Headgear for patient interface

Information

  • Patent Grant
  • 11806452
  • Patent Number
    11,806,452
  • Date Filed
    Friday, July 12, 2019
    4 years ago
  • Date Issued
    Tuesday, November 7, 2023
    5 months ago
Abstract
An interface includes a mask. The mask includes a frame and a seal supported by the frame. Headgear is connected to the mask. The interface includes at least one of (i) an adjustment mechanism that can be set to a use length for a loop defined by the mask and the headgear; and (2) a break-fit assembly that can selectively lengthen the loop defined by the mask and the headgear and return to the use length.
Description
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference and made a part of the present disclosure.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally relates to masks that cover a breathing passage and structures used to secure the masks to the head. More particularly, the present invention relates to generally non-stretch structures that have at least one of an adjustment mechanism and a configuration providing a predetermined wearing length and a longer length for donning.


Description of the Related Art

Obstructive sleep apnea (OSA) is a sleep condition in which the back of the throat relaxes so much while sleeping that it narrows the airway or even entirely blocks the airway. With the constriction or closure of the airway, breathing can stop or become very shallow for a few seconds or longer.


Continuous positive airway pressure (CPAP) is used to treat OSA. CPAP sends a flow of pressurized air that splints open the airway. The flow of pressurized air can be delivered to the user with an interface. The interface can include a mask and headgear, such as an elastic strap.


When donning the interface, the elastic strap is stretched to allow the headgear to slide over the head of the user. When released, the elastic strap tends to pull the interface against the face of the user.


As the pressure within the mask increases (e.g., 4 cm H2O to 12 cm H2O), the mask attempts to move away from the face of the user because the strap securing the mask against the face is elastic. In some masks, when the force moving the mask away from the face of the user causes the elastic strap to stretch, the force exerted by the mask against the face of the user decreases. Thus, as pressures increase, leaks can result in those masks and, if suitably sealed at higher pressures (e.g., 12 cm H2O), the elasticity of the strap causes undesirably high pressures to be exerted against the face of the user at lower treatment pressures (e.g., 4 cm H2O).


SUMMARY OF THE INVENTION

An object of the present invention is to provide an interface which will at least provide the industry and users with useful choice.


Some aspects of the present invention relate to headgear for use with an interface where the headgear is generally inelastic. Generally inelastic headgear is believed by the inventors to be superior to elastic headgear when used with pressures that vary dramatically over a treatment session, for example. However, generally inelastic headgear can be difficult to fit and use. For example, with generally inelastic headgear, there is a need for decoupling the headgear during donning, which can be problematic when it comes to adjusting the headgear for proper fit. Decoupling also can be difficult to manage for some users.


Certain features, aspects and advantages of the present invention relate to an interface assembly for use in providing a breathing treatment. The interface assembly can comprise a mask. The mask comprises a frame and a seal supported by the frame. Headgear can be connected to the mask and at least one of (i) an adjustment mechanism configured to be set to a use length for a loop defined by the mask and the headgear; and (ii) a break-fit assembly configured to selectively lengthen the loop defined by the mask and the headgear when a predetermined force has been exceeded and return to the use length when the predetermined force has not been exceeded.


In some such configurations, both the adjustment mechanism and the break-fit assembly. In some such configurations, the adjustment mechanism couples the headgear to the mask. In some such configurations, the adjustment mechanism is positioned on the mask. In some such configurations, the adjustment mechanism is positioned on the headgear.


In some such configurations, the break-fit assembly joins the headgear and the mask. In some such configurations, the break-fit assembly joins the adjustment mechanism and the mask. In some such configurations, the break-fit assembly joins the adjustment mechanism and the headgear. In some such configurations, the break-fit assembly is positioned on the frame of the mask. In some such configurations, the break-fit assembly is positioned on the headgear.


In some such configurations, the break-fit assembly comprises a magnetic coupling.


In some such configurations, the break-fit assembly comprises a mechanical coupling.


In some such configurations, the adjustment mechanism is positioned on the mask. In some such configurations, the adjustment mechanism comprises a squeeze to lock mechanism. In some such configurations, the adjustment mechanism comprises a squeeze to unlock mechanism.


In some such configurations, the break-fit assembly comprises a biasing member. In some such configurations, the biasing member comprises an elastic sleeve. In some such configurations, the biasing member comprises a spring.


In some such configurations, the headgear is substantially nonstretch.


Certain features, aspects and advantages of the present invention relate to a mask and headgear system comprising a mask and headgear. The mask comprises a frame and a seal supported by the frame. The headgear can be connected to the mask. A break-fit assembly can be configured to elongate upon the application of a force exceeding a preselected force. The mask, headgear, and break-fit assembly together define a loop that elongates with forces that exceed the preselected force.


In some such configurations, upon application of the force exceeding the preselected force, the resulting elongation of the loop is sufficient to allow a user to don and position the mask on the user's head and face or to allow the user to remove the interface from the user's head and face. In some such configurations, the break-fit assembly resists elongation and remains connected in general use if a force less than the preselected force is applied.


Certain features, aspects and advantages of the present invention relate to a break-fit assembly for a mask and headgear assembly. The break-fit assembly comprises a mechanical coupling that resists elongation from a first length to a second length until a force is applied that exceeds a predetermined force. The mechanical coupling comprising multiple parts and a stretch biasing member that connects two or more of the multiple parts.


In some such configurations, the stretch biasing member exhibits at least one of the following: (1) elastic characteristics and (2) spring characteristics. In some such configurations, the stretch biasing member provides a connection between the parts of the mechanical coupling of the break-fit assembly. In some such configurations, the mechanical coupling requires a first force to disconnect and second force to reconnect, the second force being less than the first force.


Certain features, aspects and advantages of the present invention relate to a break-fit assembly for a mask and headgear assembly. The break-fit assembly comprises a magnetic coupling that resists elongation from a first length to a second length until a force is applied that exceeds a predetermined force. The magnetic coupling comprising multiple parts and a stretch portion.


In some such configurations, the magnetic coupling fulfills a biasing function for the break-fit assembly. In some such configurations, the stretch portion provides a connection between two or more parts of the magnetic coupling.


Certain features, aspects and advantages of the present invention relate to a mask and headgear system comprising a mask configured to be positioned on a user's face and an adjustment mechanism configured to adjust the size of the headgear to accommodate different users.


In some such configurations, the headgear comprises a material that is substantially non-elastic. In some such configurations, the headgear is substantially non-stretch. In some such configurations, the adjustment mechanism comprises a buckle. In some such configurations, the buckle comprises a hook and loop fastener. In some such configurations, the adjustment mechanism comprises a reel and coil spring. In some such configurations, the adjustment mechanism includes a winding mechanism, a spool connected to the winding mechanism, and a flexible material band configured to be wound onto the spool.


The term “comprising” as used in the specification and claims means “consisting at least in part of”. When interpreting a statement in this specification and claims that includes “comprising”, features other than that or those prefaced by the term may also be present. Related terms such as “comprise” and “comprises” are to be interpreted in the same manner.


In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.





BRIEF DESCRIPTION OF THE DRAWINGS

Various forms of the interface will be described with reference to the accompanying drawings.



FIG. 1 is a front view of an interface that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 2 is a side view of the interface of FIG. 1.



FIG. 3 is a perspective view of another interface that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 4A is a schematic side elevation view of a first step of the process of donning the interface of FIG. 3 to a user.



FIG. 4B is a schematic side elevation view of a second step of the process of donning the interface of FIG. 3 to a user.



FIG. 4C is a schematic side elevation view of a third step of the process of donning the interface of FIG. 3 to a user.



FIG. 5 is a rear view of headgear that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 6 is a perspective view of another interface that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 7 is a top view of the interface of FIG. 6.



FIG. 8A is a schematic top plan view of a first step of adjusting a strap length for donning the interface of FIG. 6.



FIG. 8B is a schematic top plan view of a second step of adjusting a strap length for donning the interface of FIG. 6.



FIG. 9 is a top view and two section views of an interface that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 10 is a top view, two section views and a partial side view of an interface that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 11 is a top view of a break-fit assembly that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 12 is an orthogonal view of a portion of the break-fit assembly of FIG. 11 in an open state.



FIG. 13 is a top sectioned view of a break-fit assembly that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 14 is an enlarged view of a portion of the break-fit assembly of FIG. 13.



FIG. 15 is a top sectioned view of the break-fit assembly of FIG. 13.



FIG. 16 is a top sectioned view of a break-fit assembly that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 17 is another top sectioned view of the break-fit assembly of FIG. 16.



FIG. 18 is a top view of an interface that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 19 is a partial view of a portion of the interface of FIG. 18 showing an adjustment mechanism.



FIG. 20 is another partial view of a portion of the interface of FIG. 18.



FIG. 21 is a top view of an interface having an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 22 is a simplified view of a portion of the adjustment mechanism of FIG. 21.



FIG. 23 is a simplified view of a portion of an adjustment mechanism similar to that of FIG. 21, which adjustment mechanism is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 24 is a view of an interface having an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 25 is a partial view of a portion of the interface of FIG. 24.



FIG. 26 is a sectioned view of a portion of the portion of FIG. 25.



FIG. 27 is a partial view of a portion of the interface of FIG. 24.



FIG. 28 is a partial view of a portion of the interface of FIG. 24.



FIG. 29 is a sectioned view of a portion of the portion of FIG. 28.



FIG. 30 is a schematic view of an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 31 is a schematic view of another adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 32 is a perspective view of an interface with an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 33 is a schematic view of the interface of FIG. 32.



FIG. 34 is a view of a portion of the adjustment mechanism of FIG. 32.



FIG. 35 is a schematic view of an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 36 is another schematic view of the adjustment mechanism of FIG. 35.



FIG. 37 is a further schematic view of the adjustment mechanism of FIG. 35.



FIG. 38 is a side view of an interface using the adjustment mechanism of FIG. 35.



FIG. 39 is a side view of another interface using the adjustment mechanism of FIG. 35.



FIG. 40 is a schematic view of an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 41 is a schematic view of an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 42 is a schematic view of another adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 43 is a schematic view of an interface having the adjustment mechanism of FIG. 42.



FIG. 44 is another schematic view of the interface of FIG. 43.



FIG. 45 is a schematic view of an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 46 is another schematic view of the adjustment mechanism of FIG. 45.



FIG. 47 is a schematic view of an interface having the adjustment mechanism of FIG. 45.



FIG. 48 is another schematic view of the interface of FIG. 47.



FIG. 49 is another schematic view of an interface having the adjustment mechanism of FIG. 45.



FIG. 50 is a schematic view of another interface having the adjustment mechanism of FIG. 45.



FIG. 51 is a schematic view of an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 52 is a schematic view of an interface having the adjustment mechanism of FIG. 51.



FIG. 53 is a schematic view of a portion of the interface of FIG. 52.



FIG. 54 is a perspective view of a strap having an adjustment mechanism.



FIG. 55 is a pair of cross-sectional views of the strap of FIG. 54.



FIG. 56 is a pair of enlarged cross-sectional views of the strap of FIG. 54.



FIG. 57 is a group of cross-sectional views of other strap configurations that are arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 58 is a pair of perspective views of further strap configurations having adjustment mechanisms that are arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 59 is a perspective view of an interface with an adjustment mechanism that is arranged and configured in accordance with certain features, aspects and advantages of the present invention.



FIG. 60 is a front view of the interface of FIG. 59.



FIG. 61 is an enlarged perspective view of a portion of the interface of FIG. 59.



FIG. 62 is a pair of cross-sections of the portion of the interface of FIG. 61.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

An example of an interface 100 is shown in FIGS. 1 and 2. The illustrated interface 100 comprises a seal 102 that is supported by a frame 104. A conduit 106 connects to at least one of the seal 102 and the frame 104. The conduit 106 can supply breathing gases to a user.


With reference still to FIGS. 1 and 2, headgear 110 connects to at least one of the seal 102 and the frame 104. In the arrangement illustrated in FIGS. 1 and 2, the headgear 110 comprises a single strap that extends around a head of the user. The frame 104 can comprise two mounting points 112 and the strap 110 comprises cooperating mounting members 114. In some configurations, the seal 102 can comprise the mounting points 112. Any suitable mounting points 112 and mounting members 114 can be used. The cooperating points 112 and members 114 facilitate easy connection and disconnection of the mounting points 112 and mounting members 114. In some configurations, in addition to anchoring the headgear 110, at least one of the mounting points 112 and/or the mounting members 114 comprises a suitable mechanism for adjusting a length of the headgear 110.


The illustrated headgear 110, as described above, can be a single strap 110 that passes around the back of the head. To improve stability, the strap 110 can bifurcate near the mounting members 114 such that multiple mounting points 112 and multiple mounting members 114 can be used.


To provide a consistent experience for the user at varying treatment pressures, the headgear 110 preferably is substantially completely nonstretch. For example, the headgear 110 can be formed of a generally inelastic material or can comprise at least one generally inelastic component that extends generally from one of the mounting members 114 to the other of the mounting members 114. In some configurations, the headgear exhibits limited or no substantial creep. In other words, the headgear 110 can remain substantially the same length over its useful life; the material preferably does not shrink or stretch to a significant degree. By way of example but without limitation, suede is a material that is generally inelastic and that exhibits limited or no creep.


Surprisingly, a generally inelastic headgear assembly (e.g., headgear capable of elastic elongation of less than about 1 percent at a force of about or less than about 5 newtons) has been found to improve user comfort and seal performance over elastic headgear. The generally inelastic headgear 110 does not elongate as a treatment pressure increases or varies over the course of treatment. Rather, the headgear simply reacts to oppose any forces generated by the seal during use. As such, when adjusted for a proper fit at high treatment pressures, the user does not experience too tight of a fit when the pressure decreases to a lower treatment pressure. Moreover, with the headgear adjusted and ready for use, the user generally experiences limited or no preload prior to starting a treatment pressure.


With the generally inelastic headgear 110, the headgear 110 preferably comprises a manner of adjusting a length of the loop defined by the interface 100 (e.g., the headgear 110 and the frame B104 in FIGS. 1 and 2). Many manners of adjusting the length will be described in more detail below. The adjustability facilitates customizing a fit of the inelastic headgear 110 to the particular physical anatomy of the user.


With the generally inelastic headgear 110, the headgear 110 preferably comprises a break-fit assembly. The break-fit assembly, many configurations of which will be described below, facilitates donning of the interface 100. The break-fit assembly can facilitate slight and controlled elongation of the loop defined by the interface 100 to allow the loop to expand sufficiently to slide into position around the head of the user. The extra length enables the user to pull the interface over the maximum circumference of the head while moving the headgear into position below and behind the maxima occipitus, for example. In some embodiments, the break-fit assembly provides between about 0 and 200 mils of expansion. This may be in one location or split over both sides of the associated interface.


The break-fit assembly also preferably will return to the original position, or a use length, once the interface 100 has been properly donned. In some configurations, the break-fit assembly will return automatically once the interface 100 has been donned.


The seal 102102 and the frame B104 generally define a mask in the illustrated configuration. When breathing gases are supplied through the conduit B106 to a cavity defined within the mask, a lifting force is generated by the mask and the mask attempts to move away from the face of the user.


The headgear 110 opposes the lifting force. As described above, the break-fit assembly allows elongation of the loop defined by the interface 100 (e.g., by temporarily increasing a length of the strap). The break-fit assembly preferably only elongates after a break-free force has been applied to the assembly. The break-free force is greater than a maximum of the lifting force (i.e., a maximum of the lifting force generated at the highest expected treatment force). In some configurations, the break-free force is about 3 Newtons to about 8 Newtons.


As described above, the headgear 110 also can have a manner of adjusting the length of the loop. In some configurations, the length adjustment requires an adjustment force that is greater than the break-free force. In such configurations, to adjust the length, a force greater than that required to operate the break-fit assembly is required. As such, the adjustment force is greater than the break-free force and the break-free force is greater than the maximum lifting force. The adjustment force also is greater than the maximum lifting force, which can be particularly relevant if a break-fit assembly is not used.


While the above-description has been generally directed to the assembly of FIGS. 1-2, the description of the materials and relative forces preferably applies to any assembly in which either or both of a break-fit assembly and an adjustment configuration have been provided. In addition, any combination of masks, break-fit assemblies and adjustment configurations described herein is possible, is specifically contemplated and should be understood to be within the scope of this disclosure and certain features, aspects and advantages of this invention.


With reference to FIG. 3, another interface 120 is illustrated therein. The interface 120 also comprises a seal 122, a frame 124, a conduit 126 and headgear 130. While the interface 100 of FIGS. 1 and 2 was a nasal interface, the interface 120 of FIG. 3 is a full face interface. Certain features, aspects and advantages of the present invention can be used with any style of interface, including but not limited to nasal, oral, oral-nasal, full face, or the like.


The illustrated headgear 130 comprises a break-fit assembly 132 and an adjustment mechanism 134. The break-fit assembly 132 is shown in connection with only the lower straps but the break-fit assembly 132 also could be used on any and/or all of the straps if desired. While both the break-fit assembly 132 and the adjustment mechanism 134 are shown integrated into the interface, it also is possible to incorporate only one of the break-fit assembly 132 and the adjustment mechanism 134 into the interface. Moreover, any suitable break-fit assembly and/or any suitable adjustment mechanism can be used.


The headgear 130 preferably comprises a generally inelastic portion 136, the break-fit assembly 132 to facilitate donning of the interface 120, and the adjustment mechanism 124 to allow customization of the headgear 130 to the individual user. In some configurations, the headgear 130 comprises Breathoprene with a nonstretch component added to it. For example, the material could be a three layer laminate (i.e., foam, UBL (unbroken loop) and a nonstretch layer). In some configurations, a nonstretch layer can be a center layer of a five or more layer laminate: nonstretch as a central layer with foam and UBL on each side.


With reference now to FIG. 4, the interface 130 is shown being donned by a user. As shown, the break-fit assembly 132 can extend from a first length L1 to a second length L2, which is greater than the first length L1. By extending from L1 to L2, the size of the loop defined by the headgear 130 and the frame 124 can be increased. By increasing the size of the loop, the loop can be sized to a desired size for normal use yet be extensible to a second larger size for donning without upsetting the ability to immediately return to the desired size for normal use.



FIG. 5 illustrates headgear 140 in which a break-fit assembly 142 is shown on another portion of the headgear relative to the configuration shown in FIG. 4. In FIG. 5, the break-fit assembly 142 is positioned on a rear portion of the headgear 140 while, in FIG. 4, the break-fit assembly 132 is positioned between the generally inelastic portion 136 (seen in FIG. 3) of the headgear 130 and the frame 124. Thus, the break-fit assembly can be positioned between the generally inelastic portion of the headgear and the frame as in FIG. 3, for example, or the inelastic portion of the headgear can be positioned between the break-fit assembly and the frame. In some configurations, the break-fit assembly can be integrated into the headgear (e.g., FIGS. 3 and 5).


With reference to FIG. 5 still, the headgear 140 comprises a generally inelastic portion 144. A coupling portion 146, several different embodiments of which will be described in detail below, can be positioned along a separable seam 150. The seam 150 can be temporarily joined together by the coupling portion 146. In other words, the seam 150 is defined by two edges (shown in dashed lines) that can be separated but, when in close proximity, the two edges are joined by the coupling portion 146. In some configurations, the coupling portion 146 comprises one or more magnets. For example, two magnets or one magnet and one magnetizable component (e.g., an iron component) can be used.


With continued reference to FIG. 5, a return component 152 can be integrated into the headgear 140. In the illustrated configuration, the return component 152 can comprise an elastic material. The return component 152 can span a gap that otherwise would exist between two flaps 154 that reside to each side of the seam 150. As such, when the gap is increased by pulling the headgear 140 (see dashed lines) and separating the flaps 154, the return component 152 can stretch to allow donning of the headgear 140. When the headgear 140 is released, the return component 152 can act to restore the headgear 140 to a position in which the flaps 154 can approach each other and the coupling portion 146 can join the flaps 154 along the seam 150.


In the illustrated configuration, the return component 152 comprises an elastic layer. For example, the return component 152 can comprise one or more portion formed of Lycra, rubber bands, and elastic knit. The elastic layer preferably can stretch up to about 40 mm when subjected to a tensile force of about 5 N (values may differ for a larger mask, such as a full-face mask). In some arrangements, rather than a full layer, the return component 152 can comprise strips, cords, bands or the like.


In the illustrated configuration, the coupling portion 146 comprises two components that are positioned at a lower portion of the headgear 140. Such a location is desired because it is less likely to be felt when sleeping in the headgear 140. Other locations are possible. In addition, while only two components are shown, more than two components are possible. In some configurations, the full length of the seam 150, a substantial portion of the full length of the seam 150 or a majority of the full length of the seam 150 can be formed of a magnetic material or the like such that the coupling portion 146 also can assist in pulling the seam 150 back together.


In some configurations, the break-fit assembly can be integrated into the frame and/or the seal. For example, with reference to FIGS. 6 through 8, an interface 160 has a frame 162 that incorporates a break-fit assembly 164. Thus, the break-fit assembly 164 shown in FIGS. 6 through 8 has been integrated into the mask (e.g., the frame of the mask).


With continued reference to Figure A6, the break-fit assembly 164 can have one or more flaps 166. The flaps 166 can seat against an outer surface 170 of the frame 162. As illustrated, the flaps 166 can be connected to the frame 162 with hinges 172. The illustrated flaps 166 can be connected to the frame 162 with one or more hinges; three hinges 172 are used in the illustrated interface 160. In some configurations, biasing members, such as springs or the like, can be used to provide a biasing force that will tend to return the flaps 166 to a closed or latched position, which position is described below.


Any suitable manner of holding the flaps 166 in position relative to the outer surface 170 of the frame 162 also can be used. In the illustrated configuration, a magnetic coupling 174 has been used. For example, the illustrated magnetic coupling 174 comprises at least one magnet and at least one corresponding component from a magnetic material; the illustrated configuration comprises two magnets and two corresponding components from magnetic materials on each flap 166. For the coupling 174 to function, each paired component comprises at least one magnet and at least one component formed of a magnetic material (e.g., a material that is attracted to a magnet).


With reference to FIG. 7, headgear 176 is connected to the flaps 166 in any suitable manner. The length of the flaps 166 between the hinges 170 and the point at which the headgear 176 couples to the flaps 166 defines the length by which the loop can be increased (e.g., two times this length can be added). Thus, lengthening the distance between the hinges and the coupling point can increase the usable length for the break-fit assembly 164 (as seen in FIG. 6). In addition, while a single flap 166 is shown, the flaps 166 can comprise two or more leafs that accordion over each other. Thus, multiples of the length between the hinges and the coupling point can be attained.


With reference still to FIG. 7, the flaps 166 can open independently of each other. On the left side of FIG. 7, the flap 166 is opened and connected to the headgear 176. On the right side of FIG. 7, the flap 166 is shown in solid lines in the closed or latched position and is shown moving to the opened position. As indicated by the dashed arrow, the flap 166 swings between the latched position and the open position. Both flaps 166 are shown in the closed position on the left in FIG. 8 and both flaps 166 are shown in the open position on the right in FIG. 8. The movement is shown in dashed lines in FIG. 8.


With reference now to FIG. 9, an interface 180 has a frame 182 and headgear 184. A break-fit assembly 186 can be positioned between the frame 182 and the headgear 184. The headgear 184 can comprise a generally inelastic portion 190. The generally inelastic portion 190 can extend between two break-fit assemblies. At least one break-fit assembly can connect the generally inelastic portion 190 to the frame 182, directly (see FIG. 10) or indirectly (see FIG. 9). In the configuration of FIG. 9, two break-fit assemblies connect the generally inelastic portion 190 to the frame 182.


The break-fit assembly 186 comprises two magnetic members 192. As described above, the magnetic members 192 can include at least one magnet or a combination of at least one magnet and at least one magnetizable member (e.g., a ferrous material). The magnetic members 192 are oriented to be attracted to each other. As such, when the magnetic members 192 are brought within a range to allow magnetic coupling, the magnetic members 192 self-align and self-connect.


The magnetic members 192 have a range of movement relative to each other that results in the magnetic members 192 moving outside of the range for magnetic coupling. For example, when the magnetic members 192 move beyond about 10 to about 20 mils apart, the magnetic coupling force is not strong enough to draw the magnetic members 192 back together.


Accordingly, to assist with reconnection and alignment, a flexible sheath 194 can envelop the magnetic members 192. Because the magnetic members 192 are very forgiving with respect to alignment, the flexible sheath 194 is sufficient to guide the magnetic members 192 back together and keep the magnetic members 192 generally on the same path for reconnection. The flexible sheath 194 can be any suitable elastic material. In some configurations, the flexible sheath 194 can be formed from silicone, a stretchy plastic material, a stretchy rubber material, or a stretch textile.


The magnetic members 192 can be fixed at least axially within the flexible sheath 192. In some configurations, the magnetic members 192 are fixed rotationally and/or axially within the flexible sheath 192. The magnetic members 192 can be attached to the flexible sheath 194 in any suitable manner. For example but without limitation, the magnetic members 192 can be glued, sewn, overmolded, or the like to secure the magnetic members 192 and the flexible sheath 192 together.


The magnetic member 194 closest to the frame 182 can be attached directly (see FIG. 10) or indirectly (see FIG. 9) to the frame 182. The magnetic member furthest from the frame 182 can be attached to an end of the generally inelastic member 190. In some configurations, the magnetic member 194 furthest from the frame 182 can be directly connected to the end of the generally inelastic member 190, as illustrated in FIG. 9 for example but without limitation.


In the illustrated configuration, a portion of the sheath 194 extends along and/or wraps around at least a portion of the inelastic member 190. In some configurations, the sheath 194 extends the full distance or substantially the full distance from one side of the frame 182 to the other side of the frame 182. Moreover, in some configurations, the sheath 194 can be secured to at least a portion of the inelastic member 190. For example, the sheath 194 can be bonded to at least a portion of the inelastic member 190. Other configurations also are possible. In the illustrated configurations, a distance from the laterally outermost portion of the sheath 194 to the magnetic member 192 secured to the inelastic member 190 generally will not change. However, a distance from the laterally innermost portion of the sheath 194 to that same magnetic member 192 will vary due to stretching of the sheath 194


As illustrated in FIG. 9, when the outer magnetic members 192 move away from the inner magnetic members 192, the length of the headgear 180 increases. The movement of the magnetic members 192 away from each other is resisted of the elastic material of the sheath 194. Thus, stretching of the sheath 194 establishes a restoration force that will act to return the magnetic members 192 toward each other for reconnection to a resting position. The resting position is a position where the break-fit assembly is connected by a force sufficient to withstand the forces generated by the seal of the interface during normal use of the CPAP plus hose drag. Hose drag can be any force applied to the mask system by the CPAP hose being pulled away from the user or being dragged over any surface. In other words, the force coupling the magnetic members 192 preferably is above a maximum force created by the pressurized breathing gases within the interface, which pressurized breathing gases originate from the CPAP blower force. For example but without limitation, at about 20 cm H2O, there is a force of about 5 N pushing the mask away from the face of the users so the magnetic members 192 preferably exert a coupling force of greater than about 5 N. In some configurations, the magnetic attraction is preferably greater than about 4 to 5 N, which this takes into account a relatively high treatment pressure (e.g., about 20 cm H2O) and a difficult to seal patient geometry.


With reference now to FIGS. 11 through 17, additional break-fit assemblies are illustrated therein. The break-fit assemblies illustrated in FIGS. 11 through 17 achieve a break-fit function through the use of mechanical couplings rather than magnetic couplings. Each of the break-fit assemblies can be connected to inelastic headgear as described above and can be used in place of, or in combination with, any of the other break-fit assemblies described herein. As described above, the break-fit assemblies facilitate a temporarily enlargement of a loop defined by the interface to ease donning; the mechanical arrangements described herein can provide an extension of between about 25 mils and about 100 mils in some configurations. In some configurations, the extension is between about 30 mils and about 70 mils. In some configurations, the extension is about 50 mils. It should be noted that the mechanical break-fit assemblies tend to have a longer axial length than the magnetic break-fit assemblies do. However, the mechanical break-fit assemblies offer other distinct advantages over the use of magnets.


With reference first to FIGS. 11 and 12, a break-fit assembly 200 has a construction that allows a separation of a first component and a second component at a predetermined force while facilitating rejoining of the first component and the second component in a mechanical manner. In the illustrated embodiment of FIGS. 11 and 12, the first component can comprise a post 202 with a head 204 and the second component can comprise a receptacle 206 with a resilient opening 210. The first component and the second component can be joined by a biasing member 212, such as an elasticated sleeve or spring, for example but without limitation. The biasing member 212 can be secured to the first component and the second component in any suitable manner. In addition, in the illustrated configuration, the biasing member 212 overlies any gap that will be created when the first component and the second component separate. Thus, the biasing member 212 can act to guide the reconnection of the first and second components.


The head 204 in the illustrated configuration has a gently sloping portion 214 and a more severely angled portion 216. Similarly, the receptacle 206 has a gently sloping portion 220 and a more sharply angled portion 222. The surfaces 214, 216, 220, 222 are but one configuration of surfaces that can be used. Advantageously, the illustrated configuration using the gently sloping interfaces 214, 220 facilitates a low coupling force while using the more sharply angled interfaces 216, 222 causes a higher separation force. Accordingly, the illustrated break-fit assembly 200 will separate at a relatively higher force than the force required by the assembly 200 to recombine. As with the assemblies discussed above, preferably, the assembly 200 will separate at a tensile load of about 4 N or 5 N or more.


With reference now to FIGS. 13 through 15, another break-fit assembly 230 has a construction that allows a separation of a first component and a second component at a predetermined force while facilitating rejoining of the first component and the second component in a mechanical manner. In the illustrated embodiment of FIGS. 13 through 15, the first component can comprise a post 232 with a head 234 and the second component can comprise a receptacle 236 with an opening 240. The post 232 can extend through a wall that defines the receptacle 236. As such, the post 232 can slide within the receptacle 236. With the post 232 sliding within the receptacle 236, alignment generally results.


A return force between the first component and the second component can be created by a biasing member 242. In the illustrated assembly 230, the biasing member is positioned within the second component. As shown, the biasing member 242 is positioned within the receptacle 236. The biasing member 242 can be a spring, for example but without limitation. The illustrated biasing member 242 comprises a compression spring. A retainer 244 secures the biasing member 242 over the post 232. The retainer can be integrally formed with the post 232 or can be separately formed and secured thereto in any suitable manner. The biasing member 242 therefore bears against a surface of the receptacle 236 and the retainer 244.


With reference to FIG. 14, the head 234 in the illustrated configuration has a gently sloping portion 246 and a more severely angled portion 248. Similarly, the receptacle 236 has a gently sloping portion 250 and a more sharply angled portion 252. The surfaces 246, 248, 250, 252 are but one configuration of surfaces that can be used. Advantageously, the illustrated configuration using the gently sloping interfaces 246, 252 facilitates rejoining at a low coupling force while using the more sharply angled interfaces 248, 250 results in separation occurring at a higher separation force. Accordingly, the illustrated break-fit assembly 230 will separate at a relatively higher force than the assembly 230 will recombine. As with the assemblies discussed above, preferably, the assembly 230 will separate at a tensile load of about 4 N or 5 N or more.


With reference now to FIGS. 16 and 17, another break-fit assembly 260 has a construction that also allows a separation of a first component and a second component at a predetermined force while facilitating rejoining of the first component and the second component in a mechanical manner. In the illustrated embodiment of FIGS. 16 and 17, the first component can comprise a post 262 with a head 264 and the second component can comprise a receptacle 266 with an opening 270. The post 262 can extend through a wall that defines the receptacle 266. As such, the post 262 can slide within the receptacle 266. With the post 262 sliding within the receptacle 266, alignment generally results.


A return force between the first component and the second component can be created by a biasing member 272. In the illustrated assembly 270, the biasing member overlays at least a portion of each of the first and second components. The biasing member 272 can be a spring or a resilient sleeve, for example but without limitation. The illustrated biasing member 272 is a resilient fabric sleeve that generally encases the first component and the second component.


With reference to FIG. 17, the head 264 in the illustrated configuration has a gently sloping portion 274 and a more severely angled portion 276. Similarly, the receptacle 266 has a gently sloping portion 280 and a more sharply angled portion 282. In the illustrated configuration, the gently sloping portion 280 of the second component comprises a displaced inner wall of the receptacle 266 and the more sharply angled portion 282 comprises an end of that wall that forms the gently sloping portion 280. The surfaces 274, 276, 280, 282 are but one configuration of surfaces that can be used. Advantageously, the illustrated configuration using the gently sloping interfaces 274, 280 facilitates a low coupling force while using the more sharply angled interfaces 276, 282 causes a higher separation force. Accordingly, the illustrated break-fit assembly 260 will separate at a relatively higher force than the assembly 260 will recombine. As with the assemblies discussed above, preferably, the assembly 260 will separate at a tensile load of about 4 N or 5 N or more.


As introduced above, when using generally inelastic headgear, the user may desire some form of adjustment. In some instances, the adjustment will occur during set-up of the device and no further adjustment will be performed. In other instances, the user may wish to be able to adjust the headgear as desired. Accordingly, FIGS. 3, 7, 9 through 11, and 18 through 62 will be used to describe various adjustment mechanisms that are arranged and configured in accordance with certain features, aspects and advantages of the present invention.


With reference initially to FIG. 3, as discussed above, the illustrated interface 120 includes an adjustment mechanism 134. In addition, FIG. 7 illustrates a similar adjustment mechanism 168 and FIG. 10 also illustrates a similar adjustment mechanism 198. Accordingly, the following description of the adjustment mechanism 134 shown in FIG. 3 can apply equally to the adjustment mechanism 168 shown in FIG. 7 and/or the adjustment mechanism 198 shown in FIG. 10.


The adjustment mechanism 134 is a simple buckle 135 with a hook and loop fastening configuration 138 formed on the inelastic portion 136 of the headgear 130. A tab of the hook and loop fastening configuration 138 can be passed through an opening defined within the buckle 135 and then secured in position after being doubled back upon itself, for example but without limitation. Other buckle configurations also can be used, including pin-based buckles or the like.


With continued reference to FIG. 3, the headgear 130 can be connected to the balance of the interface 120 using hooks 139 or the like. As illustrated, the hook 139 can be connected to a mounting structure formed on or connected to at least one of the frame 124 and the seal 122. Other assemblies are possible. In the configuration illustrated in FIG. 3, both the upper strap and the lower strap include the adjustment mechanism 134.


With reference now to FIG. 9, another adjustment mechanism 187 is illustrated therein. The adjustment mechanism 187 can comprise an insert 188 that includes teeth 189 and that is secured to the break-fit assembly 186. The insert 188 can be mated with an opening in the frame 182. The insert 188 interlocks with a structure in the frame 182. In some configurations, the teeth 189 of the insert 188 interlock with a structure in the frame 182. Preferably, the insert 188 is easy to move inward into the frame 182 but significantly more difficult to retract from the frame 182. An adjustment force is used to adjust the headgear. In some configurations, the frame 182 may include a release button that, when depressed, facilitates withdrawal of the insert 188 from the frame 182.


With reference now to FIGS. 18-20, an interface 290 comprises a frame 292 and a seal 294. Headgear 296 is connected to the frame 292 in any suitable manner. The headgear 296 can comprise a generally inelastic member 300 and an outer cover member 302. The outer cover member 302 can comprise an elastic sleeve. The elastic sleeve 302 can be attached to the frame 292 in any suitable manner. The generally inelastic member 300 can move substantially freely within the sleeve 302.


With reference to FIG. 19 and FIG. 20, the generally inelastic inner member 300 has a first end 304 and a second end 306. The first end 304 and the second end 306 can overlap in the region of the frame 292. Movement of the ends 304, 306 changes the size of the loop defined by the headgear 296 and the frame 292 in the illustrated configuration. The stretch material of the elastic sleeve 302 proves a force that urges the inner generally inelastic member to a first position (e.g., the position shown in FIG. 19); the stretch material of the elastic sleeve 302, however, allows the ends 304, 306 to slide relative to each other such that the loop can be expanded. Thus, during donning of the interface 290, the headgear can be expanded and, when released, the elastic sleeve 302 attempts to return the headgear to the starting position.


With reference again to FIG. 18, the frame 292 can comprise a lock button 310. While a centrally located lock button 310 is shown, two or more lock buttons can be used. In some configurations, a separate lock button can be used for each of the ends 304, 306 and the lock buttons can be disposed laterally of the center point.


In some configurations, depressing the lock button 310 can release the ends 304, 306 to allow movement of one or both of the ends 304, 306. In some configurations, depressing the lock button 310 can lock the ends 304, 306 relative to each other and relative to the frame 292 such that the size of the loop no longer changes. If the lock button 310 requires depression to lock the ends 304, 306, it is possible to allow the headgear 296 to function like an elastic headgear until the lock button 310 is depressed. In some configurations, the lock button 310 operates a release mechanism (e.g., a clothing toggle) that allows movement when depressed and, in some configurations, the lock button 310 operates a clamping mechanism (e.g., friction brake) that reduces or eliminates the likelihood of movement when depressed. Any suitable locking mechanism can be used.


In the illustrated configuration, at the extremities of the ends 304, 306 are stops 312, 314. The stops 312, 314 can be used to limit the amount of stretch provided by the headgear 296. For example, the stops 312, 314 can be constructed such that, while the ends 304, 306 can pass through the frame 292, the stops cannot fully pass through the frame 292. In some configurations, the stops 312, 314 are configured to not enter the frame 292 at all. Other configurations also are possible.



FIGS. 21 through 23 illustrate another interface 320 having a frame 322, a seal 324 and headgear 326. The frame 322 in the illustrated configuration comprises an adjustment mechanism 330. FIGS. 22 and 23 illustrate slightly different variations of the adjustment mechanism 330, mostly relating to a biasing member.


The adjustment mechanism 330 can be connected to the headgear 326 in any suitable manner. For example, the headgear 326 can be formed within an inelastic member and can include hooks, clasps, or other mechanical connection members. Moreover, in some configurations, a break-fit assembly, including but not limited to any break-fit assembly described herein, can be interposed between the headgear 326 and the adjustment mechanism 330.


The adjustment mechanism 330 can be positioned within a housing of the frame 322. The adjustment mechanism 330 can be positioned around an inlet that is coupled to a supply conduit (not shown). Such a positioning provides an efficient use of space and results in a symmetric configuration. With reference to FIG. 22, the adjustment mechanism 330 is shown in a simplified view. The adjustment mechanism 330 can comprise a reel disk 322 and a coil spring 334 (see FIG. 23). In some configurations, a coil spring can be omitted. In some configurations, rather than the coil spring 334, such as that of FIG. 22, an elastic outer member (not shown) can be used in a manner similar to that used in the configuration of FIGS. 18 through 20.


At least one extensible member 336 can be connected to the reel disk 332. Two extensible members 336 are shown in FIG. 21 while a single extensible member is shown in FIGS. 22 and 23. When a single extensible member 336 is used, the member 336 preferably folds back over itself in at least one location. The extensible member 336 can be a cord, string, tape, or the like, for example but without limitation. The extensible member 336 preferably is generally inelastic and is mounted such that it can be unwound from and retracted back onto the reel disk 332.


The reel disk 332 can be mounted on a spool or axle (not shown) such that the reel disk 332 can rotate about an axis. A locking mechanism 338 can be provided to secure the length of extensible member 336 that is extended from the housing. The reel disk 322 can be provided with, or connected to a member that includes, locking structure 340, such as recesses, teeth, or the like. A locking pin 342 can be biased, such as by a spring 344 for example but without limitation, into the locking structure 340. In some configurations, a locking assembly using a friction brake or the like can be used. Desirably, the locking assembly reduces or eliminates the likelihood of further withdrawal of the extensible member. While the extensible member 336 can be retracted into the housing following obtaining a setting in certain configurations, the extensible member 336 preferably cannot be pulled further out from the housing once locked.


With reference to FIGS. 24-29, an interface 350 is illustrated that includes a frame 352, a seal 354 and headgear 356. An adjustment mechanism 360 can be provided that connects the headgear 356 to the balance of the interface 350. The adjustment mechanism 360 comprises a winding mechanism similar to that discussed directly above. For example, the adjustment mechanism 360 includes a thin band of material 362, such as a cord, tape or the like, that winds onto and off of a spool 364 such that the band of material 362 can coil about the spool 364.


With reference to FIG. 25, the headgear 356 can be generally inelastic and can be joined to the band 362 in any suitable manner. In the illustrated configuration, the headgear 356 and the band 362 can be connected by a shuttle member 366. Advantageously, using the shuttle 366 results in the band 362 being continuously retained within the frame 352. By retaining the band 362 within the frame 352, the band 362 can be formed of a very thin material yet be protected from wear and abuse.


The shuttle member is configured to move axially along at least a portion of the frame 352. Movement of the shuttle 366 toward the spool 364 (e.g., to the left in FIG. 25) acts to remove slack in the headgear 356 (i.e., shorten the loop) while movement of the shuttle 366 away from the spool 364 (e.g., to the right in FIG. 25) acts to increase slack in the headgear 356 (i.e., lengthen the loop). Any suitable locking mechanism can be used to secure the assembly at a desired position. For example, any of the following can be locked in position: the spool 364, the band 362, the shuttle 366 or the headgear 356. In some configurations, the spool 364 comprises a locking mechanism such as those described above. In some configurations, the shuttle 366 can have detent components that click from one position from the next or the shuttle 366 can move between a clamped position and a freely slidable position (e.g., a clamped position can be created when the shuttle 366 is squeezed into position on a frame component such that it clamps onto the frame component and a freely slidable position can be created when the shuttle is pulled from the frame component and able to slide along the frame component).


In the illustrated configuration, the shuttle member 366 is positioned in a slot 370 formed within the frame 352. The slot 370 can be positioned as desired. For example, the slot 370 can be on a surface of the frame 352 that faces the user, that faces away from the user, that faces up or that faces down. Adjacent to the slot 370 can be graduated markings to help users identify a desired setting. In some configurations, the slot can be omitted (see, e.g., FIG. 27). In some configurations, the frame 352 can simply comprise an opening rather than a slot (see, e.g., FIG. 28).


As also illustrated in FIGS. 26-29, the shuttle member 366 can be captured or connected to the frame 352 in any desired manner. For example, the shuttle member 366 can include recesses that receive flanges of the frame 352. In some configurations, the frame 352 can include recesses that receive flanges of the shuttle member 366. Desirably, the shuttle member 366 is connected to the frame 352 in such a manner that the shuttle member 366 can translate along at least a portion of the frame 352.


With reference now to FIGS. 30 and 31, two different adjustment mechanisms 380 are illustrated in a schematic fashion. The mechanism 380 can be positioned in a frame of the interface (e.g., in a recess within the frame) or in a separate housing. In some configurations, the mechanism 380 can be positioned in a housing located along a portion of the headgear, for example but without limitation. As described above, spools have been used to remove slack or adjust a length of the headgear. The takeup mechanisms 380 can be used to adjust the length of the headgear in any of the configurations described herein. The illustrated mechanisms 380 comprise a first set of pins 382 and a second set of pins 384. The first set of pins 382 are positioned on a first body 386 and the second set of pins 384 are positioned on a second body 388.


By moving the first body 386 relative to the second body 388, a length of an extensible member 390 can be adjusted. In FIG. 30, a single member 390 is shown and, in FIG. 31, two members 390 are shown with each member secured to one of the bodies (e.g., the first body 386).



FIG. 30 illustrates a linear movement while FIG. 31 illustrates a rotational movement. Advantageously, a very small relative movement between the first body 386 and the second body 388 can result in a significant change in length of the extensible member 390. Increasing the number of pins 382, 384 increases the effect on length. Reducing the number of pins 382, 384 reduces the effect on length.


Any suitable movement can be used. In FIG. 31, the outer body 386 can be rotated while the inner body 388 remains stationary or the outer body 386 can remain stationary while the inner body 388 rotates or both bodies 386, 388 may rotate. The relative movements can be created in any suitable manner. For example, linear movements can be controlled by a lever, a button or the like, which can be connected to one or both of the bodies 386, 388. Rotational movements also can be control by dials, levers, buttons or the like.


With reference now to FIGS. 32 through 34, another interface 400 is illustrated that includes a frame 402, a seal 404 and headgear 406. An adjustment mechanism 410 can be provided. With reference to FIGS. 33 and 34, the adjustment mechanism 410 comprises a rack and pinion assembly.


A pinion 412 can be mounted between two racks 414. The pinion 412 and the racks 414 can be positioned within the frame 402. The ends of the racks 414 can connect to the headgear 406 or can be integrated into the headgear 406. In some configurations, the racks 414 connect to the headgear 406 outside of the frame 402. In some configurations, the racks 414 connect to the headgear 406 inside of the frame 402. The racks 414 can be flexible enough to wrap slightly around the pinion 412 to provide more purchase between the racks 414 and the pinion 412 and bring the racks into alignment for generally symmetrical headgear attachment. In some configurations, relief recesses 415 can be provided to increase the flexibility of the racks 414.


With reference again to FIG. 32, a ring or other input device 416 can be positioned on a surface of the frame 402. For example but without limitation, the ring 416 can be positioned on the front of the frame 402 and can surround a connector through which breathing gases are supplied to the interface 400. Rotation of the input device 416 causes rotation of the pinion 412.


The pinion 412 comprises teeth 418 and the racks 414 include cooperating teeth 420. As the pinion 412 rotates, the teeth 418, 420 cause axial movement of the racks 414. In this manner, the racks 414 can be used to adjust the loop. Any suitable locking mechanism can be used to lock the position of the headgear 406, the racks 414, the pinion 412 and/or the ring 416. For instance, a pin or the like can be used to inhibit rotation of the pinion 412 and/or the ring 416. In some configurations, a friction break, a clamping mechanism, a cammed break member or the like can be used to inhibit movement of one or more of the headgear 406, the racks 414, the pinion 412 and/or the ring 416. Moreover, while not illustrated, a break-fit assembly can be used as well. For example, the input device can have limits that are adjustable and that limit the range of rotation. In some such configurations, a coil spring or other biasing member can urge the input device toward the limit associated with the smaller headgear size. As such, the headgear can expand but then automatically retract to the predetermined use size under the influence of the biasing member.


With reference now to FIGS. 35-37, a further adjustment mechanism 420 is illustrated. The adjustment mechanism 420 comprises a resilient sleeve 422 and a post 424. The resilient sleeve 422 can be formed from any suitable material. In some configurations, the resilient sleeve 422 is formed from silicone, for example but without limitation. In some configurations, the resilient sleeve 422 can be formed from a woven material, which material may or may not be resilient. The post 424 can be formed from any suitable material. In some configurations, the post 424 is formed from a steel roll, for example but without limitation.


The resilient sleeve 422 includes a passage 426. The passage 426 can have an inner diameter or inner dimension that is smaller than an outer diameter or corresponding outer dimension of the post 424. The post can be easily inserted into the passage 426. Insertion of the post 424 into the passage 426 causes stretching of the resilient sleeve 422. The stretching of the sleeve 422 causes the material to become tight against the post 424. Any attempt to simply apply tensile forces to the two members causes further tightening of the interface between the sleeve 422 and the post 424. See FIG. 36. As shown in FIG. 37, to release the post 424 from the sleeve 422, an end of the sleeve 422 can be manipulated to effectively limit the necking of the sleeve 422 while withdrawing the post 424. Thus, the end of the sleeve 422 can be moved axially away from the post 424 by causing axial compression of the sleeve. Thus, the sleeve 422 and the post 424 can form a very effective adjustment mechanism.


With reference to FIGS. 38 and 39, these figures illustrate two ways of integrating the adjustment mechanism 420 into an interface 428. As illustrated therein, the post 424 can be formed as part of the mask (FIG. 38) or as part of the headgear (FIG. 39) and the sleeve 422 can be formed as part of the headgear (FIG. 38) or as part of the mask (FIG. 39). With respect to the component that is formed on the mask side, the component can be integrated into the frame or the seal. In FIG. 38, the post 424 is formed as part of a frame 430 while, in FIG. 39, the sleeve 422 is formed as part of a seal 432. Moreover, as shown in FIG. 39, a scale 424 or other demarcations can be provided along a portion of the post 424 to indicate the length of the post 424 that has been fed into the sleeve 422. In some configurations, the sleeve 422 can include demarcations as well or as an alternative to the demarcations 434 on the post 424.


With reference to FIGS. 40 and 41, two further adjustment mechanisms 450 are illustrated therein. As illustrated, the adjustment mechanisms comprise a sleeve 452 and a post 454. As with the configuration just described, the post 454 is received within a passage 456 of the sleeve 452. As illustrated in FIG. 40, the passage 456 can comprise one or more tabs 458 that resist withdrawal of the post 454 from the passage 456. For example, the tabs 458 may slant away from an opening 460 of the sleeve 452 or the tabs 458 may be sufficiently flexible and sufficiently long that, upon insertion of the post 454 into the passage 456, the tabs 458 deflect away from the opening 460. Attempts to withdraw the post 454 from the passage 456 will be resisted by the tabs 458 but the tabs will not prevent the withdrawal of the post 454 upon the application of sufficient force. The distance between the tabs will be smaller than the diameter or width of the post 454 such that when the post is inserted the tabs will grip on the post and be forced to bend inwards. The length of the tabs and their material may cause them to grip on the post and deform, thus increasing the interference with the post and requiring a greater force to remove the post from the sleeve.


As with the embodiment above, the adjustment mechanism 450 can be formed between the headgear and the mask. For example, the post 454 can be connected to, or integrally formed with, a portion of the mask while the sleeve 452 is formed with or connected to the headgear (see FIG. 40). In some configurations, the sleeve 452 can be integrated into, or joined to, a hook 462. As such, the sleeve 452 and the hook 462 can be used to connect a mask and headgear together while also providing adjustability. See FIG. 41.


With reference now to FIGS. 42 through 44, an interface 470 is illustrated. The interface 470 comprises a frame 472, a seal 474 and headgear 476. An adjustment mechanism 480 can connect the headgear 476 to the balance of the interface 470. For example, as illustrated in FIG. 44, the frame 472 can include a housing 482 that contains the adjustment mechanism 480, which is shown in FIGS. 42 and 43. The adjustment mechanism connects to the headgear 476.



FIG. 43 illustrates that the adjustment mechanism 480 can include a plurality of telescoping members 484. The telescoping members 484 are designed to nest one inside of another. As such, when collapsed, the telescoping members 484 define a first length and, when extended, the telescoping members 484 define a second length that is longer than the first length. This relationship is best shown by comparing the left side of FIG. 42 and the right side of FIG. 42.


To provide for symmetrical movement of the telescoping members 484, connecting cables 486 can be used. For example, a first connecting cable 486 can join an upper portion of a first member 484 to a lower portion of a third member 484 by looping over an upper portion of a second member 484 (see cables on upper portion of FIG. 42). Similarly, a second connecting cable 486 can join a lower portion of the third member 484 to an upper portion of the first member 484 by looping under a lower portion of the second member 484 (see cables on lower portion of FIG. 42). When the members 484 move, the cable or cables 486 maintain balanced positions that result in the members moving in a synchronized manner.


The outermost member 484 can define an end magnet or magnetizable material that can be connected to, or can define, an end cap 490 of the adjustment mechanism 480. Located at the upper portion of the third member 484 can be another magnet or magnetic material that defines a base 491, which in one position is adjacent the end cap 490. The end cap 490 and the base 491 may both comprise magnets, respectively, or one may comprise a magnet while the other comprises a magnetizable material. The end cap 490 and the base 491 are held together with a magnetic force. When adjacent to each other, the distance or length between the lower portion of the base 491 to the upper portion of the end cap 490 is defined as L3. If a force exceeding the magnetic force is applied in an opposing direction the one or more magnets will be forced apart to define a distance or length of L4 where L4 is greater than L3.


The end cap 490 and the base 491 together provide the same or a similar break-fit function as those described in FIGS. 9 and 10. When an axial force is applied to the end cap 490, the end cap 490 pulls away from the base 491 thereby loosening the tension on the headgear 476, which may be beneficial for ease of removal or adjustment. Because of the magnetic force between the end cap 490 and the base 491, the two elements may tend to be drawn back together when the force keeping them apart is removed or reduced. Other elements of the headgear 476 may also draw the two elements back together. For example, a resilient member 492 (as described in greater detail below) may comprise an elastic material that will draw the end cap 490 and the base 491 back toward each other if separated.


In some embodiments, the end cap 490 is secured to the upper portion of a telescoping member 484. In FIG. 42, end cap 490 is shown as affixed to the upper portion of the fourth telescoping member 484. Because the fourth telescoping member 484 slides into and out of the third telescoping member 484, the base 491 positioned at the upper end of the third telescoping member 484 may be configured to accommodate such movement. For example, in some embodiments, the base 491 comprises an annular shape that allows the fourth telescoping member 484 to slide into and out of both the base 491 as well as the third telescoping member 484. Such movement comes into play in the break-fit operation of the end cap 490 and base 491. In some embodiment, the base 491 comprises any number of shapes having an interior opening to accommodate the fourth telescoping member 484. In some embodiments, the base 491 is positioned to one or more sides of the slot 496 of the third telescoping member 484. Thus, the movement of the fourth telescoping member 484 is not impeded and the end cap 490 can still be held in place with a magnetic force.


The members 484, the connecting cables 486, the end magnet and the end cap 490 can be enclosed with a resilient member 492. Any suitable resilient member 492 can be used. In some configurations, the resilient member 492 is a strip of material. In other applications, the resilient member 492 forms an envelope around the members 484 and the end cap 490. As best shown in FIG. 42, the illustrated resilient member 492 resists movement of the end cap 490 away from the centerline CL. More importantly, the resilient member applies a restorative force when the members 484 extend outward.


Because the telescoping members 484 are nested and are slidingly connected and can include one or more connecting cables B486, the entire assembly can be locked into a position by locking only one of the members 484. In other words, the connecting cables 486 operate in a balanced manner and so stopping the movement of one member 484 relative to another member 484 causes all of the members 484 to stop. More particularly, by controlling the movement at lock point 494, the entire adjustment mechanism can be controlled. For example, clamping together the centermost member 484 and the adjacent member 484 will reduce or eliminate the likelihood of movement of the other members 484.


The members 484 can include slots 496. Pins 498 can extend between adjacent members 484 in a slot such that the members are coupled together. To provide the lock point 494, one of the pins 498 can extend through a slot 500 formed in the housing 482, as shown in FIG. 44. Other locking configurations also can be used. For example, multiple stops can be provided with a pin fitting into one of the holes that define the multiple stops. Desirably, the locking configuration will lock out movement between at least one of the members 484 and the housing 482 or will lock out movement between at least two adjacent members 484.


With reference now to FIGS. 45 through 50, and especially to FIGS. 47 and 48, an interface 510 is illustrated that has a frame 512, a seal 514, headgear 516 and an adjustment mechanism 520. The adjustment mechanism 520 can comprise a scissor mechanism, as will be described. In some configurations, the adjustment mechanism 520 can be connected to the frame 512. In some configurations, the adjustment mechanism 520 can be positioned within a housing 522. In some configurations, the housing 522 can be connected to the frame 512. In some configurations, the housing 522 forms a portion of the frame 512. In some configurations, the headgear 516 is connected to the frame 512 with the adjustment mechanism 520 contained within the housing 522.


With reference to FIG. 47, the adjustment mechanism 520 preferably comprises a first base component 530 and a second base component 532. The first and second components 530, 532 can comprise rings in some configurations. The first ring 530 and the second ring 532 can be positioned side by side with a single rotational axis extending through the two rings 530, 532. The first ring 530 includes two lugs 534 that are approximately 180 degrees apart. The second ring 532 includes two lugs 536 that also are approximately 180 degrees apart.


A pair of crossing scissor arms 540 connect to the lugs 534, 536 on each side of the rings 530, 532. The scissor arms 540 can be connected at a pin joint 542. In addition, the connections between the scissor arms 540 and the lugs 534, 536 can be pin joints. While one set of scissor arms 540 are shown for each side of the adjustment mechanism 520, other numbers can be used.


An end piece 544 can be connected to the scissor arms 540 with stub arms 546. A first end of the stub arms can be connected to the scissor arms 540 with pin joints. Similarly, a second end of the stub arms can be connected to the end piece 544 with pin joints.


When the end piece 544 is moved relative to the first ring 530 and the second ring 532, the stub arms 546 and the scissor arms 540 fold and unfold while the first ring 530 and the second ring 532 rotate. For example, as shown in FIG. 45, when the end piece 544 is in the contracted position, an angle α between the lugs 534 and an line that extends through the rotational axis of the rings 530, 532 as well as the pin joints of the scissor arms 540 is greater than when the end piece 544 is in the extended position. Thus, the angle α decreases as the distance between the center axis CA and the end piece 544 increases.


The adjustment mechanism 520 includes a biasing member 548. In the illustrated arrangement, the biasing member 548 urges the end piece 544 toward the center axis CA. In some configurations, the biasing member 548 can be one or more strips of an elastomeric material or a spring member. In some configurations, the biasing member 548 can be an enveloping stretchable fabric or other material. Any suitable biasing member can be used. In some configurations, the biasing member 548 also is the housing 522. The biasing member provides a restorative force that seeks to return the end pieces 544 to the contracted position.


With reference still to FIGS. 45 and 46, a locking component 550 can be used to secure the adjustment mechanism 520 in a desired position. For example, in the illustrated configuration, the rings 530, 532 can comprise one or more recesses 552 that extend around the periphery of the rings 530, 532. The recesses can be in the form of teeth, for example but without limitation. A pin 554 can engage with the recesses 552 to reduce or eliminate the likelihood of rotation of the rings 530, 532 when movement is not desired. In some configurations, only one of the first and second rings 530, 532 is secured against movement.


Of course, any other suitable locking mechanism can be used. FIG. 49 illustrates a cam assembly 560. The cam assembly 560 can use a cam mounted to a lever. The first and second rings 530, 532 can be squeezed together by the cam. As such, when the lever is moved to the locked position, at least one of the first and second rings 530, 532 cannot rotate. In some configurations, both of the first and second rings 530, 532 cannot rotate. Another mechanism, illustrated in FIG. 50, can include a threaded ring assembly 562, which features a locking ring that tightens against at least one of the first and second rings 530, 532. The locking ring, when tightened, can secure at least one or both of the first and second rings 530, 532 from rotation.


As discussed above, the adjustment mechanisms described herein can be used with break-fit assemblies where desired. With reference to FIG. 46, an integration of an adjustment mechanism and a break-fit assembly will be described. The adjustment mechanism has been described above. To integrate a break-fit assembly 570, the end piece 544 and a plate 572 can be releasably coupled together. In some configurations, the end piece 544 and the plate 572 can be magnetically coupled. In some configurations, at least one of the end piece 544 and the plate 572 is or includes a magnet. The magnetic coupling between the end piece 544 and the plate 572 is sufficiently strong to allow the connection to remain during treatment yet sufficiently weak to allow separation between the end piece 544 and the plate 572 when donning the interface 510. The elastic member 548 continues to stretch even beyond the full range of adjustment by the adjustment mechanism 520 (e.g., about an additional 50 mils). Thus, if the adjustment mechanism 520 is locked at a position between collapsed and extended, the elastic member 548 will continue to stretch when the plate 572 breaks free from the end piece 544 during donning of the interface 510.


While the adjustment mechanism 520 described with respect to Figures A45 through A48 featured a coordinated expansion to both sides due to the interconnecting rings 530, 532, an adjustment mechanism 580 can have independent movement of the two sides. For example, the adjustment mechanism 580 shown in FIGS. 51-53 can allow adjustment of two sides independently of each other. As illustrated, the adjustment mechanism 580 can include at least a first gear 582 and a second gear 584. The first gear 582 and the second gear 584 can be engaged such that rotation of one of the gears 582, 584 results in rotation of the other one of the gears 582, 584.


A first lever arm 586 can extend away from the first gear 582 and a second lever arm 588 can extend away from the second gear 584. The first lever arm 586 and the first gear 582 are coupled for rotation and the second lever arm 588 and the second gear 584 are coupled for rotation.


A pair of crossing scissor arms 590 connect to the lever arms 586, 588. The scissor arms 590 can be connected at a pin joint 592. In addition, the connections between the scissor arms 590 and the lever arms 582, 584 can be pin joints. While one set of scissor arms 590 are shown for each side of the adjustment mechanism 580, other numbers can be used.


An end piece 594 can be connected to the scissor arms 590 with stub arms 596. A first end of the stub arms 596 can be connected to the scissor arms 590 with pin joints. Similarly, a second end of the stub arms 596 can be connected to the end piece 594 with pin joints.


When the end piece 594 is moved relative to the gears 582, 584, the stub arms 596 and the scissor arms 590 fold and unfold while the gears 582, 584 rotate. As shown in FIG. 51, the end piece 594 can move between a contracted position (solid lines) and an extended position (dashed lines).


As shown in FIG. 52, the adjustment mechanism 580 can comprise an elastic cover 598, similar to the configurations described above. The cover 598 encloses the mechanical assembly and applies a force that urges the mechanism back to the contract position. Any of the biasing structures described herein can be used. In addition, the break-fit assembly described above can be integrated in the same manner. Effectively, relative to the other scissor arms assembly described above, the assembly of FIGS. 51-53 exchanges the two rings for four gears and isolates the movement of the two sides.


As described above, it is possible to use hook and loop fasteners with buckles or the like to provide an adjustment mechanism. With reference to FIGS. 54-58, a few assemblies that can be used in place of hook and loop fasteners are illustrated. These assemblies feature components that can be formed of silicone or another polymeric material. Accordingly, these features facilitate molding with either headgear or another component of the interface.


With reference to FIG. 54, a strap 610 is shown doubled back on itself. A slider 612 can be used to slide over at least a portion of the strap 612. The strap 610 can include one or more rails 614. The rails 614, as shown in FIG. 55, can include a narrow rib 616 with an enlarged cap 618. When pressed together on itself, each rail 614 can deflect. As illustrated, the enlarged cap 618 can interlock with itself to join the strap. The slider 612, as it slides over the doubled over portion of the strap 610, helps to cause the rails 614 to interlock. As an adjustment mechanism, the straps 610 allow a significant length that can be used and, because of the construction and the interlocking of the rails 614, the straps 610 will not be prone to having a free end dangling. In other words, the excess length is easily managed.


With reference to FIG. 57, another strap 620 is illustrated. The strap 620 comprises two rails 622. Each of the rails 622 can comprise a C-shaped cap 624 that sits atop a narrower rib 626. As illustrated, when pressed together, one of the two caps 624 will compress to fit inside of the other of the two caps 624. Thus, when the strap is doubled over itself and pressed together, the strap 620 doubled over portion can lock to itself in the longitudinal direction.



FIG. 57 also illustrates a second strap 630. The strap 630 comprises four rails 632. Two of the rails 632 each comprise a C-shaped cap 634 that sits atop a narrower rib 636. Two of the rails 632 each comprise a small head 638 that sits atop a narrower rib 640. When pressed together, the small head 638 can snap into the recess of the C-shaped cap 634. Thus, when the strap 630 is doubled over itself and pressed together, the strap 630 can lock to itself in the longitudinal direction.



FIG. 58 shows another strap 650. The strap 650 can lock to itself in a transverse direction. As illustrated, the strap 650 can comprise an end 652 with a stop 654. In addition, the end 652 can include a tab 656, which can be sized to accommodate a slider member 658. The slider member 658 can track along the axial direction of the strap 650.


One side of the illustrated strap 650 includes transversely extending ribs 660. The ribs 660 are shaped to enable the ribs 660 to lock together when pressed. The other side of the illustrated strap 650 is substantially smooth.


The slider member 658 has an opening large enough to accommodate two thicknesses of the strap 650 so long as the two thicknesses have the ribs 660 interlocked. Accordingly, the tab portion 656 is generally smooth on both sides such that, when the slider member 658 is positioned over the tab portion 656, the location of the tab portion 656 can be adjusted (see lower portion of FIG. 58). Once positioned as desired, the slider member 658 can be slid away from the stop 654. As the slider member 658 traverses the strap 650, the ribs 660 are pressed together and the strap locks to itself in a transverse direction.


With reference now to FIGS. 59 through 62, an interface 700 is illustrated. The interface 700 includes a mask frame 702, a seal 704 and headgear 706. An adjustment mechanism 710 connects the headgear 706 to the balance of the interface 700.


In the illustrated configuration, the frame 704 comprises arms 712 that extend laterally outward. As illustrated, the arms 712 can include recessed grooves 714 that extend along one or both of the top and bottom.


The headgear 706 connects to a slide 720. In the illustrated configuration, the headgear 706 is pivotally connected to the slide 720. Other types of connections also can be used. The slide 720 can include a tooth 722 that fits into each of the recessed grooves 714 of the arms 712. The slide 720 should define a larger inside dimension than a corresponding outside dimension of the arm 712 such that the slide 720 can be compressed toward the arm 712.


With reference to FIG. 60, the slide 720 generally is locked in position along the arm 712 until compressed. For example, as illustrated in FIG. 60, compressing the slide 720 in the direction of the teeth (e.g., vertically as shown) releases the slide 720 and enables the slide 720 to translate along the arm 712. FIG. 62 demonstrates that the slide 720 can include a tooth or friction generator 722 that is contacts the arm 712 until the slide 720 is compressed. When the slide 720 is compressed toward the arm 712, a wall 724 of the slide 720 deflects away from the arm 712, which raises the tooth or friction generator 722 away from the arm 712 to facilitate movement of the slide 720 along the arm 712.


As illustrated in FIG. 61, the arm 712 can include markings or indicia to assist with determining the location of the slide 720 along the length of the arm 712.


As discussed above, a non-stretching headgear generally indicates that the headgear should be set to a specific, customized size for each user. Preferably, the sizing is performed once and then is not changed during subsequent use. Using the break-fit assemblies described herein, the sizing can be temporarily adjusted for ease of donning the interface while facilitating automatic reconnection of the headgear to the predetermined size. As discussed above, the break-fit assembly can be positioned on the mask (e.g., on the frame or on the seal), in-line by connecting to one or more of the straps of the headgear, or in another portion of the headgear (e.g., along a seam in the back of the headgear).


In some configurations, a component assembly can be provided to reduce the likelihood of accidental adjustment of a predetermined sizing of the headgear. For example but without limitation, the component assembly can be created to operate an adjustment mechanism only with deliberate interaction. In one configuration, a key can be used to lock or unlock the adjustment mechanism. By key, it is intended to have a broad interpretation of a device that establishes control over the mechanism. The key could be a traditional key or could be another item. For example, the key could be a magnet or a magnetic component that attracts another component to interact with an adjustment mechanism. By way of another example, the key could be a household item, such as a screwdriver, pin, or the like. In one configuration, once the size has been adjusted, a component can be removed to lock the adjustment mechanism against inadvertent or undesirable resizing.


In some configurations, electronics can be added to improve the function of the interface. For example, a strap or other component can have an incorporated track that acts as an electronic tape measure. When an initial fitting of the interface is performed (e.g., by a sleep technician), the initial sizing can be bookmarked in an electronic component of the interface. With each subsequent fitting or donning of the interface, the electronics can signal when the headgear is at the proper or predetermined size. For example, the user can stretch the interface during donning and then tighten until the electronics indicate that the predetermined length has been reached. Similarly, an actuator could be provided to automatically tighten the interface to the predetermined size. The actuator could be a small motor, solenoid or the like. The actuator could be integrated into the frame or the headgear, for example but without limitation. Furthermore, using the electronics, operating characteristics of a CPAP device could be monitored such that an adjustment could be made to the headgear automatically to compensate for leaks as soon as the leaks occur or are likely to occur.


While various embodiments have been described, it should be noted that any of the adjustment mechanisms can be combined with any of the break-fit assemblies. In addition, the adjustment mechanisms can be used without a break-fit assembly and the break-fit assemblies can be used without an adjustment mechanism. Further, any interface (i.e., mask and headgear) can be used with either or both of an adjustment mechanism described herein and/or a break-fit assembly.


Although the present invention has been described in terms of a certain embodiment, other embodiments apparent to those of ordinary skill in the art also are within the scope of this invention. Thus, various changes and modifications may be made without departing from the spirit and scope of the invention. For instance, various components may be repositioned as desired. Moreover, not all of the features, aspects and advantages are necessarily required to practice the present invention. Accordingly, the scope of the present invention is intended to be defined only by the claims that follow.

Claims
  • 1. An interface assembly for use in providing a breathing treatment, the interface assembly comprising: a mask, the mask comprising a frame and a seal supported by the frame;headgear connected to the mask: anda break-fit assembly configured to selectively lengthen a loop defined by the mask, the break-fit assembly, and the headgear when a predetermined force has been exceeded and return the loop to a use length when the predetermined force has not been exceeded;wherein the break-fit assembly comprises a mechanical coupling that resists elongation from a first length to a second length until a force is applied that exceeds a predetermined force, wherein the mechanical coupling comprises a first component and a second component, and a biasing member, wherein the first component and the second component are joined by the biasing member, and wherein the biasing member creates a return force between the first component and the second component when the break-fit assembly elongates from the first length to the second length,wherein upon application of a force exceeding the predetermined force, a resulting elongation of the loop is sufficient to allow a user to don and position the interface assembly on a head and face of a user or to allow the user to remove the interface assembly from the head and face of the user.
  • 2. The interface assembly of claim 1, wherein the headgear is substantially nonstretch.
  • 3. The interface assembly of claim 1, wherein the mechanical coupling requires a first force to disconnect, the first force exceeding the predetermined force, and a second force to reconnect, the second force being less than the first force.
  • 4. The interface assembly of claim 3, wherein the first force is about 4 N or more.
  • 5. The interface assembly of claim 3, wherein the first component comprises a post with a head.
  • 6. The interface assembly of claim 1, wherein the first component comprises a post with a head.
  • 7. The interface assembly of claim 6, wherein the head has a gently sloping portion and a more severely angled portion.
  • 8. The interface assembly of claim 6, wherein the second component comprises a receptacle with an opening.
  • 9. The interface assembly of claim 8, wherein the post extends through a wall that defines the receptacle.
  • 10. The interface assembly of claim 9, wherein the receptacle has a gently sloping portion and a more sharply angled portion.
  • 11. The interface assembly of claim 8, wherein the receptacle has a gently sloping portion and a more sharply angled portion.
  • 12. The interface assembly of claim 1, wherein the biasing member is positioned within the second component.
  • 13. The interface assembly of claim 1, wherein the biasing member overlays at least a portion of each of the first component and the second component.
  • 14. The interface assembly of claim 1, wherein the biasing member is a spring.
  • 15. The interface assembly of claim 1, wherein the biasing member is an elasticated or resilient sleeve.
US Referenced Citations (795)
Number Name Date Kind
301111 Genese Jul 1884 A
472238 Van Orden Apr 1892 A
577926 Miller Mar 1897 A
718470 Jones Jan 1903 A
751091 Moran Feb 1904 A
770013 Linn Sep 1904 A
1364104 Geer Jan 1921 A
1635545 Drager Jul 1927 A
1942442 Motsinger Jan 1934 A
2126755 Dreyfus Aug 1938 A
2199690 Bullard May 1940 A
2228218 Schwartz Jan 1941 A
2241535 Boothby et al. May 1941 A
2296150 Dockson et al. Sep 1942 A
2353643 Bulbulian Jul 1944 A
2359506 Battley et al. Oct 1944 A
2388604 Eisenbud Nov 1945 A
2390233 Akerman et al. Dec 1945 A
2452845 Fisher Nov 1948 A
2508050 Valente May 1950 A
2586851 Monro et al. Feb 1952 A
2611897 Adams Sep 1952 A
2661514 Ada Dec 1953 A
2693800 Caldwell Nov 1954 A
2738788 Matheson et al. Mar 1956 A
2843121 Hudson Jul 1958 A
2859748 Hudson Nov 1958 A
2875759 Galleher Mar 1959 A
2894506 Rose Jul 1959 A
2939458 Lundquist Jun 1960 A
3045672 Croasdaile Jul 1962 A
3156922 Anderson Nov 1964 A
3295529 Corrigall et al. Jan 1967 A
3416521 Humphrey Dec 1968 A
3424633 Corrigall et al. Jan 1969 A
3457564 Holloway Jul 1969 A
3490452 Greenfield Jan 1970 A
3500474 Austin Mar 1970 A
3530031 Loew Sep 1970 A
3599635 Kenneth Aug 1971 A
3682171 Dali et al. Aug 1972 A
3792702 Delest Feb 1974 A
3834682 McPhee Sep 1974 A
3850171 Ball et al. Nov 1974 A
3887968 Lynam Jun 1975 A
3894562 Mosley et al. Jul 1975 A
3972321 Proctor Aug 1976 A
3977432 Vidal Aug 1976 A
3990757 Gill Nov 1976 A
3992720 Nicolinas Nov 1976 A
3994022 Villari et al. Nov 1976 A
4051556 Davenport et al. Oct 1977 A
4062068 Davenport et al. Dec 1977 A
4090510 Segersten May 1978 A
D250047 Lewis et al. Oct 1978 S
D250131 Lewis et al. Oct 1978 S
4127130 Naysmith Nov 1978 A
4150464 Tracy Apr 1979 A
D252322 Johnson Jul 1979 S
4167185 Lewis Sep 1979 A
4201205 Bartholomew May 1980 A
4258710 Reber Mar 1981 A
4266540 Panzik et al. May 1981 A
4278082 Blackmer Jul 1981 A
4288891 Boden Sep 1981 A
4313437 Martin Feb 1982 A
4328605 Hutchison et al. May 1982 A
4354488 Bartos Oct 1982 A
4367735 Dali Jan 1983 A
4378011 Warncke et al. Mar 1983 A
4402316 Gadberry Sep 1983 A
4413382 Siegmann Nov 1983 A
4437462 Piljay Mar 1984 A
4453292 Bakker Jun 1984 A
4454880 Muto et al. Jun 1984 A
4458373 Maslow Jul 1984 A
4477928 Graff Oct 1984 A
4574799 Warncke et al. Mar 1986 A
4603602 Montesi Aug 1986 A
4606077 Phillips Aug 1986 A
4621632 Bartels et al. Nov 1986 A
4644974 Zingg Feb 1987 A
4676241 Webb et al. Jun 1987 A
D293613 Wingler Jan 1988 S
4734940 Galet et al. Apr 1988 A
4753233 Grimes Jun 1988 A
4782832 Trimble et al. Nov 1988 A
4817596 Gallet Apr 1989 A
4836200 Clark et al. Jun 1989 A
4848334 Bellm Jul 1989 A
4853275 Tracy et al. Aug 1989 A
4856508 Tayebi Aug 1989 A
4907584 McGinnis Mar 1990 A
4915104 Marcy Apr 1990 A
4915105 Lee Apr 1990 A
4919128 Kopala et al. Apr 1990 A
4938209 Fry Jul 1990 A
4941467 Takata Jul 1990 A
4944310 Sullivan Jul 1990 A
4947488 Ashnioff Aug 1990 A
D310431 Bellm Sep 1990 S
4958658 Zajac Sep 1990 A
4971051 Toffolon Nov 1990 A
4986269 Hakkinen Jan 1991 A
5010925 Atkinson et al. Apr 1991 A
5016625 Hsu et al. May 1991 A
5031261 Fenner Jul 1991 A
5042478 Kopala et al. Aug 1991 A
D320677 Kumagai et al. Oct 1991 S
5052084 Braun Oct 1991 A
D321419 Wallace Nov 1991 S
5062421 Burns et al. Nov 1991 A
5065756 Rapoport Nov 1991 A
D322318 Sullivan et al. Dec 1991 S
5074297 Venegas Dec 1991 A
5094236 Tayebi Mar 1992 A
5113857 Dickerman et al. May 1992 A
5121745 Israel et al. Jun 1992 A
5148578 Clarke et al. Sep 1992 A
5148802 Sanders et al. Sep 1992 A
5164652 Johnson et al. Nov 1992 A
5191882 Vogliano Mar 1993 A
5231979 Rose Aug 1993 A
5243971 Sullivan et al. Sep 1993 A
5245995 Sullivan et al. Sep 1993 A
D340317 Cole Oct 1993 S
5259377 Schroeder Nov 1993 A
5267556 Feng Dec 1993 A
5269296 Landis et al. Dec 1993 A
5315859 Schommer May 1994 A
5349949 Schegerin Sep 1994 A
5366805 Fujiki et al. Nov 1994 A
D354128 Rinehart Jan 1995 S
D355484 Rinehart Feb 1995 S
5388743 Silagy Feb 1995 A
5400776 Bartholomew Mar 1995 A
5429683 Le Mitouard Jul 1995 A
5438979 Johnson et al. Aug 1995 A
5441046 Starr et al. Aug 1995 A
5449206 Lockwood Sep 1995 A
5449234 Gipp et al. Sep 1995 A
5458202 Fellows et al. Oct 1995 A
5460174 Chang Oct 1995 A
5477852 Landis et al. Dec 1995 A
5488948 Dubruille Feb 1996 A
5513634 Jackson May 1996 A
5518802 Colvin et al. May 1996 A
5529062 Byrd Jun 1996 A
5533506 Wood Jul 1996 A
5542128 Lomas Aug 1996 A
5546605 Mallardi Aug 1996 A
5551419 Froehlich et al. Sep 1996 A
5558090 James Sep 1996 A
5566395 Nebeker Oct 1996 A
5570689 Starr et al. Nov 1996 A
5588423 Smith Dec 1996 A
5595174 Gwaltney Jan 1997 A
5601078 Schaller et al. Feb 1997 A
D378610 Reischel et al. Mar 1997 S
5649532 Griffiths Jul 1997 A
5657752 Landis et al. Aug 1997 A
5662101 Ogden Sep 1997 A
5664566 Mcdonald et al. Sep 1997 A
5687715 Landis Nov 1997 A
5690097 Howard et al. Nov 1997 A
5724965 Handke et al. Mar 1998 A
5752510 Goldstein May 1998 A
5755578 Contant et al. May 1998 A
5774901 Minami Jul 1998 A
5806727 Joseph Sep 1998 A
5807295 Hutcheon et al. Sep 1998 A
5746201 Kidd Dec 1998 A
5857460 Popitz Jan 1999 A
5884624 Barnett et al. Mar 1999 A
5904278 Barlow et al. May 1999 A
5918598 Belfer Jul 1999 A
5921239 McCall Jul 1999 A
5924420 Reischel Jul 1999 A
5941245 Hannah et al. Aug 1999 A
5941856 Kovacs et al. Aug 1999 A
5943473 Levine Aug 1999 A
5953763 Gouget Sep 1999 A
5966745 Schwartz et al. Oct 1999 A
6016804 Gleason et al. Jan 2000 A
6017315 Starr et al. Jan 2000 A
6019101 Cotner et al. Feb 2000 A
6021528 Jurga Feb 2000 A
6039044 Sullivan Mar 2000 A
6044844 Kwok et al. Apr 2000 A
6050260 Daniell et al. Apr 2000 A
6112746 Kwok et al. Sep 2000 A
6116235 Walters et al. Sep 2000 A
6119693 Kwok et al. Sep 2000 A
6119694 Correa et al. Sep 2000 A
6135109 Blasdell et al. Oct 2000 A
6135432 Hebblewhite et al. Oct 2000 A
6192886 Rudolph Feb 2001 B1
D440302 Wolfe Apr 2001 S
6256798 Egolf et al. Jul 2001 B1
6272690 Carey et al. Aug 2001 B1
6272933 Gradon et al. Aug 2001 B1
6282725 Vanidestine, Jr. Sep 2001 B1
6298850 Argraves Oct 2001 B1
6302105 Wickham et al. Oct 2001 B1
6338342 Fecteau et al. Jan 2002 B1
6341606 Bordewick et al. Jan 2002 B1
6347631 Hansen et al. Feb 2002 B1
D455891 Biedrzycki Apr 2002 S
6398197 Dickinson et al. Jun 2002 B1
6412487 Gunaratnam et al. Jul 2002 B1
6412488 Barnett Jul 2002 B1
6418928 Bordewick et al. Jul 2002 B1
6422238 Lithgow Jul 2002 B1
6427694 Hecker et al. Aug 2002 B1
6431172 Bordewick Aug 2002 B1
6435181 Jones, Jr. et al. Aug 2002 B1
6439234 Curti et al. Aug 2002 B1
6457473 Brostrom et al. Oct 2002 B1
6467483 Kopacko et al. Oct 2002 B1
6470886 Jestrabek-Hart Oct 2002 B1
6478026 Wood Nov 2002 B1
6484725 Chi et al. Nov 2002 B1
6488664 Solomon et al. Dec 2002 B1
6491034 Gunaratnam et al. Dec 2002 B1
6513526 Kwok et al. Feb 2003 B2
6526978 Dominguez Mar 2003 B2
6530373 Patron et al. Mar 2003 B1
6561188 Ellis May 2003 B1
6561190 Kwok May 2003 B1
6561191 Kwok May 2003 B1
6581594 Drew et al. Jun 2003 B1
6581601 Ziaee Jun 2003 B2
6581602 Kwok et al. Jun 2003 B2
6584977 Serowski Jul 2003 B1
6588424 Bardel Jul 2003 B2
6615832 Chen Sep 2003 B1
6629531 Gleason et al. Oct 2003 B2
6631718 Lovell Oct 2003 B1
6634358 Kwok et al. Oct 2003 B2
6637434 Noble Oct 2003 B2
6644315 Ziaee Nov 2003 B2
6651658 Hill et al. Nov 2003 B1
6651663 Barnett et al. Nov 2003 B2
6659102 Sico Dec 2003 B1
6662803 Gradon et al. Dec 2003 B2
6668828 Figley et al. Dec 2003 B1
D485905 Moore Jan 2004 S
6679257 Robertson et al. Jan 2004 B1
6679265 Strickland et al. Jan 2004 B2
6691707 Gunaratnam et al. Feb 2004 B1
6712072 Lang Mar 2004 B1
6736139 Wix May 2004 B1
6772761 Rucker, Jr. Aug 2004 B1
6796308 Gunaratnam et al. Sep 2004 B2
6817362 Gelinas et al. Nov 2004 B2
6823869 Raje et al. Nov 2004 B2
6851425 Jaffre et al. Feb 2005 B2
6851428 Dennis Feb 2005 B2
6883177 Ouellette et al. Apr 2005 B1
6883519 Schmidtke et al. Apr 2005 B2
6886564 Sullivan et al. May 2005 B2
6892729 Smith et al. May 2005 B2
6895965 Scarberry et al. May 2005 B2
6907882 Ging et al. Jun 2005 B2
6918390 Lithgow et al. Jul 2005 B2
6951218 Gradon et al. Oct 2005 B2
6953354 Edirisuriya et al. Oct 2005 B2
6997187 Wood et al. Feb 2006 B2
7004165 Salcido Feb 2006 B1
7007696 Palkon et al. Mar 2006 B2
7021311 Gunaratnam et al. Apr 2006 B2
D520140 Chaggares May 2006 S
7036508 Kwok May 2006 B2
7062795 Skiba et al. Jun 2006 B2
7066179 Eaton et al. Jun 2006 B2
7077126 Kummer et al. Jul 2006 B2
D526094 Chen Aug 2006 S
7096864 Mayer et al. Aug 2006 B1
7096867 Smith et al. Aug 2006 B2
D533269 McAuley et al. Dec 2006 S
7178525 Matula, Jr. et al. Feb 2007 B2
7178528 Lau Feb 2007 B2
7201169 Wilkie et al. Apr 2007 B2
7207333 Tohara Apr 2007 B2
7210481 Lovell et al. May 2007 B1
7219669 Lovell et al. May 2007 B1
7225811 Ruiz et al. Jun 2007 B2
7255106 Gallem et al. Aug 2007 B2
7261104 Keifer Aug 2007 B2
7287528 Ho et al. Oct 2007 B2
7290546 Sprinkle et al. Nov 2007 B2
7296575 Radney Nov 2007 B1
7318437 Gunaratnam et al. Jan 2008 B2
7353826 Sleeper et al. Apr 2008 B2
7353827 Geist Apr 2008 B2
7357136 Ho et al. Apr 2008 B2
7406966 Wondka et al. Aug 2008 B2
7448386 Ho et al. Nov 2008 B2
7487772 Ging et al. Feb 2009 B2
7493902 White et al. Feb 2009 B2
D589139 Guney Mar 2009 S
7523754 Lithgow et al. Apr 2009 B2
D595841 McAuley et al. Jul 2009 S
7562658 Madaus et al. Jul 2009 B2
7597100 Ging Oct 2009 B2
7640934 Zollinger et al. Jan 2010 B2
7658189 Davidson et al. Feb 2010 B2
7665464 Kopacko et al. Feb 2010 B2
D612933 Prentice Mar 2010 S
7681575 Wixey et al. Mar 2010 B2
7694677 Tang Apr 2010 B2
7703457 Barnett et al. Apr 2010 B2
7708017 Davidson May 2010 B2
7753051 Burrow et al. Jul 2010 B2
D623288 Lubke Sep 2010 S
7814911 Bordewick et al. Oct 2010 B2
7827990 Melidis et al. Nov 2010 B1
7845352 Sleeper et al. Dec 2010 B2
7856982 Matula et al. Dec 2010 B2
7861715 Jones et al. Jan 2011 B2
7870860 McCormick et al. Jan 2011 B2
7877817 Ho Feb 2011 B1
7896003 Matula et al. Mar 2011 B2
7913692 Kwok Mar 2011 B2
7931024 Ho et al. Apr 2011 B2
7934501 Fu May 2011 B2
7942150 Guney et al. May 2011 B2
7967014 Heidmann Jun 2011 B2
7992560 Burton et al. Aug 2011 B2
8042539 Chandran et al. Oct 2011 B2
8042541 Amarasinghe et al. Oct 2011 B2
8047893 Fenske Nov 2011 B2
8074651 Bierman et al. Dec 2011 B2
8104473 Woodard et al. Jan 2012 B2
8109271 Vandine et al. Feb 2012 B2
8132270 Lang et al. Mar 2012 B2
8136524 Ging et al. Mar 2012 B2
8136525 Lubke et al. Mar 2012 B2
8171933 Xue et al. May 2012 B2
D661796 Andrews et al. Jun 2012 S
8245711 Matula et al. Aug 2012 B2
8297285 Henry et al. Oct 2012 B2
8371302 Ging et al. Feb 2013 B2
8397727 Ng et al. Mar 2013 B2
8443807 McAuley et al. May 2013 B2
D686313 Matula et al. Jul 2013 S
8479726 McAuley Jul 2013 B2
8479741 McAuley et al. Jul 2013 B2
8505538 Amarasinghe Aug 2013 B2
8522785 Berthon-Jones et al. Sep 2013 B2
8567404 Davidson et al. Oct 2013 B2
8573201 Rummery et al. Nov 2013 B2
8596271 Matula, Jr. et al. Dec 2013 B2
8596274 Hieber et al. Dec 2013 B2
8631793 Omura et al. Jan 2014 B2
8631799 Davenport Jan 2014 B2
8636005 Gradon et al. Jan 2014 B2
8636007 Rummery et al. Jan 2014 B2
8636008 Flory et al. Jan 2014 B2
8701667 Ho et al. Apr 2014 B1
8714157 McAuley et al. May 2014 B2
8720444 Chang May 2014 B2
8757157 Price et al. Jun 2014 B2
8783257 McAuley et al. Jul 2014 B2
8794239 Gunaratnam Aug 2014 B2
8857435 Matula, Jr. et al. Oct 2014 B2
8869797 Davidson et al. Oct 2014 B2
8869798 Wells et al. Oct 2014 B2
8875709 Davidson et al. Nov 2014 B2
8915251 Lubke et al. Dec 2014 B2
8944061 D'Souza et al. Feb 2015 B2
8950404 Formica et al. Feb 2015 B2
8960196 Henry Feb 2015 B2
8997742 Moore et al. Apr 2015 B2
9010331 Lang et al. Apr 2015 B2
9027556 Ng et al. May 2015 B2
9032955 Lubke et al. May 2015 B2
9032956 Scheiner et al. May 2015 B2
9044564 Dravitzki et al. Jun 2015 B2
9072852 McAuley et al. Jul 2015 B2
9095673 Barlow et al. Aug 2015 B2
9119929 McAuley et al. Sep 2015 B2
9119931 D'Souza et al. Sep 2015 B2
9138555 McAuley et al. Sep 2015 B2
9149596 Valcic et al. Oct 2015 B2
9186474 Rollins Nov 2015 B1
9242062 Melidis et al. Jan 2016 B2
9265909 Ho et al. Feb 2016 B2
9292799 McAuley et al. Mar 2016 B2
9295799 McAuley et al. Mar 2016 B2
9302065 Smith et al. Apr 2016 B2
9320566 Alston, Jr. Apr 2016 B1
9320866 McAuley et al. Apr 2016 B2
9333315 McAuley et al. May 2016 B2
9339622 McAuley et al. May 2016 B2
9339624 McAuley May 2016 B2
9375545 Darkln et al. Jun 2016 B2
9381316 Ng et al. Jul 2016 B2
9457162 Ging et al. Oct 2016 B2
9480809 Guney et al. Nov 2016 B2
9486601 Stallard et al. Nov 2016 B2
9517317 McAuley et al. Dec 2016 B2
9517320 Barlow et al. Dec 2016 B2
9522246 Frater et al. Dec 2016 B2
9539405 McAuley et al. Jan 2017 B2
9550038 McAuley et al. Jan 2017 B2
9561338 McAuley et al. Feb 2017 B2
9561339 McAuley et al. Feb 2017 B2
9592336 Nielsen et al. Mar 2017 B2
9744385 Henry et al. Aug 2017 B2
9782554 Mazzone et al. Oct 2017 B2
9878118 Formica Jan 2018 B2
D810277 Amarasinghe Feb 2018 S
9884160 McAuley et al. Feb 2018 B2
9901699 Veliss et al. Feb 2018 B2
9901700 McAuley et al. Feb 2018 B2
9907925 McAuley et al. Mar 2018 B2
9925349 Jablonski Mar 2018 B2
9974914 McAuley May 2018 B2
9993606 Gibson et al. Jun 2018 B2
10039665 Blaszczykiewicz et al. Aug 2018 B2
10065010 Smith et al. Sep 2018 B2
10071217 Grashow Sep 2018 B2
10080856 McLaren et al. Sep 2018 B2
10137271 McAuley et al. Nov 2018 B2
10201678 Guney et al. Feb 2019 B2
10207072 Dunn et al. Feb 2019 B2
10252015 McAuley et al. Apr 2019 B2
10258757 Allan et al. Apr 2019 B2
10272218 McAuley et al. Apr 2019 B2
10279138 Ovzinsky May 2019 B2
10328226 Allan et al. Jun 2019 B2
10363387 Allan et al. Jul 2019 B2
10384029 McAuley et al. Aug 2019 B2
10413694 Allan et al. Sep 2019 B2
10456546 McLaren et al. Oct 2019 B2
10646680 Huddart et al. May 2020 B2
10675428 Guney et al. Jun 2020 B2
10792451 Allan et al. Oct 2020 B2
10828449 Higgins et al. Nov 2020 B2
10828452 Huddart et al. Nov 2020 B2
10874814 Huddart et al. Dec 2020 B2
11000663 Felix et al. May 2021 B2
20010017134 Bahr Aug 2001 A1
20010020474 Hecker et al. Sep 2001 A1
20010029952 Curran Oct 2001 A1
20020005198 Kwok et al. Jan 2002 A1
20020014241 Gradon et al. Feb 2002 A1
20020020416 Namey Feb 2002 A1
20020026934 Lithgow et al. Mar 2002 A1
20020029780 Frater et al. Mar 2002 A1
20020039867 Curro et al. Apr 2002 A1
20020046755 Voss Apr 2002 A1
20020052568 Houser et al. May 2002 A1
20020053347 Ziaee May 2002 A1
20020059935 Wood May 2002 A1
20020069467 Immediato et al. Jun 2002 A1
20020096176 Gunaratnam et al. Jul 2002 A1
20020096178 Ziaee Jul 2002 A1
20020100474 Kellner et al. Aug 2002 A1
20020100479 Scarberry et al. Aug 2002 A1
20020108613 Gunaratnam et al. Aug 2002 A1
20020157668 Bardel Oct 2002 A1
20030005509 Kelzer Jan 2003 A1
20030005931 Jaffre et al. Jan 2003 A1
20030005933 Izuchukwu Jan 2003 A1
20030019495 Palkon et al. Jan 2003 A1
20030019496 Kopacko et al. Jan 2003 A1
20030029454 Gelinas et al. Feb 2003 A1
20030047185 Olsen et al. Mar 2003 A1
20030051732 Smith Mar 2003 A1
20030075180 Raje Apr 2003 A1
20030075182 Heidmann et al. Apr 2003 A1
20030079749 Strickland et al. May 2003 A1
20030084903 Fecteau et al. May 2003 A1
20030084996 Alberg et al. May 2003 A1
20030089373 Gradon et al. May 2003 A1
20030094177 Smith et al. May 2003 A1
20030111080 Olsen Jun 2003 A1
20030121519 Estes et al. Jul 2003 A1
20030149384 Davis et al. Aug 2003 A1
20030164170 Drew et al. Sep 2003 A1
20030172936 Wilkie et al. Sep 2003 A1
20030196655 Ging et al. Oct 2003 A1
20030196656 Moore Oct 2003 A1
20030196658 Ging et al. Oct 2003 A1
20030196659 Gradon et al. Oct 2003 A1
20030196664 Jacobson Oct 2003 A1
20030200970 Stenzler et al. Oct 2003 A1
20030217746 Gradon et al. Nov 2003 A1
20030221691 Biener Dec 2003 A1
20040011087 Rebouillat et al. Jan 2004 A1
20040025882 Madaus et al. Feb 2004 A1
20040035427 Bordewick et al. Feb 2004 A1
20040065328 Amarasinghe et al. Apr 2004 A1
20040067333 Amarasinghe Apr 2004 A1
20040094157 Dantanarayana et al. May 2004 A1
20040107968 Griffiths Jun 2004 A1
20040112377 Amarasinghe et al. Jun 2004 A1
20040112384 Lithgow et al. Jun 2004 A1
20040112385 Drew Jun 2004 A1
20040118406 Lithgow Jun 2004 A1
20040118412 Piletti-Reyes Jun 2004 A1
20040139973 Wright Jul 2004 A1
20040149280 Semeniuk Aug 2004 A1
20040182398 Sprinkle et al. Sep 2004 A1
20040211427 Jones et al. Oct 2004 A1
20040221850 Ging et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20040255949 Lang et al. Dec 2004 A1
20050011521 Sprinkle et al. Jan 2005 A1
20050011524 Thomlinson et al. Jan 2005 A1
20050016067 Pettit Jan 2005 A1
20050016532 Farrell Jan 2005 A1
20050028822 Sleeper et al. Feb 2005 A1
20050033247 Thompson Feb 2005 A1
20050045182 Wood et al. Mar 2005 A1
20050051177 Wood Mar 2005 A1
20050066976 Wondka Mar 2005 A1
20050076913 Ho et al. Apr 2005 A1
20050092327 Fini et al. May 2005 A1
20050098183 Nash et al. May 2005 A1
20050121037 Wood Jun 2005 A1
20050133038 Rutter Jun 2005 A1
20050150497 Eifler et al. Jul 2005 A1
20050155604 Ging et al. Jul 2005 A1
20050161049 Wright Jul 2005 A1
20050172969 Ging Aug 2005 A1
20050199239 Lang et al. Sep 2005 A1
20050199242 Matula et al. Sep 2005 A1
20050205096 Matula Sep 2005 A1
20050235999 Wood et al. Oct 2005 A1
20050241644 Guney et al. Nov 2005 A1
20060032504 Burton et al. Feb 2006 A1
20060042629 Geist Mar 2006 A1
20060042632 Bishop et al. Mar 2006 A1
20060054169 Han et al. Mar 2006 A1
20060060200 Ho et al. Mar 2006 A1
20060076019 Ho Apr 2006 A1
20060081250 Bordewick et al. Apr 2006 A1
20060081256 Palmer Apr 2006 A1
20060096596 Occhialini et al. May 2006 A1
20060096598 Ho et al. May 2006 A1
20060107958 Sleeper May 2006 A1
20060113147 Harris Jun 2006 A1
20060118117 Berthon-Jones et al. Jun 2006 A1
20060124131 Chandran Jun 2006 A1
20060130844 Ho et al. Jun 2006 A1
20060137690 Gunaratnam et al. Jun 2006 A1
20060169286 Eifler et al. Aug 2006 A1
20060174887 Chandran et al. Aug 2006 A1
20060174892 Leksutin et al. Aug 2006 A1
20060196510 McDonald et al. Sep 2006 A1
20060196511 Lau et al. Sep 2006 A1
20060201514 Jones et al. Sep 2006 A1
20060207599 Busch Sep 2006 A1
20060225740 Eaton et al. Oct 2006 A1
20060231103 Matula et al. Oct 2006 A1
20060237017 Davidson et al. Oct 2006 A1
20060237018 McAuley et al. Oct 2006 A1
20060249159 Ho Nov 2006 A1
20060254593 Chang Nov 2006 A1
20060266361 Hernandez Nov 2006 A1
20060283458 Woodard Dec 2006 A1
20060283459 Geiselhart et al. Dec 2006 A1
20060283461 Lubke et al. Dec 2006 A1
20070000492 Hansel et al. Jan 2007 A1
20070010786 Casey et al. Jan 2007 A1
20070044804 Matula et al. Mar 2007 A1
20070062536 McAuley Mar 2007 A1
20070089749 Ho et al. Apr 2007 A1
20070107733 Ho May 2007 A1
20070125384 Zollinger et al. Jun 2007 A1
20070125385 Ho et al. Jun 2007 A1
20070125387 Zollinger et al. Jun 2007 A1
20070130663 Lang et al. Jun 2007 A1
20070137653 Wood Jun 2007 A1
20070142785 Lundgaard et al. Jun 2007 A1
20070157353 Guney et al. Jul 2007 A1
20070163600 Hoffman Jul 2007 A1
20070169777 Amarasinghe et al. Jul 2007 A1
20070174952 Jacob Aug 2007 A1
20070175480 Gradon et al. Aug 2007 A1
20070209663 Marque et al. Sep 2007 A1
20070215161 Frater et al. Sep 2007 A1
20070221227 Ho Sep 2007 A1
20070227541 Van Den Oct 2007 A1
20070235033 Reier et al. Oct 2007 A1
20070272249 Chandran Nov 2007 A1
20070295335 Nashed Dec 2007 A1
20080035152 Ho et al. Feb 2008 A1
20080041388 McAuley et al. Feb 2008 A1
20080041393 Bracken Feb 2008 A1
20080047560 Veliss et al. Feb 2008 A1
20080052806 McDaniel Mar 2008 A1
20080053450 Van Kerkwyk et al. Mar 2008 A1
20080060648 Thornton et al. Mar 2008 A1
20080060653 Hallett et al. Mar 2008 A1
20080060657 McAuley et al. Mar 2008 A1
20080065015 Fiser Mar 2008 A1
20080083412 Henry et al. Apr 2008 A1
20080092905 Gunaratnam Apr 2008 A1
20080092906 Gunaratnam et al. Apr 2008 A1
20080099024 Gunaratnam et al. May 2008 A1
20080105257 Klasek et al. May 2008 A1
20080110464 Davidson et al. May 2008 A1
20080134480 Shiue Jun 2008 A1
20080135050 Hitchcock Jun 2008 A1
20080142019 Lewis Jun 2008 A1
20080171737 Fensome Jul 2008 A1
20080178875 Henry Jul 2008 A1
20080178886 Lieberman et al. Jul 2008 A1
20080190432 Blochlinger et al. Aug 2008 A1
20080190436 Jaffe et al. Aug 2008 A1
20080196728 Ho Aug 2008 A1
20080210241 Schulz et al. Sep 2008 A1
20080223370 Kim Sep 2008 A1
20080230068 Rudolph Sep 2008 A1
20080236586 Mcdonald et al. Oct 2008 A1
20080257354 Davidson Oct 2008 A1
20080264422 Fishman Oct 2008 A1
20080271739 Facer et al. Nov 2008 A1
20080276937 Davidson et al. Nov 2008 A1
20080302366 McGinnis et al. Dec 2008 A1
20080314388 Brambilla et al. Dec 2008 A1
20080319334 Yamamori Dec 2008 A1
20090000624 Lee et al. Jan 2009 A1
20090014007 Brambilla et al. Jan 2009 A1
20090032024 Burz et al. Feb 2009 A1
20090032026 Price et al. Feb 2009 A1
20090044808 Guney et al. Feb 2009 A1
20090044809 Welchel et al. Feb 2009 A1
20090078267 Burz et al. Mar 2009 A1
20090107504 McAuley et al. Apr 2009 A1
20090114227 Gunaratnam et al. May 2009 A1
20090120442 Ho May 2009 A1
20090126739 Ng et al. May 2009 A1
20090133697 Kwok et al. May 2009 A1
20090139527 Ng et al. Jun 2009 A1
20090145429 Ging et al. Jun 2009 A1
20090151729 Judson et al. Jun 2009 A1
20090173349 Hernandez et al. Jul 2009 A1
20090178680 Chang Jul 2009 A1
20090183734 Kwok et al. Jul 2009 A1
20090183739 Wondka Jul 2009 A1
20090211583 Carroll Aug 2009 A1
20090223519 Eifler et al. Sep 2009 A1
20090250060 Hacke et al. Oct 2009 A1
20090320187 Petzl et al. Dec 2009 A1
20100000538 Edwards et al. Jan 2010 A1
20100000539 Woodard Jan 2010 A1
20100000543 Berthon-Jones et al. Jan 2010 A1
20100000544 Blaszczykiewicz et al. Jan 2010 A1
20100018534 Veliss et al. Jan 2010 A1
20100037897 Wood Feb 2010 A1
20100051031 Lustenberger et al. Mar 2010 A1
20100051034 Howard Mar 2010 A1
20100083969 Crumblin Apr 2010 A1
20100108072 D'Souza May 2010 A1
20100132717 Davidson et al. Jun 2010 A1
20100154798 Henry et al. Jun 2010 A1
20100170516 Grane Jul 2010 A1
20100199992 Ho Aug 2010 A1
20100224199 Smith et al. Sep 2010 A1
20100229868 Rummery et al. Sep 2010 A1
20100229872 Ho Sep 2010 A1
20100258132 Moore Oct 2010 A1
20100258136 Doherty et al. Oct 2010 A1
20100282265 Melidis et al. Nov 2010 A1
20100294281 Ho Nov 2010 A1
20100307502 Rummery et al. Dec 2010 A1
20100313532 Stjernfelt et al. Dec 2010 A1
20100313891 Veliss et al. Dec 2010 A1
20100319700 Ng et al. Dec 2010 A1
20100326445 Veliss et al. Dec 2010 A1
20110067704 Kooij Mar 2011 A1
20110072553 Ho Mar 2011 A1
20110088699 Skipper Apr 2011 A1
20110126838 Alberici Jun 2011 A1
20110146685 Allan et al. Jun 2011 A1
20110197341 Formica Aug 2011 A1
20110220113 Newman Sep 2011 A1
20110232649 Collazo et al. Sep 2011 A1
20110247628 Ho Oct 2011 A1
20110259335 Sullivan Oct 2011 A1
20110259337 Hitchcock Oct 2011 A1
20110265791 Ging et al. Nov 2011 A1
20110265796 Amarasinghe et al. Nov 2011 A1
20110290253 McAuley Dec 2011 A1
20120067349 Barlow et al. Mar 2012 A1
20120125339 Ho et al. May 2012 A1
20120132208 Judson et al. May 2012 A1
20120132209 Rummery May 2012 A1
20120138061 Dravitzki et al. Jun 2012 A1
20120138063 Eves et al. Jun 2012 A1
20120174355 Fraze Jul 2012 A1
20120204879 Cariola et al. Aug 2012 A1
20120222680 Eves et al. Sep 2012 A1
20120285457 Mansour et al. Nov 2012 A1
20120304999 Swift et al. Dec 2012 A1
20120318265 Amirav et al. Dec 2012 A1
20130000648 Madaus et al. Jan 2013 A1
20130133659 Ng et al. May 2013 A1
20130133664 Startare May 2013 A1
20130139822 Gibson Jun 2013 A1
20130152918 Rummery et al. Jun 2013 A1
20130152937 Jablonski Jun 2013 A1
20130160769 Ng et al. Jun 2013 A1
20130220327 Barlow et al. Aug 2013 A1
20130319421 Hitchcock et al. Dec 2013 A1
20140026888 Matula Jan 2014 A1
20140026890 Haskard et al. Jan 2014 A1
20140083428 Rothermel et al. Mar 2014 A1
20140083430 Matula, Jr. et al. Mar 2014 A1
20140102456 Ovizinsky Apr 2014 A1
20140137870 Barlow et al. May 2014 A1
20140158726 Malara Jun 2014 A1
20140166019 Ho et al. Jun 2014 A1
20140190486 Dunn et al. Jul 2014 A1
20140209098 Dunn Jul 2014 A1
20140216452 Miller et al. Aug 2014 A1
20140261432 Eves et al. Sep 2014 A1
20140305439 Chodkowski Oct 2014 A1
20140311492 Stuebiger et al. Oct 2014 A1
20140338672 D'Souza et al. Nov 2014 A1
20140358054 Capra Dec 2014 A1
20150000615 Imran et al. Jan 2015 A1
20150005685 Chetlapalli et al. Jan 2015 A1
20150028519 Lang et al. Jan 2015 A1
20150033457 Tryner et al. Feb 2015 A1
20150051000 Henn Feb 2015 A1
20150090266 Melidis et al. Apr 2015 A1
20150090268 Madaus et al. Apr 2015 A1
20150128953 Formica et al. May 2015 A1
20150151070 Capra et al. Jun 2015 A1
20150190262 Capra et al. Jul 2015 A1
20150202397 Pastoor Jul 2015 A1
20150217150 Harris Aug 2015 A1
20150246198 Bearne et al. Sep 2015 A1
20150285337 Dingley et al. Oct 2015 A1
20150290415 Dunn Oct 2015 A1
20150335846 Romagnoli et al. Nov 2015 A1
20150352308 Cullen et al. Dec 2015 A1
20150374944 Edwards et al. Dec 2015 A1
20160001028 McAuley et al. Jan 2016 A1
20160008558 Huddart et al. Jan 2016 A1
20160015922 Chodkowski et al. Jan 2016 A1
20160022944 Chodkowski et al. Jan 2016 A1
20160038707 Allan et al. Feb 2016 A1
20160045700 Amarasinghe Feb 2016 A1
20160051786 McAuley et al. Feb 2016 A1
20160082214 Barlow et al. Mar 2016 A1
20160166793 McLaren et al. Jun 2016 A1
20160178027 Wetzel Jun 2016 A1
20160213873 McAuley et al. Jul 2016 A1
20160213874 Davidson et al. Jul 2016 A1
20160278463 Stevenson Sep 2016 A1
20160296720 Henry et al. Oct 2016 A1
20160375214 Chodkowski et al. Dec 2016 A1
20170028148 McAuley et al. Feb 2017 A1
20170136269 Jacotey et al. May 2017 A1
20170143925 McAuley et al. May 2017 A1
20170182276 Hammer Jun 2017 A1
20170189636 Gibson et al. Jul 2017 A1
20170216548 Gerhardt Aug 2017 A1
20170239438 McAuley et al. Aug 2017 A1
20170246411 Mashal et al. Aug 2017 A1
20170304574 McAuley et al. Oct 2017 A1
20170368288 Stephens et al. Dec 2017 A1
20180214655 Kooij et al. Aug 2018 A1
20180250483 Olsen et al. Sep 2018 A1
20180256844 Galgali et al. Sep 2018 A1
20180264218 Chodkowski Sep 2018 A1
20180339123 Smith et al. Nov 2018 A1
20190001095 Rose et al. Jan 2019 A1
20190030273 McAuley et al. Jan 2019 A1
20190083734 Hammer et al. Mar 2019 A1
20190111227 Veliss et al. Apr 2019 A1
20190151592 Bornholdt May 2019 A1
20190232010 McAuley et al. Aug 2019 A1
20200016357 McAuley et al. Jan 2020 A1
20200046928 Allan Feb 2020 A1
20200108219 McAuley et al. Apr 2020 A1
20200129720 McLaren et al. Apr 2020 A1
20200164169 McAuley et al. May 2020 A1
20200197644 McAuley et al. Jun 2020 A1
20200230343 Sims et al. Jul 2020 A1
20200230344 Huddart et al. Jul 2020 A1
20200268997 McAuley et al. Aug 2020 A1
20200268998 McAuley et al. Aug 2020 A1
20200338294 McLauren et al. Oct 2020 A1
20210008316 McLaren et al. Jan 2021 A1
20210016041 Huddart et al. Jan 2021 A1
20220126049 Amarasinghe Apr 2022 A1
20220331542 McLaren et al. Oct 2022 A1
Foreign Referenced Citations (264)
Number Date Country
2003246441 Dec 2003 AU
996301 Sep 1976 CA
1311662 Dec 1992 CA
2648690 Nov 2007 CA
000966064-0001 Sep 2008 CD
000966064-0002 Sep 2008 CD
000966064-0003 Sep 2008 CD
000966064-0004 Sep 2008 CD
000966064-0017 Sep 2008 CD
2172538 Jul 1994 CN
1780265 Dec 2005 CN
1751149 Mar 2006 CN
1784250 Jun 2006 CN
1901961 Jan 2007 CN
1901963 Jan 2007 CN
1905917 Jan 2007 CN
101115521 Jan 2008 CN
201033204 Mar 2008 CN
201171846 Dec 2008 CN
101432039 May 2009 CN
100502972 Jun 2009 CN
100502972 Jun 2009 CN
101516300 Aug 2009 CN
101516427 Aug 2009 CN
101541380 Sep 2009 CN
101991897 Mar 2011 CN
102753230 Oct 2012 CN
202822396 Mar 2013 CN
103906545 Jul 2014 CN
105339031 Feb 2016 CN
895692 Nov 1953 DE
2706284 Aug 1978 DE
3122034 Dec 1982 DE
3907428 Sep 1990 DE
29723101 Jul 1998 DE
19603949 Nov 1998 DE
10312881 May 2004 DE
10254399 Jun 2004 DE
102006011151 Sep 2007 DE
10 2009 016150 Oct 2010 DE
0 350 322 Jan 1990 EP
0 427 474 May 1991 EP
0 462 701 Dec 1991 EP
0 401 307 Aug 1995 EP
0 747 078 Dec 1996 EP
0 879 565 Nov 1998 EP
0 982 049 Mar 2000 EP
1 099 452 May 2001 EP
0 830 180 Mar 2002 EP
1 258 266 Nov 2002 EP
1 488 820 Dec 2004 EP
1 582 231 Oct 2005 EP
1 187 650 Dec 2005 EP
2 042 209 Apr 2009 EP
2 130 563 Dec 2009 EP
2 145 645 Jan 2010 EP
1 753 495 Sep 2010 EP
2 327 443 Jun 2011 EP
1 481 702 Sep 2012 EP
2 517 757 Oct 2012 EP
2 749 176 Jul 2014 EP
1 646 910 Aug 2015 EP
2 022 528 Mar 2016 EP
2 451 518 Oct 2017 EP
2390116 Mar 1938 FR
2618340 Nov 1970 FR
825960 Jan 1989 FR
2658725 Aug 1991 FR
2749176 Dec 1997 FR
2804421 Aug 2001 FR
190224431 Dec 1902 GB
339522 Dec 1930 GB
826198 Dec 1959 GB
880824 Oct 1961 GB
979357 Jan 1965 GB
1467828 Mar 1977 GB
2133275 Jul 1984 GB
2173274 Oct 1986 GB
2186801 Aug 1987 GB
2188236 Sep 1987 GB
1211268 Apr 2000 GB
2478305 Sep 2011 GB
2491227 Nov 2012 GB
2553475 Mar 2018 GB
S46-12114 Apr 1971 JP
46-016719 Jun 1971 JP
S55-89072 Jul 1980 JP
62-024721 Feb 1987 JP
H09-010311 Jan 1997 JP
2000-325481 Nov 2000 JP
2004-016488 Jan 2004 JP
2003-053874 Sep 2004 JP
2005-529687 Oct 2005 JP
2005-537906 Dec 2005 JP
2007-516750 Jun 2007 JP
2008-502380 Jan 2008 JP
2009-125306 Jun 2009 JP
2010-090973 Apr 2010 JP
2000-102624 May 2013 JP
2018-127729 Aug 2018 JP
10-2011-0028950 Mar 2011 KR
531332 Feb 2004 NZ
534606 Aug 2004 NZ
528029 Mar 2005 NZ
548575 Jul 2006 NZ
551103 Nov 2006 NZ
585295 Dec 2011 NZ
WO 82003548 Oct 1982 WO
WO 9512432 May 1995 WO
WO 9732494 Sep 1997 WO
WO 98003225 Jan 1998 WO
WO 9804310 Feb 1998 WO
WO 9804311 Feb 1998 WO
WO 98018514 May 1998 WO
WO 98024499 Jun 1998 WO
WO 98048878 Nov 1998 WO
WO 9857691 Dec 1998 WO
WO 9904842 Feb 1999 WO
WO 9943375 Sep 1999 WO
WO 99058181 Nov 1999 WO
WO 99058198 Nov 1999 WO
WO 00050122 Aug 2000 WO
WO 0050122 Aug 2000 WO
WO 00057942 Oct 2000 WO
WO 00069497 Nov 2000 WO
WO 0074509 Dec 2000 WO
WO 00074758 Dec 2000 WO
WO 00078384 Dec 2000 WO
WO 0100266 Jan 2001 WO
WO 0132250 May 2001 WO
WO 01041854 Jun 2001 WO
WO 01058293 Aug 2001 WO
WO 01062326 Aug 2001 WO
WO 0194721 Dec 2001 WO
WO 0197892 Dec 2001 WO
WO 01097892 Dec 2001 WO
WO 01097893 Dec 2001 WO
WO 02005883 Jan 2002 WO
WO 02011804 Feb 2002 WO
WO 0244749 Jun 2002 WO
WO 02047749 Jun 2002 WO
WO 02074372 Sep 2002 WO
WO 03035156 May 2003 WO
WO 03092755 Nov 2003 WO
WO 04007010 Jan 2004 WO
WO 04096332 Jan 2004 WO
WO 04012803 Feb 2004 WO
WO 04022147 Mar 2004 WO
WO 04030736 Apr 2004 WO
WO 04041341 May 2004 WO
WO 04041342 May 2004 WO
WO 04071565 Aug 2004 WO
WO 04073777 Sep 2004 WO
WO 04073778 Sep 2004 WO
WO 05010608 Feb 2005 WO
WO 05016403 Feb 2005 WO
WO 05018523 Mar 2005 WO
WO 05021075 Mar 2005 WO
WO 05032634 Apr 2005 WO
WO 05046776 May 2005 WO
WO 05051468 Jun 2005 WO
WO 05063326 Jul 2005 WO
WO 05063328 Jul 2005 WO
WO 05079726 Sep 2005 WO
WO 05086943 Sep 2005 WO
WO 05086946 Sep 2005 WO
WO 05097247 Oct 2005 WO
WO 05123166 Dec 2005 WO
WO 06000046 Jan 2006 WO
WO 06050559 May 2006 WO
WO 06069415 Jul 2006 WO
WO 06074513 Jul 2006 WO
WO 06074514 Jul 2006 WO
WO 06074515 Jul 2006 WO
WO 06096924 Sep 2006 WO
WO 06130903 Dec 2006 WO
WO 06138346 Dec 2006 WO
WO 06138416 Dec 2006 WO
WO 07006089 Jan 2007 WO
WO 07009182 Jan 2007 WO
WO 07021777 Feb 2007 WO
WO 07022562 Mar 2007 WO
WO 07041751 Apr 2007 WO
WO 07041786 Apr 2007 WO
WO 07045008 Apr 2007 WO
WO 07048174 May 2007 WO
WO 07053878 May 2007 WO
WO 07068044 Jun 2007 WO
WO 07114492 Oct 2007 WO
WO 07125487 Nov 2007 WO
WO 07147088 Dec 2007 WO
WO 08007985 Jan 2008 WO
WO 08011682 Jan 2008 WO
WO 08014543 Feb 2008 WO
WO 08030831 Mar 2008 WO
WO 08060295 May 2008 WO
WO 08068966 Jun 2008 WO
WO 08070929 Jun 2008 WO
WO 08106716 Sep 2008 WO
WO 08148086 Dec 2008 WO
WO 09026627 Mar 2009 WO
WO 09038918 Mar 2009 WO
WO 09022248 Apr 2009 WO
WO 09052560 Apr 2009 WO
WO 09059353 May 2009 WO
WO 09092057 Jul 2009 WO
WO 09108995 Sep 2009 WO
WO 2009108994 Sep 2009 WO
WO 09139647 Nov 2009 WO
WO 09148956 Dec 2009 WO
WO 10066004 Jun 2010 WO
WO 10073142 Jul 2010 WO
WO 10131189 Nov 2010 WO
WO 10135785 Dec 2010 WO
WO 10139014 Dec 2010 WO
WO 11014931 Feb 2011 WO
WO 11059346 May 2011 WO
WO 11060479 May 2011 WO
WO 11072739 Jun 2011 WO
WO 11077254 Jun 2011 WO
WO 1207300 Jan 2012 WO
WO 12040791 Apr 2012 WO
WO 12045127 Apr 2012 WO
WO 12052902 Apr 2012 WO
WO 12069951 May 2012 WO
WO 12071300 May 2012 WO
WO 12143822 Oct 2012 WO
WO 12177152 Dec 2012 WO
WO 13006913 Jan 2013 WO
WO 13026091 Feb 2013 WO
WO 13026092 Feb 2013 WO
WO 13064930 May 2013 WO
WO 14020469 Feb 2014 WO
WO 14025267 Feb 2014 WO
WO 14031673 Feb 2014 WO
WO 14075141 May 2014 WO
WO 14077708 May 2014 WO
WO 14109749 Jul 2014 WO
WO 14110622 Jul 2014 WO
WO 14110626 Jul 2014 WO
WO 14129913 Aug 2014 WO
WO 14175752 Oct 2014 WO
WO 14175753 Oct 2014 WO
WO 15033287 Mar 2015 WO
WO 15070289 May 2015 WO
WO 15079396 Jun 2015 WO
WO 15083060 Jun 2015 WO
WO 15151019 Oct 2015 WO
WO 15187986 Dec 2015 WO
WO 16000040 Jan 2016 WO
WO 16043603 Mar 2016 WO
WO 17030447 Feb 2017 WO
WO 17049356 Mar 2017 WO
WO 17049357 Mar 2017 WO
WO 17150990 Sep 2017 WO
WO 17158474 Sep 2017 WO
WO 17158544 Sep 2017 WO
WO 17160166 Sep 2017 WO
WO 2017158544 Sep 2017 WO
WO 2017160166 Sep 2017 WO
WO 17216708 Dec 2017 WO
WO 18007966 Jan 2018 WO
WO 18064712 Apr 2018 WO
WO 19003094 Jan 2019 WO
Non-Patent Literature Citations (218)
Entry
U.S. Appl. No. 60/493,515, filed Aug. 8, 2002, Sleeper et al.
U.S. Appl. No. 60/496,059, filed Aug. 18, 2003, Ho et al.
U.S. Appl. No. 60/529,696, filed Dec. 16, 2003, Lithgow et al.
U.S. Appl. No. 61/064,406, filed Mar. 4, 2008, Wehbeh.
U.S. Appl. No. 61/071,893, filed May 22, 2008, Wehbeh et al.
U.S. Appl. No. 61/136,617, filed Sep. 19, 2008, Wehbeh et al.
Philips Respironics ‘System One Heated Humidifier—User Manual’, 2011, pp. 1-16, [retrieved on Nov. 25, 2013] from the internet: URL: http://www.cpapxchange.com/cpap-machines-biap-machines/system-one-60-seri- es-cpap-humidifier-manual.pdf front cover, pp. 3-4 and 6.
Australian Examination Report in patent application No. 2012265597 dated Dec. 19, 2013, 5 pages.
Australian Examination Report in patent application No. 2015201920, dated Jul. 20, 2015, 3 pages.
Australian Examination Report in patent application No. 2007273324, dated May 22, 2012, 3 pages.
Australian Examination Report in patent application No. 2010241390, dated Jan. 9, 2015, 4 pages.
Australian Examination Report in patent application No. 2010246985, dated Mar. 4, 2014, 5 pages.
Australian Examination Report in patent application No. 2015202814, dated Aug. 14, 2015, 8 pages.
Canadian Examination Report in patent application No. 2655839, dated Oct. 4, 2013, 2 pages.
Canadian Examination Report in patent application No. 2890556, dated Jan. 27, 2016, 3 pages.
Chinese Examination Report in patent application No. 2007800266164, dated Feb. 17, 2011, 5 pages.
Chinese Examination Report in patent application No. 201080061122.1, dated Sep. 3, 2015, 10 pages.
Chinese First Office Action in patent application No. 201210080441.8, dated Mar. 24, 2014, 4 pages.
Chinese Second Office Action for Chinese Patent Application No. 201210080441.8 dated Dec. 1, 2014 in 11 pages (with English translation).
European Extended Search Report; dated Apr. 2, 2014; Application No. 09819444.2; 8 pages.
European Examination Report in patent application No. 07808683.2, dated Jul. 8, 2015, 8 pages.
European Extended Search Report in patent application No. 10774623.2, dated Sep. 8, 2015, 7 pages.
European Extended Search Report in patent application No. 10830251.4, dated Sep. 4, 2015, 7 pages.
Great Britain Combined Search and Examination Report in patent application No. GB1406401.8, dated May 7, 2014, 4 pages.
Great Britain Combined Search and Examination Report in patent application No. GB1406402.6, dated May 7, 2014, 6 pages.
International Search Report for International application No. PCT/NZ2007/000185, dated Oct. 31, 2007, in 3 pages.
International Search Report, PCT/NZ2009/000072, dated Jul. 28, 2009, 4 pages.
International Search Report, International application No. PCT/NZ2009/000219, dated Feb. 2, 2010, 3 pages.
International Preliminary Report on Patentability (IPRP), international application No. PCT/NZ2009/000219, dated Apr. 12, 2011, 9 pages.
International Search Report, PCT/NZ2010/000229, dated Mar. 18, 2011, 8 pages.
International Preliminary Report on Patentability and Written Opinion of the ISA, International application No. PCT/NZ2010/000229, dated May 22, 2012, 14 pages.
International Search Report, application No. PCT/NZ2013/000138, dated Nov. 1, 2013, 7 pages.
Japanese Examination Report in patent application No. 2012-510418, dated Feb. 10, 2014, 4 pages.
Japanese Examination Report in patent application No. 2012-538784, dated Aug. 5, 2015, 8 pages.
Japanese Examination Report in patent application No. 2015-098324, dated Jul. 22, 2015, 8 pages.
Fisher & Paykel HC200 Series Nasal CPAP Blower & Heated Humidifier User Manual, 17 pp., May 1998.
Fisher & Paykel Healthcare, FlexiFit® 431 Full Face Mask instructions, 2010, 4 pp.
Fisher & Paykel Healthcare, FlexiFit™ 431 Full Face Mask, specification sheet, 2004, 2 pp.
Fisher & Paykel Healthcare, Interface Solutions Product Profile, 2006, 12 pp.
Fisher & Paykel MR810 Manual, Rev. C, 2004, 43 pp.
HomeDepot.com—Ring Nut Sales Page (Retrieved Oct. 16, 2015 from http://www.homedepot.com/p/Everbilt-1-2-in-Galvanized-HexNut-804076/20464- 7893), 4 pp.
Malloy, 1994, Plastic Part Design for Injection Molding, Hanswer Gardner Publications, Inc, Cincinnati, OH, 14 pp.
Merriam-Webster's Collegiate Dictionary, Eleventh Edition, 2004, pp. 703, 905, 1074, 1184.
ResMed Exhibit, FlexiFit™ 431, product brochure, web pages (Wayback Machine), 2006, 23 pp.
ResMed Origins Brochure (Retrieved Apr. 7, 2016 from http://www.resmed.com/us/dam/documents/articles/resmedorigins.pdf), 64 pp.
ResMed Ultra Mirage™ Full Face Mask, product brochure, 2004, 2 pp.
ResMed Ultra Mirage™ Full Face Mask, product brochure, web pages (Wayback Machine), 2006, 9 pp.
ResMed, Jun. 29, 1997, Mask Frames (Source: Wayback Machine Internet Archive); http://web.archive.org/web/19970629053430/http://www.resmed.com- /maskframes/mask.htm, 2 pp/.
ResMed, Mirage Swift™ Nasal Pillows System from ResMed, product brochure, 2004, 6 pp.
ResMed, Mirage Swift™ Nasal Pillows System: User's Guide, product brochure, 2004,11 pp.
ResMed, Mirage Vista™ Nasal Mask: Components Card, product brochure, 2005, 1 p.
The American Heritage Dictionary of the English Language, Fourth Edition, 2006, pp. 1501, 1502, 1650.
WeddingBands.com—Men's Wedding Ring Shopping Page (Retrieved Oct. 16, 2015 from http://www.weddingbands.com/ProductPop.sub.-wedding.sub.-band- s.sub.-metal/48214W.html), 3 pp.
Australian Examination Report No. 1, in patent application No. AU 2013300237, dated Jun. 8, 2017, in 4 pages.
Australian Examination Report in patent application No. 2016238904 dated May 4, 2018, 5 pages.
Australian Examination Report in patent application No. 2010241390, dated Sep. 28, 2016, 4 pages.
Australian Examination Report in patent application No. 2016202799, dated May 31, 2016, 2 pages.
Australian examination report in patent application No. 2016202801, dated Jun. 20, 2016, 2 pages.
Australian Examination Report in patent application No. 2016204384, dated Aug. 5, 2016, 2 pages.
Australian examination report in patent application No. 2017200991, dated Oct. 13, 2017, 3 pages.
Australian examination report in patent application No. 2017201021, dated Apr. 7, 2017, 6 pages.
Canadian Examination Report in patent application No. 2780310, dated Jul. 26, 2016, 4 pages.
Canadian Examination Report in patent application No. 2780310, dated Jan. 25, 2018 4 pages.
Canadian Examination Report in patent application No. 2890556, dated Nov. 28, 2016, 4 pages.
Canadian Examination Report in patent application No. 2918167, dated Oct. 3, 2016, 4 pages.
Chinese Examination Report in patent application No. 201080028029.0, dated Mar. 27, 2014, 16 pages.
Chinese Second Office Action in patent application No. 201080028029.0, dated Jan. 19, 2015, 16 pages.
Chinese Examination Report in patent application No. 201080028029.0, dated Sep. 14, 2015, 3 pages.
Chinese Examination Report in patent application No. 201080061122.1, dated Jul. 17, 2015, 10 pages.
Chinese Office Action in patent application No. 201610116121.1, dated Sep. 28, 2017, 5 pages.
Chinese Third Office Action in patent application No. 201080061122.1, dated Apr. 1, 2016, 5 pages.
Chinese Examination Report in patent application No. 201610114706.X, dated Jul. 30, 2018, 9 pp., with translation.
European Examination Report in patent application No. 07808683.2, dated May 9, 2018, 3 pages.
European Search Report and Written Opinion dated May 12, 2016 in patent application No. 09746823.5; 11 pages.
European Summons to Attend Oral Proceedings and Written Opinion dated Dec. 13, 2017 in patent application No. 09746823.5; 7 pages.
European Examination Report in patent application No. 09746823.5, dated Apr. 3, 2017, 2 pages.
European Examination Report, European Application 13828380.9, dated Apr. 7, 2017, 7 pp.
European Examination Report, European Application 13828380.9, dated Jul. 27, 2018, 8 pp.
European extended search report dated Jul. 23, 2018 in patent application No. 18163847.9, 7 pp.
European Extended Search Report in patent application No. 17179765.7, dated Dec. 11, 2017.
European Search Report in patent application No. 11830981.4, dated Aug. 24, 2015, 6 pages.
Great Britain Examination Report in patent application No. GB1119385.1, dated May 9, 2013, 4 pages.
Great Britain Search and Examination Report, in patent application No. GB1210075.6, dated Mar. 14, 2013, 2 pages.
Great Britain Combined Search and Examination Report in patent application No. GB1719334.3, dated Nov. 30, 2017, in 9 pages.
Great Britain examination report dated May 30, 2018 in patent application No. GB1719334.3, 4 pp.
Great Britain examination report dated Jul. 20, 2018 in patent application No. GB1719334.3, 3 pp.
Great Britain combined search and examination report dated May 11, 2018 in patent application No. GB1805606.9, 7 pp.
Great Britain examination report dated Jul. 5, 2018 in patent application No. GB1805606.9, 3 pp.
Great Britain examination report dated May 11, 2018 in patent application No. GB1803255.7, 7 pp.
Great Britain examination report dated May 11, 2018 in patent application No. GB1805605.1, 7 pp.
Great Britain examination report in patent application No. GB1501499.6, dated Jun. 1, 2017, in 8 pages.
Great Britain Combined Search and Examination Report under Section 18(3), Application No. GB1501499.6, dated Oct. 12, 2017, in 4 pages.
International Search Report for application No. PCT/NZ2005/000062 dated May 27, 2005.
International Search Report, PCT/NZ2011/000211, dated Feb. 17, 2012, 4 pages.
Written Opinion, PCT/NZ2011/000211, dated Feb. 17. 2012, 7 pages.
Written Opinion of the International Searching Authority. PCT/NZ2013/000139, dated Nov. 1, 2013.
International Search Report for International application No. PCT/NZ2014/000021, filed Feb. 21, 2014.
Indian Office Action in Patent Application No. 5250/KOLNP/2008, dated May 23, 2017, 8 pages.
Japanese Examination Report in patent application No. 2012-538784, dated Aug. 25, 2014, 3 pages.
Japanese Examination Report in patent application No. 2012-538784, dated Jul. 25, 2016, 2 pages.
Japanese Examination Report in patent application No. 2017-040092, dated Feb. 5, 2018.
Japanese Official Action dated Sep. 3, 2018 in patent application No. 2017-238259.
Japanese examination report in patent application No. 2015-526496, dated Apr. 17, 2017, in 13 pages.
Japanese Examination Report in patent application No. 2015-526496, dated Feb. 28, 2018, 2 pp.
U.S. Appl. No. 61/064,406, 34 pages, copy provided by USPTO on Feb. 23, 2009.
U.S. Appl. No. 61/071,893, 43 pages, copy provided by USPTO on Feb. 23, 2009.
U.S. Appl. No. 61/136,617, 82 pages, copy provided by USPTO on Feb. 23, 2009.
Petition for Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01714, dated Sep. 7, 2016.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,479,741, IPR2016-01714, filed Dec. 14, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 37 C.F.R. § 42.108, IPR2016-01714, entered Mar. 10, 2017.
Declaration of Dr. John Izuchukwu, Ph.D., P.E., U.S. Pat. No. 8,443,807, IPR Nos. 2016-1726 & 2016-1734, dated Sep. 7, 2016.
Declaration of Dr. John Izuchukwu, Ph.D., P.E., U.S. Pat. No. 8,479,741, IPR Nos. 2016-1714 & 2016-1718, dated Sep. 7, 2016.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,479,741, IPR2016-01718, filed Dec. 16, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 37 C.F.R. § 42.108, IPR2016-01718, entered Mar. 13, 2017.
Petition for Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01718, dated Sep. 7, 2016.
Petition for Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01726, dated Sep. 7, 2016.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,443,807, IPR2016-01726, filed Dec. 13, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 37 C.F.R. § 42.108, IPR2016-01726, entered Mar. 6, 2017.
Petition for Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01734, dated Sep. 7, 2016.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,443,807, IPR2016-01734, filed Dec. 22, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 37 C.F.R. § 42.108, IPR2016-01734, entered Mar. 13, 2017.
File History of U.S. Pat. No. 8,479,741 to McAuley et al., published Oct. 1, 2009.
File History of U.S. Pat. No. 8,443,807 to McAuley et al., published Jan, 7, 2010.
Patent Owner's Complaint for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 2:16-cv-06099-R-AJW (C.D. Cal.), dated Aug. 15, 2016.
Patent Owner's Notice of Voluntary Dismissal Without Prejudice for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 2:16-cv-06099-R-AJW (C.D. Cal.), dated Aug. 16, 2016.
Patent Owner's Complaint for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 3:16-cv-02068-GPC-WVG (S.D. Cal.), dated Aug. 16, 2016.
Petitioners' Complaint for ResMed Inc., et al. v. Fisher & Paykel Healthcare Corp. Ltd., et al., Case No. 3:16-cv-02072-JAH-MDD (S.D. Cal.), dated Aug. 16, 2016.
Petitioners' Notice of Voluntary Dismissal Without Prejudice for ResMed Inc., et al. v. Fisher & Paykel Healthcare Corp. Ltd., et al., Case No. 3:16-cv-02072-JAH-MDD (S.D. Cal.), dated Aug. 18, 2016.
Statutory Declaration made by Alistair Edwin McAuley, Apr. 9, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
Resmed Mirage Swift™ II Nasal Pillows System product page (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows._system/Mirage-Swift-II-Nasal-Pillows-System.html?menu=products); archived Jul. 21, 2008, 2 pp.
Resmed Mirage Swift™ II user brochure (http://www.resmed.com/en us/products/masks/mirage-swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-brochure-patient-english-usa.pdf) copyright 2007, 4 pp.
ResMed Mirage Swift II Fitting guide (http://www;resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift_ii_np-fitting_English.pdf) copyright 2006, 2 pp.
ResMed Mirage Swift II comparison to older Swift patient interface (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-comparison-guide.pdf, 2007, 6 pp.
ResMed Mirage Swift II user guide (http://www.resmed.com/en-us/products/service_and_support/documents/60893rl_mirage_swiftII_nasal_userglide_us_multi.pdf) copyright 2006, 1 p.
ResMed Mirage Swift II component card (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-cc-usa.pdf); copyright 2006, 2 pp.
Resmed Swift™ LT Nasal Pillows System, product page, (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/Mirage-Swift-II-Nasal_Pillows-System.html?menu=products), Jul. 3, 2008, 2 pp.
Resmed Swift LT user brochure, (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-brochure-patient-english-usa.pdf), copyright 2008, 4 pp.
Resmed Swift ™ LT component card (http://www.resmed.com/en-us/assets/documents/product/swift_It/components_card/1012463_swift-It_components-card_usa_eng.pdf) copyright 2008, 46 pp.
Resmed Swift™ LT fitting guide, (http://www.resmed.com/en-us/assets/ciocuments/product/swift-II/clinicai_fact_sheet/1012406 swift-ii_fact-sheet_usa_eng.pdf), 2008, 2 pp.
Resmed Swift™ LT fact sheet (http://www.resmcd.com/en-us/assets/documents/product/swift-It/clinical_fact_sheet/1012406 swiftIt_fact-sheet_usa_eng.pdf, copyright 2008, 4 pp.
Resmed Swift™ LT image gallery (http://www.resmed.com/en-us/products/masks/swift_It_nasal_pillows_system/imagegallery.html?menu=products, Apr. 25, 2008, 2 pp.
Resmed Swift™ LT interactive fitting guide—screenshot from troubleshooting part (http://www.resmed.com/enus/assets/multimedia/product/swift-It/flash/swift-It-fitting-eng.swf), Jul. 3, 2008, 2 pp.
Puritan Bennett Breeze® SleepGear® CPAP Interface, product page (http:/puritanbennett.com/prod/product.aspx?id=233); archived Oct. 19, 2007, 2 pp.
Puritan Bennett Breeze® SleepGear® User's Guide (http://puritanbennett.com/_catalog/pdf/dfu/107598a00[I].pdf); copyright 2007, 18 pp.
Puritan Bennett Breeze® SleepGear® sales sheet (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeSleepGear.pdf) copyright 2016, 7 PP.
Puritan Bennett mask coding matrix (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeSipGear(ST03700).pdf) copyright 2006, 3 pp.
Puritan Bennett Breeze fitting guide (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeFittingPoster.pdf, Oct. 19, 2007, 1 p.
Respironics Optilife Pillows mask product page (http://optilife.respironics.com:80/); archived Nov. 21, 2007, 2 pp.
Respironics Optilife Pillows mask part numbers page (http://opfilife.respironics.com:80/Parts.aspx); archived Nov. 23, 2007, 4 pp.
Respironics Optilife Pillows mask FAQ (http;//optilife.respironics.com:80/fags.aspx); archived Nov. 23, 2007, 6 pp.
Respironics Optilife Pillows mask feature page (http://opti1ife.respironics.com:80/features.aspx); archived Nov. 23, 2007, 4 pp.
Respironics Optilife Pillows mask fitting guide screen shot (http://optilife.respironics.com:80/fittingGuide.aspx); archived Aug. 7, 2008, 1 p.
Respironics Optilife Pillows mask adjustment video screenshots, https://www.youtube.com/watch?v=shjcNmvvcBA); uploaded Aug. 3, 2008, 2 pp.
Puritan Bennett Breeze description; copyright 2000 by Mallinckrodt Inc., 4 pp.
Fisher & Paykel Opus product page, archived Sep. 3, 2009, 2 pp.
Fisher & Paykel Opus patient interface product photographs, Jul. 2007, 6 pp.
Photographs of Opus 360 nasal pillows mask patient instructions RevB, Jul. 2007, 4 pp.
Respironics Optilife brochure detailing updates; copyright 2008; dated Mar. 26, 2008, 3 pp.
Fisher & Paykel Opus product page, archived Sep. 7, 2009, 2 pp.
Fisher & Paykel Opus “Off-the-lips” pillows explanation page, archived Aug. 23, 2009, 2 pp.
Fisher & Paykel Opus “Off-the-lips” patient interface brochure, archived Oct. 14, 2009, 6 pp.
Fisher & Paykel Opus user-guide, archived Nov. 17, 2009, 2 pp.
Australian examination report in patent application No. 2018202409, dated Jan. 21, 2019, 4 pages.
Australian examination report in patent application No. 2018201975, dated Mar. 30, 2019, 4 pages.
Australian examination report in patent application No. 2018217307, dated Mar. 4, 2019, 4 pages.
Australian examination report in patent application No. 2018236891, dated Jun. 25, 2019, 3 pages.
Brazilian office action dated Jul. 11, 2019 in patent application No. BR11201211420-4.
Canadian Examination Report: in patent application No. 2780310, dated Oct. 9, 2018, 3 pp.
Canadian Examination Report in patent application No. 2998247, dated Jan. 8, 2019, 4 pages.
Canadian Examination Report in patent application No. 3010066, dated May 3, 2019, 4 pages.
Canadian Examination Report in patent application No. 2880749, dated May 16, 2019, 5 pages.
Canadian Examination Report in patent application No. 3017161, dated Aug. 21, 2019, 3 pp.
Chinese Third Office Action in patent application No. 201610116121.1, dated Apr. 28, 2019, 16 pages.
Chinese Fourth Office Action in patent application No. 201610116121.1, dated Sep. 30, 2019, 16 pages.
Chinese Second Examination Report in patent application No. 201610114706.X, dated Apr. 24, 2019 8 pp., with translation.
Chinese Examination Report dated Feb. 22, 2019 in patent application No. 201611251618.0.
Chinese First Office Action in patent application No. 201710824612.6, dated Sep. 30, 2019, 25 pp.
European extended search report dated Sep. 21, 2018 in patent application No. 18178220.2, 7 pp.
European extended search report dated Oct. 31, 2018 in patent application No. 18171619.2, 9 pp.
European Extended Search Report dated Feb. 14, 2019 in patent application No. 18195537.8.
Indian Examination Report in patent application No. 1431/KOLNP/2012.
Indian Examination Report Mar. 14, 2019 in patent application No. 8767/CHENP/2011.
Japanese Decision for Final Rejection dated Jul. 1, 2019 in patent application No. 2017-238259, 2 pp.
Japanese office action dated Sep. 1, 2019 in patent application No. 2018-188040.
Statutory Declaration made by Alistair Edwin McAuley, Apr. 14, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
Statutory Declaration made by Alistair Edwin McAuley, Apr. 17, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
Statutory Declaration made by Alistair Edwin McAuley, Sep. 16, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
First Affidavit of Alistair Edwin McAuley, Dec. 5, 2016, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia.
Second Affidavit of Alistair Edwin McAuley, Dec. 21, 2016, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia.
Third Affidavit of Alistair Edwin McAuley, Jan. 31, 2017, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia, 284 pp.
Declaration of Anthony Michael Ging in IPR 2019-000172, IPR 2019-000173, IPR 2019-000177, IPR 2019-000178, dated Nov. 8, 2018, 329 pp.
McGraw-Hill Dictionary of Scientific and Technical Terms, Sixth Edition, 2003, Tube, p. 2200.
Claim Chart for AirFit P10, U.S. Pat. No. 9,333,315, dated Nov. 7, 2018, 3 pp.
Scheduling Order dated Jul. 16, 2019 in IPR2019-00180, 12 pp.
Decision to Institute dated Jul. 16, 2019 in IPR2019-00180, 34 pp.
Decision Denying Institute of Inter Partes Review dated Jul. 16, 2019 in IRP2019-00179, 32 pp.
Chinese Second Office Action in patent application No. 201810366796.0, dated Feb. 9, 2021.
Australian Examination Report No. 1 in patent application No. 2019280016, dated Jul. 22, 2020.
Brazilian office action dated Aug. 28, 2020 in patent application No. PI1012207-9.
Canadian Examination Report for patent application No. 2880749, dated Oct. 5, 2020, 4 pp.
Chinese Fourth Examination Report in patent application No. 201610114706.X, dated Aug. 28, 2020, with translation.
European Extended Search Report dated Jul. 7, 2020 in patent application No. 19217524.8, 13 pp.
German examination report dated Aug. 31, 2020 in patent application No. 11 2010 011 994.0, 18 pp.
Australian Examination Report No. 2 for patent application No. 2018217307, dated Mar. 3, 2020, 4 pp.
Canadian Examination Report in patent application No. 3010066, dated Dec. 19, 2019, 4 pages.
Canadian Examination Report for patent application No. 2880749, dated Feb. 28, 2020, 4 pp.
Chinese Third Examination Report in patent application No. 201610114706.X, dated Jan. 16, 2020, with translation.
European examination report dated Sep. 5, 2019 in patent application No. 18163847.9, 5 pp.
Japanese Pretrial Examination Report dated Jan. 7, 2020 in patent application No. 2017-238259.
cpap.com, InnoMed/Resp Care Bravo Nasal Pillow CPAP Mask with Headgear, (http://web.archive.org/web/*/https://www.cpap.com/productpage/bravo-nasal-interfece/), downloaded Feb. 24, 2020, 5 pp.
Pad A Cheek, LLC, Sleep apnea can make beautiful sleep elusive, (http://web.archive.org/web/20070701000000*/http://www.padacheek,com/;Wayback Machine), downloaded Feb. 24, 2020, 3 pp.
Australian examination report in patent application No. 2018236891, dated Jun. 9, 2020, 3 pages.
Canadian Examination Report in patent application No. 3017161, dated Apr. 22, 2020, 4 pp.
Chinese Second Office Action in patent application No. 201710824612.6, dated May 25, 2020.
European Examination Report, European Application 13828380.9, dated Mar. 3, 2020, 8 pp.
European examination report dated Jun. 16, 2020 in patent application No. 18163847.9, 5 pp.
European Examination Report dated Mar. 16, 2020 in patent application No. 18195537.8.
European Search Report in patent application No. 191976761.1, dated Mar. 3, 2020, 10 pages.
Related Publications (1)
Number Date Country
20200171260 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
61681024 Aug 2012 US
Continuations (2)
Number Date Country
Parent 15047436 Feb 2016 US
Child 16509958 US
Parent 14420284 US
Child 15047436 US