Popovich et al. Apr 2013 A1
20130138275 Nauman et al. May 2013 A1
20130141937 Katsuta et al. Jun 2013 A1
20130170031 Bohn et al. Jul 2013 A1
20130184904 Gadzinski Jul 2013 A1
20130200710 Robbins Aug 2013 A1
20130249895 Westerinen et al. Sep 2013 A1
20130250207 Bohn Sep 2013 A1
20130257848 Westerinen et al. Oct 2013 A1
20130258701 Westerinen et al. Oct 2013 A1
20130314793 Robbins et al. Nov 2013 A1
20130322810 Robbins Dec 2013 A1
20130328948 Kunkel et al. Dec 2013 A1
20140043689 Mason Feb 2014 A1
20140104665 Popovich et al. Apr 2014 A1
20140104685 Bohn et al. Apr 2014 A1
20140140653 Brown et al. May 2014 A1
20140140654 Brown et al. May 2014 A1
20140146394 Tout et al. May 2014 A1
20140152778 Ihlenburg et al. Jun 2014 A1
20140168055 Smith Jun 2014 A1
20140168260 O'Brien et al. Jun 2014 A1
20140168735 Yuan et al. Jun 2014 A1
20140172296 Shtukater Jun 2014 A1
20140176528 Robbins Jun 2014 A1
20140204455 Popovich et al. Jul 2014 A1
20140211322 Bohn et al. Jul 2014 A1
20140218801 Simmonds et al. Aug 2014 A1
20140300966 Travers et al. Oct 2014 A1
20150010265 Popovich et al. Jan 2015 A1
20150167868 Boncha Jun 2015 A1
20150177688 Popovich et al. Jun 2015 A1
20150277375 Large et al. Oct 2015 A1
20150289762 Popovich et al. Oct 2015 A1
20150316768 Simmonds Nov 2015 A1
20160178901 Ishikawa Jun 2016 A1
20160209657 Popovich et al. Jul 2016 A1
20160238772 Waldern et al. Aug 2016 A1
20160274356 Mason Sep 2016 A1
20160291328 Popovich et al. Oct 2016 A1
20170031160 Popovich et al. Feb 2017 A1
20180052277 Schowengerdt et al. Feb 2018 A1
20180373115 Brown et al. Dec 2018 A1
Foreign Referenced Citations (49)
Number Date Country
200944140 Sep 2007 CN
101151562 Mar 2008 CN
101263412 Sep 2008 CN
101589326 Nov 2009 CN
101688977 Mar 2010 CN
101726857 Jun 2010 CN
101881936 Nov 2010 CN
101910900 Dec 2010 CN
102608762 Jul 2012 CN
104520751 Apr 2015 CN
10 2006 003 785 Jul 2007 DE
0 822 441 Feb 1998 EP
2 110 701 Oct 2009 EP
2 196 729 Jun 2010 EP
2 225 592 Sep 2010 EP
2 381 290 Oct 2011 EP
2 733 517 May 2014 EP
2677463 Dec 1992 FR
2 115 178 Sep 1983 GB
2002-529790 Sep 2002 JP
2002-311379 Oct 2002 JP
2004-157245 Jun 2004 JP
2006-350129 Dec 2006 JP
2007-011057 Jan 2007 JP
2007-094175 Apr 2007 JP
2007-219106 Aug 2007 JP
2009-133999 Jun 2009 JP
2016-030503 Mar 2016 JP
WO-9952002 Oct 1999 WO
WO-0028369 May 2000 WO
WO-03081320 Oct 2003 WO
WO-2006002870 Jan 2006 WO
WO-2007130130 Nov 2007 WO
WO-2007130130 Nov 2007 WO
WO-2009013597 Jan 2009 WO
WO-2009077802 Jun 2009 WO
WO-2010067114 Jun 2010 WO
WO-2010067117 Jun 2010 WO
WO-2010125337 Nov 2010 WO
WO-2010125337 Nov 2010 WO
WO-2011012825 Feb 2011 WO
WO-2011051660 May 2011 WO
WO-2011055109 May 2011 WO
WO-2011107831 Sep 2011 WO
WO-2013027006 Feb 2013 WO
WO-2013033274 Mar 2013 WO
WO-2013163347 Oct 2013 WO
WO-2014091200 Jun 2014 WO
WO-2016044193 Mar 2016 WO
Non-Patent Literature Citations (187)
Entry
U.S. Appl. No. 10/555,661, filed Nov. 4, 2005, Popovich et al.
U.S. Appl. No. 13/250,858, filed Sep. 30, 2011, Brown et al.
U.S. Appl. No. 13/250,940, filed Sep. 30, 2011, Stahl et al.
U.S. Appl. No. 13/432,662, filed Mar. 28, 2012, Brown et al.
U.S. Appl. No. 14/497,280, filed Sep. 25, 2014, Stanley et al.
U.S. Appl. No. 14/715,332, filed May 18, 2015, Brown et al.
U.S. Appl. No. 14/814,020, filed Jul. 30, 2015, Brown et al.
U.S. Appl. No. 61/796,795, filed Nov. 20, 2012, Unknown.
Amendment and Reply for U.S. Appl. No. 12/571,262, dated Dec. 16, 2011, 7 pages.
Amitai, Y., et al. “Visor-display design based on planar holographic optics,” Applied Optics, vol. 34, No. 8, Mar. 10, 1995, pp. 1352-1356.
Ayras, et al., “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the Society for Information Display, 17/8, 2009, pp. 659-664.
Cameron, A., The Application of Holograhpic Optical Waveguide Technology to Q-Sight Family of Helmet Mounted Displays, Proc. of SPIE, vol. 7326, 7326OH-1, 2009, 11 pages.
Caputo, R. et al., POLICRYPS Switchable Holographic Grating: A Promising Grating Electro-Optical Pixel for High Resolution Display Application; Journal of Display Technology, vol. 2, No. 1, Mar. 2006, pp. 38-51, 14 pages.
Chinese First Office Action for Chinese Patent Application No. 201610512319.1 dated Aug. 11, 2017. 16 pages.
Chinese Office Action issued in corresponding application No. 201310557623, dated Jan. 17, 2017, 13 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/044,676 dated Feb. 1, 2018. 2 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/044,676 dated Jan. 3, 2018. 2 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/715,332 dated Jul. 25, 2018. 2 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/439,597 dated Oct. 19, 2018. 2 pages.
Crawford, “Switchable Bragg Gratings”, Optics & Photonics News, Apr. 2003, pp. 54-59.
Decision of Rejection for Japanese Patent Application No. 2013-231450 dated May 8, 2018. 4 pages.
European Office Action for European Patent Application No. 13192383.1 dated Oct. 16, 2017. 5 pages.
Extended European Search Report for EP Application No. 13192383, dated Apr. 2, 2014, 7 pages.
Extended European Search Report for European Application No. 13765610.4 dated Feb. 16, 2016, 6 pages.
Final Notice of Reasons for Rejection on Japanese Application No. JP2015-509120, dated Mar. 7, 2017, English Translation, 2 pages.
Final Office Action for U.S. Appl. No. 14/044,676 dated Jul. 13, 2017. 31 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Jul. 10, 2017. 20 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Apr. 19, 2018. 24 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Dec. 17, 2018. 20 pages.
Final Office Action for U.S. Appl. No. 14/044,676, dated Jul. 13, 2017. 30 pages.
Final Office Action for U.S. Appl. No. 14/152,756 dated Aug. 30, 2018. 17 pages.
Final Office Action for U.S. Appl. No. 14/465,763 dated Jun. 28, 2018. 4 pages.
Final Office Action for U.S. Appl. No. 14/465,763 dated Nov. 16, 2018. 6 pages.
Final Office Action for U.S. Appl. No. 14/497,280 dated Oct. 18, 2018. 20 pages.
Final Office Action for U.S. Appl. No. 15/048,954 dated Jan. 2, 2019. 26 pages.
Final Office Action for U.S. Appl. No. 15/136,841 dated Aug. 31, 2018. 7 pages.
Final Office Action for U.S. Appl. No. 15/136,841 dated Oct. 27, 2017. 15 pages.
Final Office Action for U.S. Appl. No. 15/460,076 dated Dec. 3, 2018. 13 pages.
Final Office Action in U.S. Appl. No. 13/864,991, dated Apr. 2, 2015, 16 pages.
Final Office Action on U.S. Appl. No. 14/044,676, dated Oct. 20, 2015, 18 pages.
Final Office Action on U.S. Appl. No. 13/250,858, dated Oct. 7, 2015, 20 pages.
Final Office Action on U.S. Appl. No. 13/869,866 dated Oct. 3, 2014, 17 pages.
Final Office Action on U.S. Appl. No. 13/250,858, dated Jul. 11, 2016, 21 pages.
Final Office Action on U.S. Appl. No. 13/250,858 dated Feb. 4, 2015, 18 pages.
Final Office Action on U.S. Appl. No. 13/250,940 dated Oct. 17, 2014, 15 pages.
Final Office Action on U.S. Appl. No. 13/432,662, dated Oct. 29, 2015, 9 pages.
Final Office Action on U.S. Appl. No. 13/864,991, dated Jun. 27, 2016, 16 pages.
Final Office Action on U.S. Appl. No. 13/892,026 dated Apr. 3, 2015, 17 pages.
Final Office Action on U.S. Appl. No. 13/892,026 dated Nov. 20, 2015, 25 pages.
Final Office Action on U.S. Appl. No. 13/892,057 dated Mar. 5, 2015, 21 pages.
Final Office Action on U.S. Appl. No. 13/892,057 dated Nov. 20, 2015, 30 pages.
Final Office Action on U.S. Appl. No. 14/038,400 dated Aug. 10, 2015, 32 pages.
Final Office Action on U.S. Appl. No. 14/044,676, dated Aug. 12, 2016, 23 pages.
Final Office Action on U.S. Appl. No. 14/152,756, dated Dec. 21, 2015, 15 pages.
Final Office Action on U.S. Appl. No. 14/152,756, dated Jun. 7, 2017, 16 pages.
Final Office Action on U.S. Appl. No. 14/152,756, dated Oct. 12, 2016, 18 pages.
Final Office Action on U.S. Appl. No. 14/168,173, dated Nov. 4, 2015, 10 pages.
Final Office Action on U.S. Appl. No. 14/497,280, dated Mar. 10, 2017, 17 pages.
Final Office Action on U.S. Appl. No. 14/715,332, dated Aug. 11, 2017, 14 pages.
Final Office Action on U.S. Appl. No. 14/260,943, dated Jul. 19, 2016, 23 pages.
First Office Action on EPO Application No. 13765610.4, dated Apr. 18, 2017, 4 pages.
First Office Action on Japanese Application No. 2013-231450, dated Aug. 8, 2017, 5 pages.
First office action received in Chinese patent application No. 201380001530.1, dated Jun. 30, 2015, 9 pages with English translation.
International Preliminary Report on Patentability for PCT Application No. PCT/US2013/038070, dated Oct. 28, 2014, 6 pages.
International Search Report and Written Opinion for PCT/US18/12227, dated Mar. 14, 2018. 9 pages.
International Search Report and Written Opinion regarding PCT/US2013/038070, dated Aug. 14, 2013, 14 pages.
Irie, Masahiro, Photochromic diarylethenes for photonic devices, Pure and Applied Chemistry, 1996, pp. 1367-1371, vol. 68, No. 7, IUPAC.
Levola, et al., “Replicated slanted gratings with a high refractive index material for in and outcoupling of light” Optics Express, vol. 15, Issue 5, pp. 2067-2074 (2007).
Moffitt, “Head-Mounted Display Image Configurations”, retrieved from the internet at http://www.kirkmoffitt.com/hmd_image_configurations.pdf on Dec. 19, 2014, dated May 2008, 25 pages.
Non-Final Office Action for U.S. Appl. No. 13/250,970 dated Jul. 30, 2013. 4 pages.
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Aug. 30, 2018. 17 pages.
Non-Final Office Action for U.S. Appl. No. 13/844,456 dated Oct. 6, 2017. 19 pages.
Non-Final Office Action for U.S. Appl. No. 14/152,756 dated Feb. 13, 2018. 17 pages.
Non-Final Office Action for U.S. Appl. No. 14/497,280 dated Mar. 19, 2018. 19 pages.
Non-Final Office Action for U.S. Appl. No. 14/715,332 dated Dec. 26, 2017. 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/048,954 dated Jul. 26, 2018. 24 pages.
Non-Final Office Action for U.S. Appl. No. 15/136,841 dated Jul. 13, 2017. 36 pages.
Non-Final Office Action for U.S. Appl. No. 15/136,841 dated Mar. 12, 2018. 12 pages.
Non-Final Office Action for U.S. Appl. No. 15/429,569 dated Sep. 17, 2018. 9 pages.
Non-Final Office Action for U.S. Appl. No. 15/460,076 dated Jul. 10, 2018. 15 pages.
Non-Final Office Action on U.S. Appl. No. 13/869,866 dated Jul. 22, 2015, 28 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,026 dated Aug. 6, 2015, 22 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,057 dated Jul. 30, 2015, 29 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Jun. 12, 2015, 20 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858 dated Sep. 15, 2014, 16 pages.
Non-final Office Action on U.S. Appl. No. 13/250,858, dated Nov. 14, 2016, 18 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,940 dated Mar. 18, 2015, 17 pages.
Non-Final Office Action on U.S. Appl. No. 13/432,662 dated May 27, 2015, 15 pages.
Non-Final Office Action on U.S. Appl. No. 13/844,456 dated Apr. 1, 2015, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/844,456, dated Aug. 16, 2016, 18 pages.
Non-Final Office Action on U.S. Appl. No. 13/844,456, dated Jan. 15, 2016, 16 Pages.
Non-Final Office Action on U.S. Appl. No. 13/864,991 dated Nov. 30, 2015, 18 pages.
Non-Final Office Action on U.S. Appl. No. 13/864,991 dated Oct. 22, 2014, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/869,866 dated May 28, 2014, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,026 dated Mar. 22, 2016, 16 pages.
Non-Final Office Action on U.S. Appl. No. 13/892,057, dated May 16, 2016, 23 pages.
Non-Final Office Action on U.S. Appl. No. 14/038,400 dated Feb. 5, 2015, 18 pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676 dated Apr. 9, 2015, 13 pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676, dated Dec. 29, 2016, 26 pages.
Non-Final Office Action on U.S. Appl. No. 14/044,676, dated Jan. 20, 2016, 21 pages.
Non-Final Office Action on U.S. Appl. No. 14/109,551 dated Jul. 14, 2015, 32 pages.
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Apr. 26, 2016, 17 pages.
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Feb. 21, 2017, 18 pages.
Non-Final Office Action on U.S. Appl. No. 14/152,756, dated Aug. 25, 2015, 39 pages.
Non-Final Office Action on U.S. Appl. No. 14/168,173 dated Jun. 22, 2015, 14 pages.
Non-Final Office Action on U.S. Appl. No. 14/168,173 dated Mar. 10, 2016, 9 pages.
Non-Final Office Action on U.S. Appl. No. 14/225,062 dated May 21, 2015, 11 pages.
Non-Final Office Action on U.S. Appl. No. 14/260,943 dated Feb. 3, 2016, 19 pages.
Non-Final Office Action on U.S. Appl. No. 14/465,763, dated Sep. 29, 2016, 4 pages.
Non-Final Office Action on U.S. Appl. No. 14/497,280, dated Sep. 22, 2016, 15 pages.
Non-Final Action on U.S. Appl. No. 14/715,332, dated Mar. 9, 2017, 14 pages.
Non-Final Office Action on U.S. Appl. No. 14/754,368, dated May 8, 2017, 12 pages.
Non-Final Office Action on U.S. Appl. No. 14/820,237, dated Aug. 5, 2016, 14 pages.
Non-Final Office Action on U.S. Appl. No. 15/005,507, dated Nov. 22, 2016, 7 pages.
Non-Final Office Action on U.S. Appl. No. 15/178,521, dated Aug. 24, 2017, 34 pages.
Non-Final Office Action on U.S. Appl. No. 14/465,763, dated Nov. 19, 2015, 4 pages.
Non-Final Office Action on U.S. Appl. No. 13/250,858, dated Mar. 18, 2016, 20 pages.
Nordin, G., et al., “Diffraction properties of stratified volume holographic optical elements,” Journal of the Optical Society of America A., vol. 9, No. 12, Dec. 1992, pp. 2206-2217, 12 pages.
Notice of Allowance for U.S. Appl. No. 12/700,557, dated Oct. 22, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/109,551, dated Nov. 20, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 14/044,676 dated Nov. 24, 2017. 18 pages.
Notice of Allowance for U.S. Appl. No. 14/715,332 dated May 14, 2018. 9 pages.
Notice of Allowance for U.S. Appl. No. 15/005,507 dated May 23, 2017. 8 pages.
Notice of Allowance for U.S. Appl. No. 15/136,841 dated Nov. 9, 2018. 9 pages.
Notice of Allowance for U.S. Appl. No. 15/178,521 dated Jan. 31, 2018. 9 pages.
Notice of Allowance for U.S. Appl. No. 15/429,569 dated Jan. 22, 2019. 7 pages.
Notice of Allowance for U.S. Appl. No. 15/439,597 dated Jun. 15, 2018. 11 pages.
Notice of Allowance on U.S. Appl. No. 13/250,858, dated Mar. 20, 2017, 8 pages.
Notice of Allowance on U.S. Appl. No. 13/250,970 dated Sep. 16, 2014, 7 pages.
Notice of Allowance on U.S. Appl. No. 13/251,087 dated Jul. 17, 2014, 8 pages.
Notice of Allowance on U.S. Appl. No. 13/355,360 dated Apr. 10, 2014, 7 pages.
Notice of Allowance on U.S. Appl. No. 13/432,662, dated Feb. 18, 2016, 10 pages.
Notice of Allowance on U.S. Appl. No. 13/864,991, dated Feb. 2, 2017, 10 pages.
Notice of Allowance on U.S. Appl. No. 13/892,026, dated Jul. 18, 2016, 10 pages.
Notice of Allowance on U.S. Appl. No. 13/892,057, dated Nov. 8, 2016, 10 pages.
Notice of Allowance on U.S. Appl. No. 14/038,400, dated Oct. 30, 2015, 9 pages.
Notice of Allowance on U.S. Appl. No. 14/168,173, dated Aug. 8, 2016, 8 pages.
Notice of Allowance on U.S. Appl. No. 14/225,062, dated Dec. 2, 2015, 10 pages.
Notice of Allowance on U.S. Appl. No. 14/814,020, dated Aug. 12, 2016, 15 pages.
Notice of Allowance on U.S. Appl. No. 14/820,237, dated Jan. 23, 2017, 10 pages.
Office Action for U.S. Appl. No. 12/571,262, dated Sep. 28, 2011, 5 pages.
Office Action for U.S. Appl. No. 10/696,507, dated Nov. 13, 2008, 15 pages.
Office Action for U.S. Appl. No. 12/700,557, dated Aug. 9, 2013, 12 pages.
Office Action for U.S. Appl. No. 12/700,557, dated Feb. 4, 2013, 11 pages.
Office Action tor U.S. Appl. No. 13/250,621, dated May 21, 2013, 10 pages.
Office Action for U.S. Appl. No. 13/250,858 dated Feb. 19, 2014, 13 pages.
Office Action for U.S. Appl. No. 13/250,858, dated Oct. 28, 2013, 9 pages.
Office Action for U.S. Appl. No. 13/250,940, dated Aug. 28, 2013, 15 pages.
Office Action for U.S. Appl. No. 13/250,940, dated Mar. 12, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/250,970, dated Jul. 30, 2013, 4 pages.
Office Action for U.S. Appl. No. 13/250,994, dated Sep. 16, 2013, 11 pages.
Office Action for U.S. Appl. No. 13/355,360, dated Sep. 12, 2013, 7 pages.
Office Action on U.S. Appl. No. 13/250,940 dated Mar. 25, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/251,087 dated Mar. 28, 2014, 12 pages.
Office Action on U.S. Appl. No. 13/892,026 dated Dec. 8, 2014, 19 pages.
Office Action on U.S. Appl. No. 13/892,057 dated Nov. 28, 2014, 17 pages.
Plastic has replaced glass in photochromic lens, www.plastemart.com, 2003, 1 page.
Press Release, “USAF Awards SBG Labs an SBIR Contract for Wide Field of View HUD”, SBG Labs—DigiLens, Apr. 2013, 1 page.
Press Release: “Navy awards SGB Labs a contract for HMDs for simulation and training”, Press releases, DigiLens, Oct. 2012, pp. 1-2, retrieved from the internat at http://www.digilens.com/pr10-2012.2.php. 2 pages.
Requirement for Restriction/Election on U.S. Appl. No. 13/844,456 dated Sep. 12, 2014, 23 pages.
Restriction Requirement for U.S. Appl. No. 12/700,557, dated Oct. 17, 2012, 5 pages.
Schechter, et al., “Compact beam expander with linear gratings”, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, pp. 1236-1240.
Second Office Action for Chinese Patent Application No. 201310557623.4 dated Dec. 1, 2017. 21 pages.
Second Office Action for Chinese Patent Application No. 201610512319.1 dated May 2, 2018. 9 pages.
Second office action received in Chinese patent application No. 201380001530.1, dated Oct. 12, 2015, 5 pages with English translation.
Supplemental Notice of Allowability on U.S. Appl. No. 13/892,026, dated Nov. 1, 2016, 2 pages.
Third Office Action [With English translation] for CN Application No. 2016105123191 dated Nov. 1, 2018. 16 pages.
Third Office Action for Chinese Patent Application No. 20130557623.4 dated May 22, 2018. 16 pages.
Urey, “Diffractive exit pupil expander for display applications” Applied Optics, vol. 40, Issue 32, pp. 5840-5851 (2001).
Webster's Third New International Dictionary 433 (1986), 3 pages.
Wisely, P.L., Head up and head mounted display performance improvements through advanced techniques in the manipulation of light, Proc. of SPIE vol. 7327, 732706-1, 2009, 10 pages.
Final Office Action for U.S. Appl. No. 14/152,756 dated Jun. 10, 2019. 18 pages.
Notice of Allowance for U.S. Appl. No. 14/465,763 dated Jun. 4, 2019. 8 pages.
Notice of Allowance for U.S. Appl. No. 14/497,280 dated May 22, 2019. 14 pages.
Notice of Allowance for U.S. Appl. No. 15/460,076 dated May 8, 2019. 10 pages.
Third Office Action for Chinese Application No. 2016105123191 dated Jan. 16, 2019. 16 pages.
Corrected Notice of Allowance for U.S. Appl. No. 14/497,280 dated Aug. 7, 2019. 2 pages.
Final Office Action for U.S. Appl. No. 13/844,456 dated Aug. 16, 2019. 28 pages.
Fourth Office Action for Chinese Patent Application No. 2016105123191 dated Apr. 25, 2019. 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/048,954 dated Jul. 9, 2019. 22 pages.
Preliminary Report on Patentability for PCT Application No. PCT/US2018/012227 dated Aug. 8, 2019. 7 pages.
Japanese Office Action for JP Patent Application No. 2018-164677 dated Sep. 17, 2019. 4 pages.
Non-Final Office Action for U.S. Appl. No. 16/126,618 dated Dec. 18, 2019. 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/844,456, dated Feb. 20, 2020, 21 pages.
Non-Final Office Action for U.S. Appl. No. 16/126,618 dated Dec. 19, 2019. 9 pages.
Notice of Allowance for U.S. Appl. No. 16/020,125, dated Feb. 25, 2020, 10 pages.
Notice of Allowance for U.S. Appl. No. 15/048,954 dated Jan. 6, 2020. 10 pages.
Related Publications (1)
Number Date Country
20190243136 A1 Aug 2019 US
Provisional Applications (1)
Number Date Country
62451041 Jan 2017 US
Continuations (1)
Number Date Country
Parent 15429569 Feb 2017 US
Child 16384435 US