The present invention relates devices for treating diseases, and in particular, devices for treating neurodegenerative diseases. The present invention is Continuation-in-Part (CIP) of U.S. patent application Ser. No. 15/597,520, filed May 17, 2017, all of which is herein incorporated by reference.
Neurodegenerative diseases are a very serious problem facing today's society. For example, Alzheimer's dementia is a horrible disease that affects many people. Approximately 5.5 million Americans are currently living with Alzheimer's in 2017. One in ten people age 65 and older currently has Alzheimer's.
Traditionally, Alzheimer's research has focused on the impact of genetics on the disease. In recent years, however, focus has shifted to treating the brain itself. It is known that neurons in the brain interact with each other and will fire at various frequencies. Gamma frequency, defined as the frequency range of 30 Hz to 100 Hz, is important for higher order cognitive function. It has been widely recognized that Alzheimer's patients have diminished neuron activity, especially with respect to the gamma frequency range. Alzheimer's patients also have elevated levels of beta-amyloid peptides. The beta-amyloid peptides are proteins that hinder and block neuron signals, including the gamma oscillation.
At Massachusetts Institute of Technology (MIT) experimentation has been conducted and published that has shown positive results gained after treating mice affected with Alzheimer's. For example, mice suffering with Alzheimer's were exposed to light from Light Emitting Diodes (LEDs) flashing at a gamma frequency of 40 Hz. The mice were placed in a dark area and exposed to a specific frequency light oscillation from LEDs in close proximity. The mice could see the flashing light and it entered their brains through the visual cortex. The visual cortex of the brain is a part of the cerebral cortex that plays an important role in processing visual information.
The treated mice showed remarkable improvement. For example, after an hour of stimulation at 40 Hz, the researchers found a 40 to 50 percent reduction in the levels of beta amyloid proteins in the hippocampus. Additionally, the light exposure stimulated microglia cells. Microglia functions to help remove beta amyloid proteins.
In summary, directly exposing parts of a mouse brain to gamma oscillations supports at least two pathways that aid in the treatment of Alzheimer's. One is to reduce beta amyloid production from neurons. The second is to enhance the removal of beta amyloid by microglia.
More detailed discussions of recent advancements with gamma frequency exposure to Alzheimer infected mice are discussed in the following publications available via the Internet at the following website addresses:
There has not been significant study of the effect of gamma frequency light stimulation on humans. However, the studies on mice lend credence to the hypothesis that a human brain will function similarly to the brain of a mouse and that gamma frequency exposure will reduce beta amyloid production from neurons and enhance the clearance of beta amyloid by microglia. Nevertheless, for the successful treatment of a human, there must be a safe, comfortable, dignified and humane way of providing treatment.
What is needed is an effective way to treat or reduce the effects of neurodegenerative diseases in patients by delivering light and other stimulation to the patient.
The present invention provides a head worn device for treating neurogenerative diseases. The head worn device has LEDs mounted to the device. Two printed circuit boards (PCB) are also mounted on the head worn device. Each PCB has a microprocessor and a battery in electrical communication. Each PCB controls a speaker for emitting audio and a vibrating device for emitting a vibration. The LEDs, speaker and vibrating device are in electrical communication with the microprocessor. The microprocessor is programmed to control the LEDs, the speaker and the vibrating device so that each operate at a regulated frequency so that generated light, sound and vibration travel to the user's brain for medical treatment.
In preferred embodiments of the present invention LEDs are mounted on eyeglass frames so that the LEDs are in close proximity to the user. The LEDs are programmed to flash at a gamma frequency of 30-100 Hz. For example, in one preferred embodiment the LEDs flash at 40 Hz. The user is therefore able to easily be exposed to the flashing light. The light enters the user's brain through the eyes and travels to the visual cortex. The user's brain is then exposed in a manner similar to that discussed above allowing a treatment modality for a person suffering from Alzheimer's disease by reducing beta amyloid production from neurons and enhancing the clearance of beta amyloid by microglia.
Microprocessor 11 is programmed to control the flashing rate of LEDs 25 so that they oscillate at 40 Hz or in the gamma frequency range. In a preferred embodiment, the user can turn LEDs 25 on or off by using control switches 12. Also in a preferred embodiment the user can vary the oscillation rate of LEDs 25 with switches 12. In a preferred embodiment LEDs 25 will always oscillate within the gamma frequency range, at a value between 30 Hz and 100 Hz.
As shown in
In another preferred embodiment shown in
The above preferred embodiments showed LEDs 25 mounted on eye glasses. Eye glasses are comfortable to wear and can be worn with dignity and ease. It also should be noted that there are other types of head worn devices that may also be utilized with similar effectiveness. For example,
Above it was explained that lenses 3 allow a user to see through eye glasses 1 while being treated. In another preferred embodiment lenses are omitted and instead the user's eyes are covered by an opaque covering. For example,
Glasses 101 include PCB 70a and PCB 70b. PCBs 70a and 70b are similar to PCB 70 described above. PCB 70a and 70b each include microprocessor 11, control switches 12 and battery 13, each of which is in electrical communication with one another. PCBs 70a and 70b also each include an amplifier 53. Speaker wire 77 connects amplifier 53 to speaker 78 in ear mold 50. In a preferred embodiment, ear mold 50 transmits oscillating audio to the user that pulsates, preferably in the gamma frequency, or more specifically at 40 Hz. The audio is heard by the user through his ear and travels to the user's brain. In one preferred embodiment the audio is preferably in sync with the flashing light from LEDs 25a and 25b at 40 Hz.
As stated above, glasses 101 further includes two vibrating mini motor discs 90a and 90b, each one connected to a temple 2. Disc 90a is electrically connected to PCB 70a and disc 90b is electrically connected to PCB 70b. Microprocessors 11 are programmed to send electrical control signals to vibrating mini motor discs 90a and 90b. In one preferred embodiment discs 90a and 90b are programmed to vibrate at gamma frequency. For example, in one preferred embodiment discs 90a and 90b vibrate in sync with flashing light from LEDs 25a and 25b at 40 Hz. The vibration is felt by the wearer of glasses 101 and may be used for Alzheimer's treatment.
As shown in
It should be further noted that glasses 101 includes two independently controlled light frequency sources (LEDs 25a and LEDs 25b). Hence, microprocessors 11 can be programmed to control LEDs 25a and LEDs 25b to emit varying frequencies for the user. Gamma frequency (30 Hz to 100 Hz) encompasses a broad range. Multiple frequencies may easily be programmed within the gamma frequency range. For example, PCB 70a may be programmed to control LEDs 25a to emit light at 45 Hz, while simultaneously PCB 70b is programmed to control LEDs 25b to emit light at 80 Hz.
Also, in a preferred embodiment glasses 101 include interior lens 94, as shown in
Although the above-preferred embodiments have been described with specificity, persons skilled in this art will recognize that many changes to the specific embodiments disclosed above could be made without departing from the spirit of the invention. For example, even though the above preferred embodiments discussed LEDs flashing at 40 Hz, it would be possible to adjust the frequency of the flashing to a different value, preferably in the gamma frequency range of 30 to 100 Hz. In another preferred embodiment the LEDS are programmed to flash at a frequency outside the gamma frequency range. It was described above how the utilization of tinted lens 94 allows the user to control the brightness of LEDs 25a and 25b. In another preferred embodiment, the brightness of light emitted from LEDs 25a and 25b is controlled electronically via control switches 12. Also, although above it was described how the present invention is primarily used to treat Alzheimer's, it may also be utilized to treat other major issues that arise from the brain center of the user. It should be understood that frequency control can be achieved other ways than described above. For example, in one preferred embodiment a 555 timer circuit is utilized. The 555 timer circuit allows for controlling specific wavelength, duty, pulse rate, and limited amplitude. Also, although it was described above how physical vibration is utilized for gamma frequencies, it should be understood that vibrating discs 90a and 90b may be used to generate frequencies above and below gamma frequencies. Also, even though the above preferred embodiments discussed the utilization of ear mold 50, it should be understood that other types of audio sound devices may be used, such as bone conducting headphones 135 (
Number | Date | Country | |
---|---|---|---|
Parent | 15597520 | May 2017 | US |
Child | 16785648 | US |