Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference and made a part of the present disclosure.
The present invention generally relates to masks that cover a breathing passage and structures used to secure the masks to the head. More particularly, the present invention relates to generally non-stretch structures that have at least one of an adjustment mechanism and a configuration providing a predetermined wearing length and a longer length for donning.
Obstructive sleep apnea (OSA) is a sleep condition in which the back of the throat relaxes so much while sleeping that it narrows the airway or even entirely blocks the airway. With the constriction or closure of the airway, breathing can stop or become very shallow for a few seconds or longer.
Continuous positive airway pressure (CPAP) is used to treat OSA. CPAP sends a flow of pressurized air that splints open the airway. The flow of pressurized air can be delivered to the user with an interface. The interface can include a mask and headgear, such as an elastic strap.
When donning the interface, the elastic strap is stretched to allow the headgear to slide over the head of the user. When released, the elastic strap tends to pull the interface against the face of the user.
As the pressure within the mask increases (e.g., 4 cm H2O to 12 cm H2O), the mask attempts to move away from the face of the user because the strap securing the mask against the face is elastic. In some masks, when the force moving the mask away from the face of the user causes the elastic strap to stretch, the force exerted by the mask against the face of the user decreases. Thus, as pressures increase, leaks can result in those masks and, if suitably sealed at higher pressures (e.g., 12 cm H2O), the elasticity of the strap causes undesirably high pressures to be exerted against the face of the user at lower treatment pressures (e.g., 4 cm H2O).
An object of the present invention is to provide an interface which will at least provide the industry and users with useful choice.
Some aspects of the present invention relate to headgear for use with an interface where the headgear is generally inelastic. Generally inelastic headgear is believed by the inventors to be superior to elastic headgear when used with pressures that vary dramatically over a treatment session, for example. However, generally inelastic headgear can be difficult to fit and use. For example, with generally inelastic headgear, there is a need for decoupling the headgear during donning, which can be problematic when it comes to adjusting the headgear for proper fit. Decoupling also can be difficult to manage for some users.
Certain features, aspects and advantages of the present invention relate to an interface assembly for use in providing a breathing treatment. The interface assembly can comprise a mask. The mask comprises a frame and a seal supported by the frame. Headgear can be connected to the mask and at least one of (i) an adjustment mechanism configured to be set to a use length for a loop defined by the mask and the headgear; and (ii) a break-fit assembly configured to selectively lengthen the loop defined by the mask and the headgear when a predetermined force has been exceeded and return to the use length when the predetermined force has not been exceeded.
In some such configurations, both the adjustment mechanism and the break-fit assembly. In some such configurations, the adjustment mechanism couples the headgear to the mask. In some such configurations, the adjustment mechanism is positioned on the mask. In some such configurations, the adjustment mechanism is positioned on the headgear.
In some such configurations, the break-fit assembly joins the headgear and the mask. In some such configurations, the break-fit assembly joins the adjustment mechanism and the mask. In some such configurations, the break-fit assembly joins the adjustment mechanism and the headgear. In some such configurations, the break-fit assembly is positioned on the frame of the mask. In some such configurations, the break-fit assembly is positioned on the headgear.
In some such configurations, the break-fit assembly comprises a magnetic coupling.
In some such configurations, the break-fit assembly comprises a mechanical coupling.
In some such configurations, the adjustment mechanism is positioned on the mask. In some such configurations, the adjustment mechanism comprises a squeeze to lock mechanism. In some such configurations, the adjustment mechanism comprises a squeeze to unlock mechanism.
In some such configurations, the break-fit assembly comprises a biasing member. In some such configurations, the biasing member comprises an elastic sleeve. In some such configurations, the biasing member comprises a spring.
In some such configurations, the headgear is substantially nonstretch.
Certain features, aspects and advantages of the present invention relate to a mask and headgear system comprising a mask and headgear. The mask comprises a frame and a seal supported by the frame. The headgear can be connected to the mask. A break-fit assembly can be configured to elongate upon the application of a force exceeding a preselected force. The mask, headgear, and break-fit assembly together define a loop that elongates with forces that exceed the preselected force.
In some such configurations, upon application of the force exceeding the preselected force, the resulting elongation of the loop is sufficient to allow a user to don and position the mask on the user's head and face or to allow the user to remove the interface from the user's head and face. In some such configurations, the break-fit assembly resists elongation and remains connected in general use if a force less than the preselected force is applied.
Certain features, aspects and advantages of the present invention relate to a break-fit assembly for a mask and headgear assembly. The break-fit assembly comprises a mechanical coupling that resists elongation from a first length to a second length until a force is applied that exceeds a predetermined force. The mechanical coupling comprising multiple parts and a stretch biasing member that connects two or more of the multiple parts.
In some such configurations, the stretch biasing member exhibits at least one of the following: (1) elastic characteristics and (2) spring characteristics. In some such configurations, the stretch biasing member provides a connection between the parts of the mechanical coupling of the break-fit assembly. In some such configurations, the mechanical coupling requires a first force to disconnect and second force to reconnect, the second force being less than the first force.
Certain features, aspects and advantages of the present invention relate to a break-fit assembly for a mask and headgear assembly. The break-fit assembly comprises a magnetic coupling that resists elongation from a first length to a second length until a force is applied that exceeds a predetermined force. The magnetic coupling comprising multiple parts and a stretch portion.
In some such configurations, the magnetic coupling fulfills a biasing function for the break-fit assembly. In some such configurations, the stretch portion provides a connection between two or more parts of the magnetic coupling.
Certain features, aspects and advantages of the present invention relate to a mask and headgear system comprising a mask configured to be positioned on a user's face and an adjustment mechanism configured to adjust the size of the headgear to accommodate different users.
In some such configurations, the headgear comprises a material that is substantially non-elastic. In some such configurations, the headgear is substantially non-stretch. In some such configurations, the adjustment mechanism comprises a buckle. In some such configurations, the buckle comprises a hook and loop fastener. In some such configurations, the adjustment mechanism comprises a reel and coil spring. In some such configurations, the adjustment mechanism includes a winding mechanism, a spool connected to the winding mechanism, and a flexible material band configured to be wound onto the spool.
The term “comprising” as used in the specification and claims means “consisting at least in part of”. When interpreting a statement in this specification and claims that includes “comprising”, features other than that or those prefaced by the term may also be present. Related terms such as “comprise” and “comprises” are to be interpreted in the same manner.
In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.
Various forms of the interface will be described with reference to the accompanying drawings.
An example of an interface 100 is shown in
With reference still to
The illustrated headgear 110, as described above, can be a single strap 110 that passes around the back of the head. To improve stability, the strap 110 can bifurcate near the mounting members 114 such that multiple mounting points 112 and multiple mounting members 114 can be used.
To provide a consistent experience for the user at varying treatment pressures, the headgear 110 preferably is substantially completely nonstretch. For example, the headgear 110 can be formed of a generally inelastic material or can comprise at least one generally inelastic component that extends generally from one of the mounting members 114 to the other of the mounting members 114. In some configurations, the headgear exhibits limited or no substantial creep. In other words, the headgear 110 can remain substantially the same length over its useful life; the material preferably does not shrink or stretch to a significant degree. By way of example but without limitation, suede is a material that is generally inelastic and that exhibits limited or no creep.
Surprisingly, a generally inelastic headgear assembly (e.g., headgear capable of elastic elongation of less than about 1 percent at a force of about or less than about 5 newtons) has been found to improve user comfort and seal performance over elastic headgear. The generally inelastic headgear 110 does not elongate as a treatment pressure increases or varies over the course of treatment. Rather, the headgear simply reacts to oppose any forces generated by the seal during use. As such, when adjusted for a proper fit at high treatment pressures, the user does not experience too tight of a fit when the pressure decreases to a lower treatment pressure. Moreover, with the headgear adjusted and ready for use, the user generally experiences limited or no preload prior to starting a treatment pressure.
With the generally inelastic headgear 110, the headgear 110 preferably comprises a manner of adjusting a length of the loop defined by the interface 100 (e.g., the headgear 110 and the frame B104 in
With the generally inelastic headgear 110, the headgear 110 preferably comprises a break-fit assembly. The break-fit assembly, many configurations of which will be described below, facilitates donning of the interface 100. The break-fit assembly can facilitate slight and controlled elongation of the loop defined by the interface 100 to allow the loop to expand sufficiently to slide into position around the head of the user. The extra length enables the user to pull the interface over the maximum circumference of the head while moving the headgear into position below and behind the maxima occipitus, for example. In some embodiments, the break-fit assembly provides between about 0 and 200 mils of expansion. This may be in one location or split over both sides of the associated interface.
The break-fit assembly also preferably will return to the original position, or a use length, once the interface 100 has been properly donned. In some configurations, the break-fit assembly will return automatically once the interface 100 has been donned.
The seal 102102 and the frame B104 generally define a mask in the illustrated configuration. When breathing gases are supplied through the conduit B106 to a cavity defined within the mask, a lifting force is generated by the mask and the mask attempts to move away from the face of the user.
The headgear 110 opposes the lifting force. As described above, the break-fit assembly allows elongation of the loop defined by the interface 100 (e.g., by temporarily increasing a length of the strap). The break-fit assembly preferably only elongates after a break-free force has been applied to the assembly. The break-free force is greater than a maximum of the lifting force (i.e., a maximum of the lifting force generated at the highest expected treatment force). In some configurations, the break-free force is about 3 Newtons to about 8 Newtons.
As described above, the headgear 110 also can have a manner of adjusting the length of the loop. In some configurations, the length adjustment requires an adjustment force that is greater than the break-free force. In such configurations, to adjust the length, a force greater than that required to operate the break-fit assembly is required. As such, the adjustment force is greater than the break-free force and the break-free force is greater than the maximum lifting force. The adjustment force also is greater than the maximum lifting force, which can be particularly relevant if a break-fit assembly is not used.
While the above-description has been generally directed to the assembly of
With reference to
The illustrated headgear 130 comprises a break-fit assembly 132 and an adjustment mechanism 134. The break-fit assembly 132 is shown in connection with only the lower straps but the break-fit assembly 132 also could be used on any and/or all of the straps if desired. While both the break-fit assembly 132 and the adjustment mechanism 134 are shown integrated into the interface, it also is possible to incorporate only one of the break-fit assembly 132 and the adjustment mechanism 134 into the interface. Moreover, any suitable break-fit assembly and/or any suitable adjustment mechanism can be used.
The headgear 130 preferably comprises a generally inelastic portion 136, the break-fit assembly 132 to facilitate donning of the interface 120, and the adjustment mechanism 124 to allow customization of the headgear 130 to the individual user. In some configurations, the headgear 130 comprises Breathoprene with a nonstretch component added to it. For example, the material could be a three layer laminate (i.e., foam, UBL (unbroken loop) and a nonstretch layer). In some configurations, a nonstretch layer can be a center layer of a five or more layer laminate: nonstretch as a central layer with foam and UBL on each side.
With reference now to
With reference to
With continued reference to
In the illustrated configuration, the return component 152 comprises an elastic layer. For example, the return component 152 can comprise one or more portion formed of Lycra, rubber bands, and elastic knit. The elastic layer preferably can stretch up to about 40 mm when subjected to a tensile force of about 5 N (values may differ for a larger mask, such as a full-face mask). In some arrangements, rather than a full layer, the return component 152 can comprise strips, cords, bands or the like.
In the illustrated configuration, the coupling portion 146 comprises two components that are positioned at a lower portion of the headgear 140. Such a location is desired because it is less likely to be felt when sleeping in the headgear 140. Other locations are possible. In addition, while only two components are shown, more than two components are possible. In some configurations, the full length of the seam 150, a substantial portion of the full length of the seam 150 or a majority of the full length of the seam 150 can be formed of a magnetic material or the like such that the coupling portion 146 also can assist in pulling the seam 150 back together.
In some configurations, the break-fit assembly can be integrated into the frame and/or the seal. For example, with reference to
With continued reference to Figure A6, the break-fit assembly 164 can have one or more flaps 166. The flaps 166 can seat against an outer surface 170 of the frame 162. As illustrated, the flaps 166 can be connected to the frame 162 with hinges 172. The illustrated flaps 166 can be connected to the frame 162 with one or more hinges; three hinges 172 are used in the illustrated interface 160. In some configurations, biasing members, such as springs or the like, can be used to provide a biasing force that will tend to return the flaps 166 to a closed or latched position, which position is described below.
Any suitable manner of holding the flaps 166 in position relative to the outer surface 170 of the frame 162 also can be used. In the illustrated configuration, a magnetic coupling 174 has been used. For example, the illustrated magnetic coupling 174 comprises at least one magnet and at least one corresponding component from a magnetic material; the illustrated configuration comprises two magnets and two corresponding components from magnetic materials on each flap 166. For the coupling 174 to function, each paired component comprises at least one magnet and at least one component formed of a magnetic material (e.g., a material that is attracted to a magnet).
With reference to
With reference still to
With reference now to
The break-fit assembly 186 comprises two magnetic members 192. As described above, the magnetic members 192 can include at least one magnet or a combination of at least one magnet and at least one magnetizable member (e.g., a ferrous material). The magnetic members 192 are oriented to be attracted to each other. As such, when the magnetic members 192 are brought within a range to allow magnetic coupling, the magnetic members 192 self-align and self-connect.
The magnetic members 192 have a range of movement relative to each other that results in the magnetic members 192 moving outside of the range for magnetic coupling. For example, when the magnetic members 192 move beyond about 10 to about 20 mils apart, the magnetic coupling force is not strong enough to draw the magnetic members 192 back together.
Accordingly, to assist with reconnection and alignment, a flexible sheath 194 can envelop the magnetic members 192. Because the magnetic members 192 are very forgiving with respect to alignment, the flexible sheath 194 is sufficient to guide the magnetic members 192 back together and keep the magnetic members 192 generally on the same path for reconnection. The flexible sheath 194 can be any suitable elastic material. In some configurations, the flexible sheath 194 can be formed from silicone, a stretchy plastic material, a stretchy rubber material, or a stretch textile.
The magnetic members 192 can be fixed at least axially within the flexible sheath 192. In some configurations, the magnetic members 192 are fixed rotationally and/or axially within the flexible sheath 192. The magnetic members 192 can be attached to the flexible sheath 194 in any suitable manner. For example but without limitation, the magnetic members 192 can be glued, sewn, overmolded, or the like to secure the magnetic members 192 and the flexible sheath 192 together.
The magnetic member 194 closest to the frame 182 can be attached directly (see
In the illustrated configuration, a portion of the sheath 194 extends along and/or wraps around at least a portion of the inelastic member 190. In some configurations, the sheath 194 extends the full distance or substantially the full distance from one side of the frame 182 to the other side of the frame 182. Moreover, in some configurations, the sheath 194 can be secured to at least a portion of the inelastic member 190. For example, the sheath 194 can be bonded to at least a portion of the inelastic member 190. Other configurations also are possible. In the illustrated configurations, a distance from the laterally outermost portion of the sheath 194 to the magnetic member 192 secured to the inelastic member 190 generally will not change. However, a distance from the laterally innermost portion of the sheath 194 to that same magnetic member 192 will vary due to stretching of the sheath 194
As illustrated in
With reference now to
With reference first to
The head 204 in the illustrated configuration has a gently sloping portion 214 and a more severely angled portion 216. Similarly, the receptacle 206 has a gently sloping portion 220 and a more sharply angled portion 222. The surfaces 214, 216, 220, 222 are but one configuration of surfaces that can be used. Advantageously, the illustrated configuration using the gently sloping interfaces 214, 220 facilitates a low coupling force while using the more sharply angled interfaces 216, 222 causes a higher separation force. Accordingly, the illustrated break-fit assembly 200 will separate at a relatively higher force than the force required by the assembly 200 to recombine. As with the assemblies discussed above, preferably, the assembly 200 will separate at a tensile load of about 4 N or 5 N or more.
With reference now to
A return force between the first component and the second component can be created by a biasing member 242. In the illustrated assembly 230, the biasing member is positioned within the second component. As shown, the biasing member 242 is positioned within the receptacle 236. The biasing member 242 can be a spring, for example but without limitation. The illustrated biasing member 242 comprises a compression spring. A retainer 244 secures the biasing member 242 over the post 232. The retainer can be integrally formed with the post 232 or can be separately formed and secured thereto in any suitable manner. The biasing member 242 therefore bears against a surface of the receptacle 236 and the retainer 244.
With reference to
With reference now to
A return force between the first component and the second component can be created by a biasing member 272. In the illustrated assembly 270, the biasing member overlays at least a portion of each of the first and second components. The biasing member 272 can be a spring or a resilient sleeve, for example but without limitation. The illustrated biasing member 272 is a resilient fabric sleeve that generally encases the first component and the second component.
With reference to
As introduced above, when using generally inelastic headgear, the user may desire some form of adjustment. In some instances, the adjustment will occur during set-up of the device and no further adjustment will be performed. In other instances, the user may wish to be able to adjust the headgear as desired. Accordingly,
With reference initially to
The adjustment mechanism 134 is a simple buckle 135 with a hook and loop fastening configuration 138 formed on the inelastic portion 136 of the headgear 130. A tab of the hook and loop fastening configuration 138 can be passed through an opening defined within the buckle 135 and then secured in position after being doubled back upon itself, for example but without limitation. Other buckle configurations also can be used, including pin-based buckles or the like.
With continued reference to
With reference now to
With reference now to
With reference to
With reference again to
In some configurations, depressing the lock button 310 can release the ends 304, 306 to allow movement of one or both of the ends 304, 306. In some configurations, depressing the lock button 310 can lock the ends 304, 306 relative to each other and relative to the frame 292 such that the size of the loop no longer changes. If the lock button 310 requires depression to lock the ends 304, 306, it is possible to allow the headgear 296 to function like an elastic headgear until the lock button 310 is depressed. In some configurations, the lock button 310 operates a release mechanism (e.g., a clothing toggle) that allows movement when depressed and, in some configurations, the lock button 310 operates a clamping mechanism (e.g., friction brake) that reduces or eliminates the likelihood of movement when depressed. Any suitable locking mechanism can be used.
In the illustrated configuration, at the extremities of the ends 304, 306 are stops 312, 314. The stops 312, 314 can be used to limit the amount of stretch provided by the headgear 296. For example, the stops 312, 314 can be constructed such that, while the ends 304, 306 can pass through the frame 292, the stops cannot fully pass through the frame 292. In some configurations, the stops 312, 314 are configured to not enter the frame 292 at all. Other configurations also are possible.
The adjustment mechanism 330 can be connected to the headgear 326 in any suitable manner. For example, the headgear 326 can be formed within an inelastic member and can include hooks, clasps, or other mechanical connection members. Moreover, in some configurations, a break-fit assembly, including but not limited to any break-fit assembly described herein, can be interposed between the headgear 326 and the adjustment mechanism 330.
The adjustment mechanism 330 can be positioned within a housing of the frame 322. The adjustment mechanism 330 can be positioned around an inlet that is coupled to a supply conduit (not shown). Such a positioning provides an efficient use of space and results in a symmetric configuration. With reference to
At least one extensible member 336 can be connected to the reel disk 332. Two extensible members 336 are shown in
The reel disk 332 can be mounted on a spool or axle (not shown) such that the reel disk 332 can rotate about an axis. A locking mechanism 338 can be provided to secure the length of extensible member 336 that is extended from the housing. The reel disk 322 can be provided with, or connected to a member that includes, locking structure 340, such as recesses, teeth, or the like. A locking pin 342 can be biased, such as by a spring 344 for example but without limitation, into the locking structure 340. In some configurations, a locking assembly using a friction brake or the like can be used. Desirably, the locking assembly reduces or eliminates the likelihood of further withdrawal of the extensible member. While the extensible member 336 can be retracted into the housing following obtaining a setting in certain configurations, the extensible member 336 preferably cannot be pulled further out from the housing once locked.
With reference to
With reference to
The shuttle member is configured to move axially along at least a portion of the frame 352. Movement of the shuttle 366 toward the spool 364 (e.g., to the left in
In the illustrated configuration, the shuttle member 366 is positioned in a slot 370 formed within the frame 352. The slot 370 can be positioned as desired. For example, the slot 370 can be on a surface of the frame 352 that faces the user, that faces away from the user, that faces up or that faces down. Adjacent to the slot 370 can be graduated markings to help users identify a desired setting. In some configurations, the slot can be omitted (see, e.g.,
As also illustrated in
With reference now to
By moving the first body 386 relative to the second body 388, a length of an extensible member 390 can be adjusted. In
Any suitable movement can be used. In
With reference now to
A pinion 412 can be mounted between two racks 414. The pinion 412 and the racks 414 can be positioned within the frame 402. The ends of the racks 414 can connect to the headgear 406 or can be integrated into the headgear 406. In some configurations, the racks 414 connect to the headgear 406 outside of the frame 402. In some configurations, the racks 414 connect to the headgear 406 inside of the frame 402. The racks 414 can be flexible enough to wrap slightly around the pinion 412 to provide more purchase between the racks 414 and the pinion 412 and bring the racks into alignment for generally symmetrical headgear attachment. In some configurations, relief recesses 415 can be provided to increase the flexibility of the racks 414.
With reference again to
The pinion 412 comprises teeth 418 and the racks 414 include cooperating teeth 420. As the pinion 412 rotates, the teeth 418, 420 cause axial movement of the racks 414. In this manner, the racks 414 can be used to adjust the loop. Any suitable locking mechanism can be used to lock the position of the headgear 406, the racks 414, the pinion 412 and/or the ring 416. For instance, a pin or the like can be used to inhibit rotation of the pinion 412 and/or the ring 416. In some configurations, a friction break, a clamping mechanism, a cammed break member or the like can be used to inhibit movement of one or more of the headgear 406, the racks 414, the pinion 412 and/or the ring 416. Moreover, while not illustrated, a break-fit assembly can be used as well. For example, the input device can have limits that are adjustable and that limit the range of rotation. In some such configurations, a coil spring or other biasing member can urge the input device toward the limit associated with the smaller headgear size. As such, the headgear can expand but then automatically retract to the predetermined use size under the influence of the biasing member.
With reference now to
The resilient sleeve 422 includes a passage 426. The passage 426 can have an inner diameter or inner dimension that is smaller than an outer diameter or corresponding outer dimension of the post 424. The post can be easily inserted into the passage 426. Insertion of the post 424 into the passage 426 causes stretching of the resilient sleeve 422. The stretching of the sleeve 422 causes the material to become tight against the post 424. Any attempt to simply apply tensile forces to the two members causes further tightening of the interface between the sleeve 422 and the post 424. See
With reference to
With reference to
As with the embodiment above, the adjustment mechanism 450 can be formed between the headgear and the mask. For example, the post 454 can be connected to, or integrally formed with, a portion of the mask while the sleeve 452 is formed with or connected to the headgear (see
With reference now to
To provide for symmetrical movement of the telescoping members 484, connecting cables 486 can be used. For example, a first connecting cable 486 can join an upper portion of a first member 484 to a lower portion of a third member 484 by looping over an upper portion of a second member 484 (see cables on upper portion of
The outermost member 484 can define an end magnet or magnetizable material that can be connected to, or can define, an end cap 490 of the adjustment mechanism 480. Located at the upper portion of the third member 484 can be another magnet or magnetic material that defines a base 491, which in one position is adjacent the end cap 490. The end cap 490 and the base 491 may both comprise magnets, respectively, or one may comprise a magnet while the other comprises a magnetizable material. The end cap 490 and the base 491 are held together with a magnetic force. When adjacent to each other, the distance or length between the lower portion of the base 491 to the upper portion of the end cap 490 is defined as L3. If a force exceeding the magnetic force is applied in an opposing direction the one or more magnets will be forced apart to define a distance or length of L4 where L4 is greater than L3.
The end cap 490 and the base 491 together provide the same or a similar break-fit function as those described in
In some embodiments, the end cap 490 is secured to the upper portion of a telescoping member 484. In
The members 484, the connecting cables 486, the end magnet and the end cap 490 can be enclosed with a resilient member 492. Any suitable resilient member 492 can be used. In some configurations, the resilient member 492 is a strip of material. In other applications, the resilient member 492 forms an envelope around the members 484 and the end cap 490. As best shown in
Because the telescoping members 484 are nested and are slidingly connected and can include one or more connecting cables B486, the entire assembly can be locked into a position by locking only one of the members 484. In other words, the connecting cables 486 operate in a balanced manner and so stopping the movement of one member 484 relative to another member 484 causes all of the members 484 to stop. More particularly, by controlling the movement at lock point 494, the entire adjustment mechanism can be controlled. For example, clamping together the centermost member 484 and the adjacent member 484 will reduce or eliminate the likelihood of movement of the other members 484.
The members 484 can include slots 496. Pins 498 can extend between adjacent members 484 in a slot such that the members are coupled together. To provide the lock point 494, one of the pins 498 can extend through a slot 500 formed in the housing 482, as shown in
With reference now to
With reference to
A pair of crossing scissor arms 540 connect to the lugs 534, 536 on each side of the rings 530, 532. The scissor arms 540 can be connected at a pin joint 542. In addition, the connections between the scissor arms 540 and the lugs 534, 536 can be pin joints. While one set of scissor arms 540 are shown for each side of the adjustment mechanism 520, other numbers can be used.
An end piece 544 can be connected to the scissor arms 540 with stub arms 546. A first end of the stub arms can be connected to the scissor arms 540 with pin joints. Similarly, a second end of the stub arms can be connected to the end piece 544 with pin joints.
When the end piece 544 is moved relative to the first ring 530 and the second ring 532, the stub arms 546 and the scissor arms 540 fold and unfold while the first ring 530 and the second ring 532 rotate. For example, as shown in
The adjustment mechanism 520 includes a biasing member 548. In the illustrated arrangement, the biasing member 548 urges the end piece 544 toward the center axis CA. In some configurations, the biasing member 548 can be one or more strips of an elastomeric material or a spring member. In some configurations, the biasing member 548 can be an enveloping stretchable fabric or other material. Any suitable biasing member can be used. In some configurations, the biasing member 548 also is the housing 522. The biasing member provides a restorative force that seeks to return the end pieces 544 to the contracted position.
With reference still to
Of course, any other suitable locking mechanism can be used.
As discussed above, the adjustment mechanisms described herein can be used with break-fit assemblies where desired. With reference to
While the adjustment mechanism 520 described with respect to
A first lever arm 586 can extend away from the first gear 582 and a second lever arm 588 can extend away from the second gear 584. The first lever arm 586 and the first gear 582 are coupled for rotation and the second lever arm 588 and the second gear 584 are coupled for rotation.
A pair of crossing scissor arms 590 connect to the lever arms 586, 588. The scissor arms 590 can be connected at a pin joint 592. In addition, the connections between the scissor arms 590 and the lever arms 582, 584 can be pin joints. While one set of scissor arms 590 are shown for each side of the adjustment mechanism 580, other numbers can be used.
An end piece 594 can be connected to the scissor arms 590 with stub arms 596. A first end of the stub arms 596 can be connected to the scissor arms 590 with pin joints. Similarly, a second end of the stub arms 596 can be connected to the end piece 594 with pin joints.
When the end piece 594 is moved relative to the gears 582, 584, the stub arms 596 and the scissor arms 590 fold and unfold while the gears 582, 584 rotate. As shown in
As shown in
As described above, it is possible to use hook and loop fasteners with buckles or the like to provide an adjustment mechanism. With reference to
With reference to
With reference to
One side of the illustrated strap 650 includes transversely extending ribs 660. The ribs 660 are shaped to enable the ribs 660 to lock together when pressed. The other side of the illustrated strap 650 is substantially smooth.
The slider member 658 has an opening large enough to accommodate two thicknesses of the strap 650 so long as the two thicknesses have the ribs 660 interlocked. Accordingly, the tab portion 656 is generally smooth on both sides such that, when the slider member 658 is positioned over the tab portion 656, the location of the tab portion 656 can be adjusted (see lower portion of
With reference now to
In the illustrated configuration, the frame 704 comprises arms 712 that extend laterally outward. As illustrated, the arms 712 can include recessed grooves 714 that extend along one or both of the top and bottom.
The headgear 706 connects to a slide 720. In the illustrated configuration, the headgear 706 is pivotally connected to the slide 720. Other types of connections also can be used. The slide 720 can include a tooth 722 that fits into each of the recessed grooves 714 of the arms 712. The slide 720 should define a larger inside dimension than a corresponding outside dimension of the arm 712 such that the slide 720 can be compressed toward the arm 712.
With reference to
As illustrated in
As discussed above, a non-stretching headgear generally indicates that the headgear should be set to a specific, customized size for each user. Preferably, the sizing is performed once and then is not changed during subsequent use. Using the break-fit assemblies described herein, the sizing can be temporarily adjusted for ease of donning the interface while facilitating automatic reconnection of the headgear to the predetermined size. As discussed above, the break-fit assembly can be positioned on the mask (e.g., on the frame or on the seal), in-line by connecting to one or more of the straps of the headgear, or in another portion of the headgear (e.g., along a seam in the back of the headgear).
In some configurations, a component assembly can be provided to reduce the likelihood of accidental adjustment of a predetermined sizing of the headgear. For example but without limitation, the component assembly can be created to operate an adjustment mechanism only with deliberate interaction. In one configuration, a key can be used to lock or unlock the adjustment mechanism. By key, it is intended to have a broad interpretation of a device that establishes control over the mechanism. The key could be a traditional key or could be another item. For example, the key could be a magnet or a magnetic component that attracts another component to interact with an adjustment mechanism. By way of another example, the key could be a household item, such as a screwdriver, pin, or the like. In one configuration, once the size has been adjusted, a component can be removed to lock the adjustment mechanism against inadvertent or undesirable resizing.
In some configurations, electronics can be added to improve the function of the interface. For example, a strap or other component can have an incorporated track that acts as an electronic tape measure. When an initial fitting of the interface is performed (e.g., by a sleep technician), the initial sizing can be bookmarked in an electronic component of the interface. With each subsequent fitting or donning of the interface, the electronics can signal when the headgear is at the proper or predetermined size. For example, the user can stretch the interface during donning and then tighten until the electronics indicate that the predetermined length has been reached. Similarly, an actuator could be provided to automatically tighten the interface to the predetermined size. The actuator could be a small motor, solenoid or the like. The actuator could be integrated into the frame or the headgear, for example but without limitation. Furthermore, using the electronics, operating characteristics of a CPAP device could be monitored such that an adjustment could be made to the headgear automatically to compensate for leaks as soon as the leaks occur or are likely to occur.
While various embodiments have been described, it should be noted that any of the adjustment mechanisms can be combined with any of the break-fit assemblies. In addition, the adjustment mechanisms can be used without a break-fit assembly and the break-fit assemblies can be used without an adjustment mechanism. Further, any interface (i.e., mask and headgear) can be used with either or both of an adjustment mechanism described herein and/or a break-fit assembly.
Although the present invention has been described in terms of a certain embodiment, other embodiments apparent to those of ordinary skill in the art also are within the scope of this invention. Thus, various changes and modifications may be made without departing from the spirit and scope of the invention. For instance, various components may be repositioned as desired. Moreover, not all of the features, aspects and advantages are necessarily required to practice the present invention. Accordingly, the scope of the present invention is intended to be defined only by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
301111 | Genese | Jul 1884 | A |
472238 | Van Orden | Apr 1892 | A |
577926 | Miller | Mar 1897 | A |
718470 | Jones | Jan 1903 | A |
751091 | Moran | Feb 1904 | A |
770013 | Linn | Sep 1904 | A |
1364104 | Geer | Jan 1921 | A |
1635545 | Drager | Jul 1927 | A |
1942442 | Motsinger | Jan 1934 | A |
2126755 | Dreyfus | Aug 1938 | A |
2199690 | Bullard | May 1940 | A |
2228218 | Schwartz | Jan 1941 | A |
2241535 | Boothby et al. | May 1941 | A |
2296150 | Dockson et al. | Sep 1942 | A |
2353643 | Bulbulian | Jul 1944 | A |
2359506 | Battley et al. | Oct 1944 | A |
2388604 | Eisenbud | Nov 1945 | A |
2390233 | Akerman et al. | Dec 1945 | A |
2452845 | Fisher | Nov 1948 | A |
2508050 | Valente | May 1950 | A |
2586851 | Monro et al. | Feb 1952 | A |
2611897 | Adams | Sep 1952 | A |
2661514 | Ada | Dec 1953 | A |
2693800 | Caldwell | Nov 1954 | A |
2738788 | Matheson et al. | Mar 1956 | A |
2843121 | Hudson | Jul 1958 | A |
2859748 | Hudson | Nov 1958 | A |
2875759 | Galleher | Mar 1959 | A |
2894506 | Rose | Jul 1959 | A |
2939458 | Lundquist | Jun 1960 | A |
3045672 | Croasdaile | Jul 1962 | A |
3156922 | Anderson | Nov 1964 | A |
3295529 | Corrigall et al. | Jan 1967 | A |
3416521 | Humphrey | Dec 1968 | A |
3424633 | Corrigall et al. | Jan 1969 | A |
3457564 | Holloway | Jul 1969 | A |
3490452 | Greenfield | Jan 1970 | A |
3500474 | Austin | Mar 1970 | A |
3530031 | Loew | Sep 1970 | A |
3599635 | Kenneth | Aug 1971 | A |
3682171 | Dali et al. | Aug 1972 | A |
3792702 | Delest | Feb 1974 | A |
3834682 | McPhee | Sep 1974 | A |
3850171 | Ball et al. | Nov 1974 | A |
3887968 | Lynam | Jun 1975 | A |
3894562 | Mosley et al. | Jul 1975 | A |
3972321 | Proctor | Aug 1976 | A |
3977432 | Vidal | Aug 1976 | A |
3990757 | Gill | Nov 1976 | A |
3992720 | Nicolinas | Nov 1976 | A |
3994022 | Villari et al. | Nov 1976 | A |
4051556 | Davenport et al. | Oct 1977 | A |
4062068 | Davenport et al. | Dec 1977 | A |
4090510 | Segersten | May 1978 | A |
D250047 | Lewis et al. | Oct 1978 | S |
D250131 | Lewis et al. | Oct 1978 | S |
4127130 | Naysmith | Nov 1978 | A |
4150464 | Tracy | Apr 1979 | A |
D252322 | Johnson | Jul 1979 | S |
4167185 | Lewis | Sep 1979 | A |
4201205 | Bartholomew | May 1980 | A |
4258710 | Reber | Mar 1981 | A |
4266540 | Panzik et al. | May 1981 | A |
4278082 | Blackmer | Jul 1981 | A |
4288891 | Boden | Sep 1981 | A |
4313437 | Martin | Feb 1982 | A |
4328605 | Hutchison et al. | May 1982 | A |
4354488 | Bartos | Oct 1982 | A |
4367735 | Dali | Jan 1983 | A |
4378011 | Warncke et al. | Mar 1983 | A |
4402316 | Gadberry | Sep 1983 | A |
4413382 | Siegmann | Nov 1983 | A |
4437462 | Piljay | Mar 1984 | A |
4453292 | Bakker | Jun 1984 | A |
4454880 | Muto et al. | Jun 1984 | A |
4458373 | Maslow | Jul 1984 | A |
4477928 | Graff | Oct 1984 | A |
4574799 | Warncke et al. | Mar 1986 | A |
4603602 | Montesi | Aug 1986 | A |
4606077 | Phillips | Aug 1986 | A |
4621632 | Bartels et al. | Nov 1986 | A |
4644974 | Zingg | Feb 1987 | A |
4676241 | Webb et al. | Jun 1987 | A |
D293613 | Wingler | Jan 1988 | S |
4734940 | Galet et al. | Apr 1988 | A |
4753233 | Grimes | Jun 1988 | A |
4782832 | Trimble et al. | Nov 1988 | A |
4817596 | Gallet | Apr 1989 | A |
4836200 | Clark et al. | Jun 1989 | A |
4848334 | Bellm | Jul 1989 | A |
4853275 | Tracy et al. | Aug 1989 | A |
4856508 | Tayebi | Aug 1989 | A |
4907584 | McGinnis | Mar 1990 | A |
4915104 | Marcy | Apr 1990 | A |
4915105 | Lee | Apr 1990 | A |
4919128 | Kopala et al. | Apr 1990 | A |
4938209 | Fry | Jul 1990 | A |
4941467 | Takata | Jul 1990 | A |
4944310 | Sullivan | Jul 1990 | A |
4947488 | Ashnioff | Aug 1990 | A |
D310431 | Bellm | Sep 1990 | S |
4958658 | Zajac | Sep 1990 | A |
4971051 | Toffolon | Nov 1990 | A |
4986269 | Hakkinen | Jan 1991 | A |
5010925 | Atkinson et al. | Apr 1991 | A |
5016625 | Hsu et al. | May 1991 | A |
5031261 | Fenner | Jul 1991 | A |
5042478 | Kopala et al. | Aug 1991 | A |
D320677 | Kumagai et al. | Oct 1991 | S |
5052084 | Braun | Oct 1991 | A |
D321419 | Wallace | Nov 1991 | S |
5062421 | Burns et al. | Nov 1991 | A |
5065756 | Rapoport | Nov 1991 | A |
D322318 | Sullivan et al. | Dec 1991 | S |
5074297 | Venegas | Dec 1991 | A |
5094236 | Tayebi | Mar 1992 | A |
5113857 | Dickerman et al. | May 1992 | A |
5121745 | Israel et al. | Jun 1992 | A |
5148578 | Clarke et al. | Sep 1992 | A |
5148802 | Sanders et al. | Sep 1992 | A |
5164652 | Johnson et al. | Nov 1992 | A |
5191882 | Vogliano | Mar 1993 | A |
5231979 | Rose | Aug 1993 | A |
5243971 | Sullivan et al. | Sep 1993 | A |
5245995 | Sullivan et al. | Sep 1993 | A |
D340317 | Cole | Oct 1993 | S |
5259377 | Schroeder | Nov 1993 | A |
5267556 | Feng | Dec 1993 | A |
5269296 | Landis et al. | Dec 1993 | A |
5315859 | Schommer | May 1994 | A |
5349949 | Schegerin | Sep 1994 | A |
5366805 | Fujiki et al. | Nov 1994 | A |
D354128 | Rinehart | Jan 1995 | S |
D355484 | Rinehart | Feb 1995 | S |
5388743 | Silagy | Feb 1995 | A |
5400776 | Bartholomew | Mar 1995 | A |
5429683 | Le Mitouard | Jul 1995 | A |
5438979 | Johnson et al. | Aug 1995 | A |
5441046 | Starr et al. | Aug 1995 | A |
5449206 | Lockwood | Sep 1995 | A |
5449234 | Gipp et al. | Sep 1995 | A |
5458202 | Fellows et al. | Oct 1995 | A |
5460174 | Chang | Oct 1995 | A |
5477852 | Landis et al. | Dec 1995 | A |
5488948 | Dubruille | Feb 1996 | A |
5513634 | Jackson | May 1996 | A |
5518802 | Colvin et al. | May 1996 | A |
5529062 | Byrd | Jun 1996 | A |
5533506 | Wood | Jul 1996 | A |
5542128 | Lomas | Aug 1996 | A |
5546605 | Mallardi | Aug 1996 | A |
5551419 | Froehlich et al. | Sep 1996 | A |
5558090 | James | Sep 1996 | A |
5566395 | Nebeker | Oct 1996 | A |
5570689 | Starr et al. | Nov 1996 | A |
5588423 | Smith | Dec 1996 | A |
5595174 | Gwaltney | Jan 1997 | A |
5601078 | Schaller et al. | Feb 1997 | A |
D378610 | Reischel et al. | Mar 1997 | S |
5649532 | Griffiths | Jul 1997 | A |
5657752 | Landis et al. | Aug 1997 | A |
5662101 | Ogden | Sep 1997 | A |
5664566 | Mcdonald et al. | Sep 1997 | A |
5687715 | Landis | Nov 1997 | A |
5690097 | Howard et al. | Nov 1997 | A |
5724965 | Handke et al. | Mar 1998 | A |
5752510 | Goldstein | May 1998 | A |
5755578 | Contant et al. | May 1998 | A |
5774901 | Minami | Jul 1998 | A |
5806727 | Joseph | Sep 1998 | A |
5807295 | Hutcheon et al. | Sep 1998 | A |
5746201 | Kidd | Dec 1998 | A |
5857460 | Popitz | Jan 1999 | A |
5884624 | Barnett et al. | Mar 1999 | A |
5904278 | Barlow et al. | May 1999 | A |
5918598 | Belfer | Jul 1999 | A |
5921239 | McCall | Jul 1999 | A |
5924420 | Reischel | Jul 1999 | A |
5941245 | Hannah et al. | Aug 1999 | A |
5941856 | Kovacs et al. | Aug 1999 | A |
5943473 | Levine | Aug 1999 | A |
5953763 | Gouget | Sep 1999 | A |
5966745 | Schwartz et al. | Oct 1999 | A |
6016804 | Gleason et al. | Jan 2000 | A |
6017315 | Starr et al. | Jan 2000 | A |
6019101 | Cotner et al. | Feb 2000 | A |
6021528 | Jurga | Feb 2000 | A |
6039044 | Sullivan | Mar 2000 | A |
6044844 | Kwok et al. | Apr 2000 | A |
6050260 | Daniell et al. | Apr 2000 | A |
6112746 | Kwok et al. | Sep 2000 | A |
6116235 | Walters et al. | Sep 2000 | A |
6119693 | Kwok et al. | Sep 2000 | A |
6119694 | Correa et al. | Sep 2000 | A |
6135109 | Blasdell et al. | Oct 2000 | A |
6135432 | Hebblewhite et al. | Oct 2000 | A |
6192886 | Rudolph | Feb 2001 | B1 |
D440302 | Wolfe | Apr 2001 | S |
6256798 | Egolf et al. | Jul 2001 | B1 |
6272690 | Carey et al. | Aug 2001 | B1 |
6272933 | Gradon et al. | Aug 2001 | B1 |
6282725 | Vanidestine, Jr. | Sep 2001 | B1 |
6298850 | Argraves | Oct 2001 | B1 |
6302105 | Wickham et al. | Oct 2001 | B1 |
6338342 | Fecteau et al. | Jan 2002 | B1 |
6341606 | Bordewick et al. | Jan 2002 | B1 |
6347631 | Hansen et al. | Feb 2002 | B1 |
D455891 | Biedrzycki | Apr 2002 | S |
6398197 | Dickinson et al. | Jun 2002 | B1 |
6412487 | Gunaratnam et al. | Jul 2002 | B1 |
6412488 | Barnett | Jul 2002 | B1 |
6418928 | Bordewick et al. | Jul 2002 | B1 |
6422238 | Lithgow | Jul 2002 | B1 |
6427694 | Hecker et al. | Aug 2002 | B1 |
6431172 | Bordewick | Aug 2002 | B1 |
6435181 | Jones, Jr. et al. | Aug 2002 | B1 |
6439234 | Curti et al. | Aug 2002 | B1 |
6457473 | Brostrom et al. | Oct 2002 | B1 |
6467483 | Kopacko et al. | Oct 2002 | B1 |
6470886 | Jestrabek-Hart | Oct 2002 | B1 |
6478026 | Wood | Nov 2002 | B1 |
6484725 | Chi et al. | Nov 2002 | B1 |
6488664 | Solomon et al. | Dec 2002 | B1 |
6491034 | Gunaratnam et al. | Dec 2002 | B1 |
6513526 | Kwok et al. | Feb 2003 | B2 |
6526978 | Dominguez | Mar 2003 | B2 |
6530373 | Patron et al. | Mar 2003 | B1 |
6561188 | Ellis | May 2003 | B1 |
6561190 | Kwok | May 2003 | B1 |
6561191 | Kwok | May 2003 | B1 |
6581594 | Drew et al. | Jun 2003 | B1 |
6581601 | Ziaee | Jun 2003 | B2 |
6581602 | Kwok et al. | Jun 2003 | B2 |
6584977 | Serowski | Jul 2003 | B1 |
6588424 | Bardel | Jul 2003 | B2 |
6615832 | Chen | Sep 2003 | B1 |
6629531 | Gleason et al. | Oct 2003 | B2 |
6631718 | Lovell | Oct 2003 | B1 |
6634358 | Kwok et al. | Oct 2003 | B2 |
6637434 | Noble | Oct 2003 | B2 |
6644315 | Ziaee | Nov 2003 | B2 |
6651658 | Hill et al. | Nov 2003 | B1 |
6651663 | Barnett et al. | Nov 2003 | B2 |
6659102 | Sico | Dec 2003 | B1 |
6662803 | Gradon et al. | Dec 2003 | B2 |
6668828 | Figley et al. | Dec 2003 | B1 |
D485905 | Moore | Jan 2004 | S |
6679257 | Robertson et al. | Jan 2004 | B1 |
6679265 | Strickland et al. | Jan 2004 | B2 |
6691707 | Gunaratnam et al. | Feb 2004 | B1 |
6712072 | Lang | Mar 2004 | B1 |
6736139 | Wix | May 2004 | B1 |
6772761 | Rucker, Jr. | Aug 2004 | B1 |
6796308 | Gunaratnam et al. | Sep 2004 | B2 |
6817362 | Gelinas et al. | Nov 2004 | B2 |
6823869 | Raje et al. | Nov 2004 | B2 |
6851425 | Jaffre et al. | Feb 2005 | B2 |
6851428 | Dennis | Feb 2005 | B2 |
6883177 | Ouellette et al. | Apr 2005 | B1 |
6883519 | Schmidtke et al. | Apr 2005 | B2 |
6886564 | Sullivan et al. | May 2005 | B2 |
6892729 | Smith et al. | May 2005 | B2 |
6895965 | Scarberry et al. | May 2005 | B2 |
6907882 | Ging et al. | Jun 2005 | B2 |
6918390 | Lithgow et al. | Jul 2005 | B2 |
6951218 | Gradon et al. | Oct 2005 | B2 |
6953354 | Edirisuriya et al. | Oct 2005 | B2 |
6997187 | Wood et al. | Feb 2006 | B2 |
7004165 | Salcido | Feb 2006 | B1 |
7007696 | Palkon et al. | Mar 2006 | B2 |
7021311 | Gunaratnam et al. | Apr 2006 | B2 |
D520140 | Chaggares | May 2006 | S |
7036508 | Kwok | May 2006 | B2 |
7062795 | Skiba et al. | Jun 2006 | B2 |
7066179 | Eaton et al. | Jun 2006 | B2 |
7077126 | Kummer et al. | Jul 2006 | B2 |
D526094 | Chen | Aug 2006 | S |
7096864 | Mayer et al. | Aug 2006 | B1 |
7096867 | Smith et al. | Aug 2006 | B2 |
D533269 | McAuley et al. | Dec 2006 | S |
7178525 | Matula, Jr. et al. | Feb 2007 | B2 |
7178528 | Lau | Feb 2007 | B2 |
7201169 | Wilkie et al. | Apr 2007 | B2 |
7207333 | Tohara | Apr 2007 | B2 |
7210481 | Lovell et al. | May 2007 | B1 |
7219669 | Lovell et al. | May 2007 | B1 |
7225811 | Ruiz et al. | Jun 2007 | B2 |
7255106 | Gallem et al. | Aug 2007 | B2 |
7261104 | Keifer | Aug 2007 | B2 |
7287528 | Ho et al. | Oct 2007 | B2 |
7290546 | Sprinkle et al. | Nov 2007 | B2 |
7296575 | Radney | Nov 2007 | B1 |
7318437 | Gunaratnam et al. | Jan 2008 | B2 |
7353826 | Sleeper et al. | Apr 2008 | B2 |
7353827 | Geist | Apr 2008 | B2 |
7357136 | Ho et al. | Apr 2008 | B2 |
7406966 | Wondka et al. | Aug 2008 | B2 |
7448386 | Ho et al. | Nov 2008 | B2 |
7487772 | Ging et al. | Feb 2009 | B2 |
7493902 | White et al. | Feb 2009 | B2 |
D589139 | Guney | Mar 2009 | S |
7523754 | Lithgow et al. | Apr 2009 | B2 |
D595841 | McAuley et al. | Jul 2009 | S |
7562658 | Madaus et al. | Jul 2009 | B2 |
7597100 | Ging | Oct 2009 | B2 |
7640934 | Zollinger et al. | Jan 2010 | B2 |
7658189 | Davidson et al. | Feb 2010 | B2 |
7665464 | Kopacko et al. | Feb 2010 | B2 |
D612933 | Prentice | Mar 2010 | S |
7681575 | Wixey et al. | Mar 2010 | B2 |
7694677 | Tang | Apr 2010 | B2 |
7703457 | Barnett et al. | Apr 2010 | B2 |
7708017 | Davidson | May 2010 | B2 |
7753051 | Burrow et al. | Jul 2010 | B2 |
D623288 | Lubke | Sep 2010 | S |
7814911 | Bordewick et al. | Oct 2010 | B2 |
7827990 | Melidis et al. | Nov 2010 | B1 |
7845352 | Sleeper et al. | Dec 2010 | B2 |
7856982 | Matula et al. | Dec 2010 | B2 |
7861715 | Jones et al. | Jan 2011 | B2 |
7870860 | McCormick et al. | Jan 2011 | B2 |
7877817 | Ho | Feb 2011 | B1 |
7896003 | Matula et al. | Mar 2011 | B2 |
7913692 | Kwok | Mar 2011 | B2 |
7931024 | Ho et al. | Apr 2011 | B2 |
7934501 | Fu | May 2011 | B2 |
7942150 | Guney et al. | May 2011 | B2 |
7967014 | Heidmann | Jun 2011 | B2 |
7992560 | Burton et al. | Aug 2011 | B2 |
8042539 | Chandran et al. | Oct 2011 | B2 |
8042541 | Amarasinghe et al. | Oct 2011 | B2 |
8047893 | Fenske | Nov 2011 | B2 |
8074651 | Bierman et al. | Dec 2011 | B2 |
8104473 | Woodard et al. | Jan 2012 | B2 |
8109271 | Vandine et al. | Feb 2012 | B2 |
8132270 | Lang et al. | Mar 2012 | B2 |
8136524 | Ging et al. | Mar 2012 | B2 |
8136525 | Lubke et al. | Mar 2012 | B2 |
8171933 | Xue et al. | May 2012 | B2 |
D661796 | Andrews et al. | Jun 2012 | S |
8245711 | Matula et al. | Aug 2012 | B2 |
8297285 | Henry et al. | Oct 2012 | B2 |
8371302 | Ging et al. | Feb 2013 | B2 |
8397727 | Ng et al. | Mar 2013 | B2 |
8443807 | McAuley et al. | May 2013 | B2 |
D686313 | Matula et al. | Jul 2013 | S |
8479726 | McAuley | Jul 2013 | B2 |
8479741 | McAuley et al. | Jul 2013 | B2 |
8505538 | Amarasinghe | Aug 2013 | B2 |
8522785 | Berthon-Jones et al. | Sep 2013 | B2 |
8567404 | Davidson et al. | Oct 2013 | B2 |
8573201 | Rummery et al. | Nov 2013 | B2 |
8596271 | Matula, Jr. et al. | Dec 2013 | B2 |
8596274 | Hieber et al. | Dec 2013 | B2 |
8631793 | Omura et al. | Jan 2014 | B2 |
8631799 | Davenport | Jan 2014 | B2 |
8636005 | Gradon et al. | Jan 2014 | B2 |
8636007 | Rummery et al. | Jan 2014 | B2 |
8636008 | Flory et al. | Jan 2014 | B2 |
8701667 | Ho et al. | Apr 2014 | B1 |
8714157 | McAuley et al. | May 2014 | B2 |
8720444 | Chang | May 2014 | B2 |
8757157 | Price et al. | Jun 2014 | B2 |
8783257 | McAuley et al. | Jul 2014 | B2 |
8794239 | Gunaratnam | Aug 2014 | B2 |
8857435 | Matula, Jr. et al. | Oct 2014 | B2 |
8869797 | Davidson et al. | Oct 2014 | B2 |
8869798 | Wells et al. | Oct 2014 | B2 |
8875709 | Davidson et al. | Nov 2014 | B2 |
8915251 | Lubke et al. | Dec 2014 | B2 |
8944061 | D'Souza et al. | Feb 2015 | B2 |
8950404 | Formica et al. | Feb 2015 | B2 |
8960196 | Henry | Feb 2015 | B2 |
8997742 | Moore et al. | Apr 2015 | B2 |
9010331 | Lang et al. | Apr 2015 | B2 |
9027556 | Ng et al. | May 2015 | B2 |
9032955 | Lubke et al. | May 2015 | B2 |
9032956 | Scheiner et al. | May 2015 | B2 |
9044564 | Dravitzki et al. | Jun 2015 | B2 |
9072852 | McAuley et al. | Jul 2015 | B2 |
9095673 | Barlow et al. | Aug 2015 | B2 |
9119929 | McAuley et al. | Sep 2015 | B2 |
9119931 | D'Souza et al. | Sep 2015 | B2 |
9138555 | McAuley et al. | Sep 2015 | B2 |
9149596 | Valcic et al. | Oct 2015 | B2 |
9186474 | Rollins | Nov 2015 | B1 |
9242062 | Melidis et al. | Jan 2016 | B2 |
9265909 | Ho et al. | Feb 2016 | B2 |
9292799 | McAuley et al. | Mar 2016 | B2 |
9295799 | McAuley et al. | Mar 2016 | B2 |
9302065 | Smith et al. | Apr 2016 | B2 |
9320566 | Alston, Jr. | Apr 2016 | B1 |
9320866 | McAuley et al. | Apr 2016 | B2 |
9333315 | McAuley et al. | May 2016 | B2 |
9339622 | McAuley et al. | May 2016 | B2 |
9339624 | McAuley | May 2016 | B2 |
9375545 | Darkln et al. | Jun 2016 | B2 |
9381316 | Ng et al. | Jul 2016 | B2 |
9457162 | Ging et al. | Oct 2016 | B2 |
9480809 | Guney et al. | Nov 2016 | B2 |
9486601 | Stallard et al. | Nov 2016 | B2 |
9517317 | McAuley et al. | Dec 2016 | B2 |
9517320 | Barlow et al. | Dec 2016 | B2 |
9522246 | Frater et al. | Dec 2016 | B2 |
9539405 | McAuley et al. | Jan 2017 | B2 |
9550038 | McAuley et al. | Jan 2017 | B2 |
9561338 | McAuley et al. | Feb 2017 | B2 |
9561339 | McAuley et al. | Feb 2017 | B2 |
9592336 | Nielsen et al. | Mar 2017 | B2 |
9744385 | Henry et al. | Aug 2017 | B2 |
9782554 | Mazzone et al. | Oct 2017 | B2 |
9878118 | Formica | Jan 2018 | B2 |
D810277 | Amarasinghe | Feb 2018 | S |
9884160 | McAuley et al. | Feb 2018 | B2 |
9901699 | Veliss et al. | Feb 2018 | B2 |
9901700 | McAuley et al. | Feb 2018 | B2 |
9907925 | McAuley et al. | Mar 2018 | B2 |
9925349 | Jablonski | Mar 2018 | B2 |
9974914 | McAuley | May 2018 | B2 |
9993606 | Gibson et al. | Jun 2018 | B2 |
10039665 | Blaszczykiewicz et al. | Aug 2018 | B2 |
10065010 | Smith et al. | Sep 2018 | B2 |
10071217 | Grashow | Sep 2018 | B2 |
10080856 | McLaren et al. | Sep 2018 | B2 |
10137271 | McAuley et al. | Nov 2018 | B2 |
10201678 | Guney et al. | Feb 2019 | B2 |
10207072 | Dunn et al. | Feb 2019 | B2 |
10252015 | McAuley et al. | Apr 2019 | B2 |
10258757 | Allan et al. | Apr 2019 | B2 |
10272218 | McAuley et al. | Apr 2019 | B2 |
10279138 | Ovzinsky | May 2019 | B2 |
10328226 | Allan et al. | Jun 2019 | B2 |
10363387 | Allan et al. | Jul 2019 | B2 |
10384029 | McAuley et al. | Aug 2019 | B2 |
10413694 | Allan et al. | Sep 2019 | B2 |
10456546 | McLaren et al. | Oct 2019 | B2 |
10646680 | Huddart et al. | May 2020 | B2 |
10675428 | Guney et al. | Jun 2020 | B2 |
10792451 | Allan et al. | Oct 2020 | B2 |
10828449 | Higgins et al. | Nov 2020 | B2 |
10828452 | Huddart et al. | Nov 2020 | B2 |
10874814 | Huddart et al. | Dec 2020 | B2 |
11000663 | Felix et al. | May 2021 | B2 |
20010017134 | Bahr | Aug 2001 | A1 |
20010020474 | Hecker et al. | Sep 2001 | A1 |
20010029952 | Curran | Oct 2001 | A1 |
20020005198 | Kwok et al. | Jan 2002 | A1 |
20020014241 | Gradon et al. | Feb 2002 | A1 |
20020020416 | Namey | Feb 2002 | A1 |
20020026934 | Lithgow et al. | Mar 2002 | A1 |
20020029780 | Frater et al. | Mar 2002 | A1 |
20020039867 | Curro et al. | Apr 2002 | A1 |
20020046755 | Voss | Apr 2002 | A1 |
20020052568 | Houser et al. | May 2002 | A1 |
20020053347 | Ziaee | May 2002 | A1 |
20020059935 | Wood | May 2002 | A1 |
20020069467 | Immediato et al. | Jun 2002 | A1 |
20020096176 | Gunaratnam et al. | Jul 2002 | A1 |
20020096178 | Ziaee | Jul 2002 | A1 |
20020100474 | Kellner et al. | Aug 2002 | A1 |
20020100479 | Scarberry et al. | Aug 2002 | A1 |
20020108613 | Gunaratnam et al. | Aug 2002 | A1 |
20020157668 | Bardel | Oct 2002 | A1 |
20030005509 | Kelzer | Jan 2003 | A1 |
20030005931 | Jaffre et al. | Jan 2003 | A1 |
20030005933 | Izuchukwu | Jan 2003 | A1 |
20030019495 | Palkon et al. | Jan 2003 | A1 |
20030019496 | Kopacko et al. | Jan 2003 | A1 |
20030029454 | Gelinas et al. | Feb 2003 | A1 |
20030047185 | Olsen et al. | Mar 2003 | A1 |
20030051732 | Smith | Mar 2003 | A1 |
20030075180 | Raje | Apr 2003 | A1 |
20030075182 | Heidmann et al. | Apr 2003 | A1 |
20030079749 | Strickland et al. | May 2003 | A1 |
20030084903 | Fecteau et al. | May 2003 | A1 |
20030084996 | Alberg et al. | May 2003 | A1 |
20030089373 | Gradon et al. | May 2003 | A1 |
20030094177 | Smith et al. | May 2003 | A1 |
20030111080 | Olsen | Jun 2003 | A1 |
20030121519 | Estes et al. | Jul 2003 | A1 |
20030149384 | Davis et al. | Aug 2003 | A1 |
20030164170 | Drew et al. | Sep 2003 | A1 |
20030172936 | Wilkie et al. | Sep 2003 | A1 |
20030196655 | Ging et al. | Oct 2003 | A1 |
20030196656 | Moore | Oct 2003 | A1 |
20030196658 | Ging et al. | Oct 2003 | A1 |
20030196659 | Gradon et al. | Oct 2003 | A1 |
20030196664 | Jacobson | Oct 2003 | A1 |
20030200970 | Stenzler et al. | Oct 2003 | A1 |
20030217746 | Gradon et al. | Nov 2003 | A1 |
20030221691 | Biener | Dec 2003 | A1 |
20040011087 | Rebouillat et al. | Jan 2004 | A1 |
20040025882 | Madaus et al. | Feb 2004 | A1 |
20040035427 | Bordewick et al. | Feb 2004 | A1 |
20040065328 | Amarasinghe et al. | Apr 2004 | A1 |
20040067333 | Amarasinghe | Apr 2004 | A1 |
20040094157 | Dantanarayana et al. | May 2004 | A1 |
20040107968 | Griffiths | Jun 2004 | A1 |
20040112377 | Amarasinghe et al. | Jun 2004 | A1 |
20040112384 | Lithgow et al. | Jun 2004 | A1 |
20040112385 | Drew | Jun 2004 | A1 |
20040118406 | Lithgow | Jun 2004 | A1 |
20040118412 | Piletti-Reyes | Jun 2004 | A1 |
20040139973 | Wright | Jul 2004 | A1 |
20040149280 | Semeniuk | Aug 2004 | A1 |
20040182398 | Sprinkle et al. | Sep 2004 | A1 |
20040211427 | Jones et al. | Oct 2004 | A1 |
20040221850 | Ging et al. | Nov 2004 | A1 |
20040226566 | Gunaratnam et al. | Nov 2004 | A1 |
20040255949 | Lang et al. | Dec 2004 | A1 |
20050011521 | Sprinkle et al. | Jan 2005 | A1 |
20050011524 | Thomlinson et al. | Jan 2005 | A1 |
20050016067 | Pettit | Jan 2005 | A1 |
20050016532 | Farrell | Jan 2005 | A1 |
20050028822 | Sleeper et al. | Feb 2005 | A1 |
20050033247 | Thompson | Feb 2005 | A1 |
20050045182 | Wood et al. | Mar 2005 | A1 |
20050051177 | Wood | Mar 2005 | A1 |
20050066976 | Wondka | Mar 2005 | A1 |
20050076913 | Ho et al. | Apr 2005 | A1 |
20050092327 | Fini et al. | May 2005 | A1 |
20050098183 | Nash et al. | May 2005 | A1 |
20050121037 | Wood | Jun 2005 | A1 |
20050133038 | Rutter | Jun 2005 | A1 |
20050150497 | Eifler et al. | Jul 2005 | A1 |
20050155604 | Ging et al. | Jul 2005 | A1 |
20050161049 | Wright | Jul 2005 | A1 |
20050172969 | Ging | Aug 2005 | A1 |
20050199239 | Lang et al. | Sep 2005 | A1 |
20050199242 | Matula et al. | Sep 2005 | A1 |
20050205096 | Matula | Sep 2005 | A1 |
20050235999 | Wood et al. | Oct 2005 | A1 |
20050241644 | Guney et al. | Nov 2005 | A1 |
20060032504 | Burton et al. | Feb 2006 | A1 |
20060042629 | Geist | Mar 2006 | A1 |
20060042632 | Bishop et al. | Mar 2006 | A1 |
20060054169 | Han et al. | Mar 2006 | A1 |
20060060200 | Ho et al. | Mar 2006 | A1 |
20060076019 | Ho | Apr 2006 | A1 |
20060081250 | Bordewick et al. | Apr 2006 | A1 |
20060081256 | Palmer | Apr 2006 | A1 |
20060096596 | Occhialini et al. | May 2006 | A1 |
20060096598 | Ho et al. | May 2006 | A1 |
20060107958 | Sleeper | May 2006 | A1 |
20060113147 | Harris | Jun 2006 | A1 |
20060118117 | Berthon-Jones et al. | Jun 2006 | A1 |
20060124131 | Chandran | Jun 2006 | A1 |
20060130844 | Ho et al. | Jun 2006 | A1 |
20060137690 | Gunaratnam et al. | Jun 2006 | A1 |
20060169286 | Eifler et al. | Aug 2006 | A1 |
20060174887 | Chandran et al. | Aug 2006 | A1 |
20060174892 | Leksutin et al. | Aug 2006 | A1 |
20060196510 | McDonald et al. | Sep 2006 | A1 |
20060196511 | Lau et al. | Sep 2006 | A1 |
20060201514 | Jones et al. | Sep 2006 | A1 |
20060207599 | Busch | Sep 2006 | A1 |
20060225740 | Eaton et al. | Oct 2006 | A1 |
20060231103 | Matula et al. | Oct 2006 | A1 |
20060237017 | Davidson et al. | Oct 2006 | A1 |
20060237018 | McAuley et al. | Oct 2006 | A1 |
20060249159 | Ho | Nov 2006 | A1 |
20060254593 | Chang | Nov 2006 | A1 |
20060266361 | Hernandez | Nov 2006 | A1 |
20060283458 | Woodard | Dec 2006 | A1 |
20060283459 | Geiselhart et al. | Dec 2006 | A1 |
20060283461 | Lubke et al. | Dec 2006 | A1 |
20070000492 | Hansel et al. | Jan 2007 | A1 |
20070010786 | Casey et al. | Jan 2007 | A1 |
20070044804 | Matula et al. | Mar 2007 | A1 |
20070062536 | McAuley | Mar 2007 | A1 |
20070089749 | Ho et al. | Apr 2007 | A1 |
20070107733 | Ho | May 2007 | A1 |
20070125384 | Zollinger et al. | Jun 2007 | A1 |
20070125385 | Ho et al. | Jun 2007 | A1 |
20070125387 | Zollinger et al. | Jun 2007 | A1 |
20070130663 | Lang et al. | Jun 2007 | A1 |
20070137653 | Wood | Jun 2007 | A1 |
20070142785 | Lundgaard et al. | Jun 2007 | A1 |
20070157353 | Guney et al. | Jul 2007 | A1 |
20070163600 | Hoffman | Jul 2007 | A1 |
20070169777 | Amarasinghe et al. | Jul 2007 | A1 |
20070174952 | Jacob | Aug 2007 | A1 |
20070175480 | Gradon et al. | Aug 2007 | A1 |
20070209663 | Marque et al. | Sep 2007 | A1 |
20070215161 | Frater et al. | Sep 2007 | A1 |
20070221227 | Ho | Sep 2007 | A1 |
20070227541 | Van Den | Oct 2007 | A1 |
20070235033 | Reier et al. | Oct 2007 | A1 |
20070272249 | Chandran | Nov 2007 | A1 |
20070295335 | Nashed | Dec 2007 | A1 |
20080035152 | Ho et al. | Feb 2008 | A1 |
20080041388 | McAuley et al. | Feb 2008 | A1 |
20080041393 | Bracken | Feb 2008 | A1 |
20080047560 | Veliss et al. | Feb 2008 | A1 |
20080052806 | McDaniel | Mar 2008 | A1 |
20080053450 | Van Kerkwyk et al. | Mar 2008 | A1 |
20080060648 | Thornton et al. | Mar 2008 | A1 |
20080060653 | Hallett et al. | Mar 2008 | A1 |
20080060657 | McAuley et al. | Mar 2008 | A1 |
20080065015 | Fiser | Mar 2008 | A1 |
20080083412 | Henry et al. | Apr 2008 | A1 |
20080092905 | Gunaratnam | Apr 2008 | A1 |
20080092906 | Gunaratnam et al. | Apr 2008 | A1 |
20080099024 | Gunaratnam et al. | May 2008 | A1 |
20080105257 | Klasek et al. | May 2008 | A1 |
20080110464 | Davidson et al. | May 2008 | A1 |
20080134480 | Shiue | Jun 2008 | A1 |
20080135050 | Hitchcock | Jun 2008 | A1 |
20080142019 | Lewis | Jun 2008 | A1 |
20080171737 | Fensome | Jul 2008 | A1 |
20080178875 | Henry | Jul 2008 | A1 |
20080178886 | Lieberman et al. | Jul 2008 | A1 |
20080190432 | Blochlinger et al. | Aug 2008 | A1 |
20080190436 | Jaffe et al. | Aug 2008 | A1 |
20080196728 | Ho | Aug 2008 | A1 |
20080210241 | Schulz et al. | Sep 2008 | A1 |
20080223370 | Kim | Sep 2008 | A1 |
20080230068 | Rudolph | Sep 2008 | A1 |
20080236586 | Mcdonald et al. | Oct 2008 | A1 |
20080257354 | Davidson | Oct 2008 | A1 |
20080264422 | Fishman | Oct 2008 | A1 |
20080271739 | Facer et al. | Nov 2008 | A1 |
20080276937 | Davidson et al. | Nov 2008 | A1 |
20080302366 | McGinnis et al. | Dec 2008 | A1 |
20080314388 | Brambilla et al. | Dec 2008 | A1 |
20080319334 | Yamamori | Dec 2008 | A1 |
20090000624 | Lee et al. | Jan 2009 | A1 |
20090014007 | Brambilla et al. | Jan 2009 | A1 |
20090032024 | Burz et al. | Feb 2009 | A1 |
20090032026 | Price et al. | Feb 2009 | A1 |
20090044808 | Guney et al. | Feb 2009 | A1 |
20090044809 | Welchel et al. | Feb 2009 | A1 |
20090078267 | Burz et al. | Mar 2009 | A1 |
20090107504 | McAuley et al. | Apr 2009 | A1 |
20090114227 | Gunaratnam et al. | May 2009 | A1 |
20090120442 | Ho | May 2009 | A1 |
20090126739 | Ng et al. | May 2009 | A1 |
20090133697 | Kwok et al. | May 2009 | A1 |
20090139527 | Ng et al. | Jun 2009 | A1 |
20090145429 | Ging et al. | Jun 2009 | A1 |
20090151729 | Judson et al. | Jun 2009 | A1 |
20090173349 | Hernandez et al. | Jul 2009 | A1 |
20090178680 | Chang | Jul 2009 | A1 |
20090183734 | Kwok et al. | Jul 2009 | A1 |
20090183739 | Wondka | Jul 2009 | A1 |
20090211583 | Carroll | Aug 2009 | A1 |
20090223519 | Eifler et al. | Sep 2009 | A1 |
20090250060 | Hacke et al. | Oct 2009 | A1 |
20090320187 | Petzl et al. | Dec 2009 | A1 |
20100000538 | Edwards et al. | Jan 2010 | A1 |
20100000539 | Woodard | Jan 2010 | A1 |
20100000543 | Berthon-Jones et al. | Jan 2010 | A1 |
20100000544 | Blaszczykiewicz et al. | Jan 2010 | A1 |
20100018534 | Veliss et al. | Jan 2010 | A1 |
20100037897 | Wood | Feb 2010 | A1 |
20100051031 | Lustenberger et al. | Mar 2010 | A1 |
20100051034 | Howard | Mar 2010 | A1 |
20100083969 | Crumblin | Apr 2010 | A1 |
20100108072 | D'Souza | May 2010 | A1 |
20100132717 | Davidson et al. | Jun 2010 | A1 |
20100154798 | Henry et al. | Jun 2010 | A1 |
20100170516 | Grane | Jul 2010 | A1 |
20100199992 | Ho | Aug 2010 | A1 |
20100224199 | Smith et al. | Sep 2010 | A1 |
20100229868 | Rummery et al. | Sep 2010 | A1 |
20100229872 | Ho | Sep 2010 | A1 |
20100258132 | Moore | Oct 2010 | A1 |
20100258136 | Doherty et al. | Oct 2010 | A1 |
20100282265 | Melidis et al. | Nov 2010 | A1 |
20100294281 | Ho | Nov 2010 | A1 |
20100307502 | Rummery et al. | Dec 2010 | A1 |
20100313532 | Stjernfelt et al. | Dec 2010 | A1 |
20100313891 | Veliss et al. | Dec 2010 | A1 |
20100319700 | Ng et al. | Dec 2010 | A1 |
20100326445 | Veliss et al. | Dec 2010 | A1 |
20110067704 | Kooij | Mar 2011 | A1 |
20110072553 | Ho | Mar 2011 | A1 |
20110088699 | Skipper | Apr 2011 | A1 |
20110126838 | Alberici | Jun 2011 | A1 |
20110146685 | Allan et al. | Jun 2011 | A1 |
20110197341 | Formica | Aug 2011 | A1 |
20110220113 | Newman | Sep 2011 | A1 |
20110232649 | Collazo et al. | Sep 2011 | A1 |
20110247628 | Ho | Oct 2011 | A1 |
20110259335 | Sullivan | Oct 2011 | A1 |
20110259337 | Hitchcock | Oct 2011 | A1 |
20110265791 | Ging et al. | Nov 2011 | A1 |
20110265796 | Amarasinghe et al. | Nov 2011 | A1 |
20110290253 | McAuley | Dec 2011 | A1 |
20120067349 | Barlow et al. | Mar 2012 | A1 |
20120125339 | Ho et al. | May 2012 | A1 |
20120132208 | Judson et al. | May 2012 | A1 |
20120132209 | Rummery | May 2012 | A1 |
20120138061 | Dravitzki et al. | Jun 2012 | A1 |
20120138063 | Eves et al. | Jun 2012 | A1 |
20120174355 | Fraze | Jul 2012 | A1 |
20120204879 | Cariola et al. | Aug 2012 | A1 |
20120222680 | Eves et al. | Sep 2012 | A1 |
20120285457 | Mansour et al. | Nov 2012 | A1 |
20120304999 | Swift et al. | Dec 2012 | A1 |
20120318265 | Amirav et al. | Dec 2012 | A1 |
20130000648 | Madaus et al. | Jan 2013 | A1 |
20130133659 | Ng et al. | May 2013 | A1 |
20130133664 | Startare | May 2013 | A1 |
20130139822 | Gibson | Jun 2013 | A1 |
20130152918 | Rummery et al. | Jun 2013 | A1 |
20130152937 | Jablonski | Jun 2013 | A1 |
20130160769 | Ng et al. | Jun 2013 | A1 |
20130220327 | Barlow et al. | Aug 2013 | A1 |
20130319421 | Hitchcock et al. | Dec 2013 | A1 |
20140026888 | Matula | Jan 2014 | A1 |
20140026890 | Haskard et al. | Jan 2014 | A1 |
20140083428 | Rothermel et al. | Mar 2014 | A1 |
20140083430 | Matula, Jr. et al. | Mar 2014 | A1 |
20140102456 | Ovizinsky | Apr 2014 | A1 |
20140137870 | Barlow et al. | May 2014 | A1 |
20140158726 | Malara | Jun 2014 | A1 |
20140166019 | Ho et al. | Jun 2014 | A1 |
20140190486 | Dunn et al. | Jul 2014 | A1 |
20140209098 | Dunn | Jul 2014 | A1 |
20140216452 | Miller et al. | Aug 2014 | A1 |
20140261432 | Eves et al. | Sep 2014 | A1 |
20140305439 | Chodkowski | Oct 2014 | A1 |
20140311492 | Stuebiger et al. | Oct 2014 | A1 |
20140338672 | D'Souza et al. | Nov 2014 | A1 |
20140358054 | Capra | Dec 2014 | A1 |
20150000615 | Imran et al. | Jan 2015 | A1 |
20150005685 | Chetlapalli et al. | Jan 2015 | A1 |
20150028519 | Lang et al. | Jan 2015 | A1 |
20150033457 | Tryner et al. | Feb 2015 | A1 |
20150051000 | Henn | Feb 2015 | A1 |
20150090266 | Melidis et al. | Apr 2015 | A1 |
20150090268 | Madaus et al. | Apr 2015 | A1 |
20150128953 | Formica et al. | May 2015 | A1 |
20150151070 | Capra et al. | Jun 2015 | A1 |
20150190262 | Capra et al. | Jul 2015 | A1 |
20150202397 | Pastoor | Jul 2015 | A1 |
20150217150 | Harris | Aug 2015 | A1 |
20150246198 | Bearne et al. | Sep 2015 | A1 |
20150285337 | Dingley et al. | Oct 2015 | A1 |
20150290415 | Dunn | Oct 2015 | A1 |
20150335846 | Romagnoli et al. | Nov 2015 | A1 |
20150352308 | Cullen et al. | Dec 2015 | A1 |
20150374944 | Edwards et al. | Dec 2015 | A1 |
20160001028 | McAuley et al. | Jan 2016 | A1 |
20160008558 | Huddart et al. | Jan 2016 | A1 |
20160015922 | Chodkowski et al. | Jan 2016 | A1 |
20160022944 | Chodkowski et al. | Jan 2016 | A1 |
20160038707 | Allan et al. | Feb 2016 | A1 |
20160045700 | Amarasinghe | Feb 2016 | A1 |
20160051786 | McAuley et al. | Feb 2016 | A1 |
20160082214 | Barlow et al. | Mar 2016 | A1 |
20160166793 | McLaren et al. | Jun 2016 | A1 |
20160178027 | Wetzel | Jun 2016 | A1 |
20160213873 | McAuley et al. | Jul 2016 | A1 |
20160213874 | Davidson et al. | Jul 2016 | A1 |
20160278463 | Stevenson | Sep 2016 | A1 |
20160296720 | Henry et al. | Oct 2016 | A1 |
20160375214 | Chodkowski et al. | Dec 2016 | A1 |
20170028148 | McAuley et al. | Feb 2017 | A1 |
20170136269 | Jacotey et al. | May 2017 | A1 |
20170143925 | McAuley et al. | May 2017 | A1 |
20170182276 | Hammer | Jun 2017 | A1 |
20170189636 | Gibson et al. | Jul 2017 | A1 |
20170216548 | Gerhardt | Aug 2017 | A1 |
20170239438 | McAuley et al. | Aug 2017 | A1 |
20170246411 | Mashal et al. | Aug 2017 | A1 |
20170304574 | McAuley et al. | Oct 2017 | A1 |
20170368288 | Stephens et al. | Dec 2017 | A1 |
20180214655 | Kooij et al. | Aug 2018 | A1 |
20180250483 | Olsen et al. | Sep 2018 | A1 |
20180256844 | Galgali et al. | Sep 2018 | A1 |
20180264218 | Chodkowski | Sep 2018 | A1 |
20180339123 | Smith et al. | Nov 2018 | A1 |
20190001095 | Rose et al. | Jan 2019 | A1 |
20190030273 | McAuley et al. | Jan 2019 | A1 |
20190083734 | Hammer et al. | Mar 2019 | A1 |
20190111227 | Veliss et al. | Apr 2019 | A1 |
20190151592 | Bornholdt | May 2019 | A1 |
20190232010 | McAuley et al. | Aug 2019 | A1 |
20200016357 | McAuley et al. | Jan 2020 | A1 |
20200046928 | Allan | Feb 2020 | A1 |
20200108219 | McAuley et al. | Apr 2020 | A1 |
20200129720 | McLaren et al. | Apr 2020 | A1 |
20200164169 | McAuley et al. | May 2020 | A1 |
20200197644 | McAuley et al. | Jun 2020 | A1 |
20200230343 | Sims et al. | Jul 2020 | A1 |
20200230344 | Huddart et al. | Jul 2020 | A1 |
20200268997 | McAuley et al. | Aug 2020 | A1 |
20200268998 | McAuley et al. | Aug 2020 | A1 |
20200338294 | McLauren et al. | Oct 2020 | A1 |
20210008316 | McLaren et al. | Jan 2021 | A1 |
20210016041 | Huddart et al. | Jan 2021 | A1 |
20220126049 | Amarasinghe | Apr 2022 | A1 |
20220331542 | McLaren et al. | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
2003246441 | Dec 2003 | AU |
996301 | Sep 1976 | CA |
1311662 | Dec 1992 | CA |
2648690 | Nov 2007 | CA |
000966064-0001 | Sep 2008 | CD |
000966064-0002 | Sep 2008 | CD |
000966064-0003 | Sep 2008 | CD |
000966064-0004 | Sep 2008 | CD |
000966064-0017 | Sep 2008 | CD |
2172538 | Jul 1994 | CN |
1780265 | Dec 2005 | CN |
1751149 | Mar 2006 | CN |
1784250 | Jun 2006 | CN |
1901961 | Jan 2007 | CN |
1901963 | Jan 2007 | CN |
1905917 | Jan 2007 | CN |
101115521 | Jan 2008 | CN |
201033204 | Mar 2008 | CN |
201171846 | Dec 2008 | CN |
101432039 | May 2009 | CN |
100502972 | Jun 2009 | CN |
100502972 | Jun 2009 | CN |
101516300 | Aug 2009 | CN |
101516427 | Aug 2009 | CN |
101541380 | Sep 2009 | CN |
101991897 | Mar 2011 | CN |
102753230 | Oct 2012 | CN |
202822396 | Mar 2013 | CN |
103906545 | Jul 2014 | CN |
105339031 | Feb 2016 | CN |
895692 | Nov 1953 | DE |
2706284 | Aug 1978 | DE |
3122034 | Dec 1982 | DE |
3907428 | Sep 1990 | DE |
29723101 | Jul 1998 | DE |
19603949 | Nov 1998 | DE |
10312881 | May 2004 | DE |
10254399 | Jun 2004 | DE |
102006011151 | Sep 2007 | DE |
10 2009 016150 | Oct 2010 | DE |
0 350 322 | Jan 1990 | EP |
0 427 474 | May 1991 | EP |
0 462 701 | Dec 1991 | EP |
0 401 307 | Aug 1995 | EP |
0 747 078 | Dec 1996 | EP |
0 879 565 | Nov 1998 | EP |
0 982 049 | Mar 2000 | EP |
1 099 452 | May 2001 | EP |
0 830 180 | Mar 2002 | EP |
1 258 266 | Nov 2002 | EP |
1 488 820 | Dec 2004 | EP |
1 582 231 | Oct 2005 | EP |
1 187 650 | Dec 2005 | EP |
2 042 209 | Apr 2009 | EP |
2 130 563 | Dec 2009 | EP |
2 145 645 | Jan 2010 | EP |
1 753 495 | Sep 2010 | EP |
2 327 443 | Jun 2011 | EP |
1 481 702 | Sep 2012 | EP |
2 517 757 | Oct 2012 | EP |
2 749 176 | Jul 2014 | EP |
1 646 910 | Aug 2015 | EP |
2 022 528 | Mar 2016 | EP |
2 451 518 | Oct 2017 | EP |
2390116 | Mar 1938 | FR |
2618340 | Nov 1970 | FR |
825960 | Jan 1989 | FR |
2658725 | Aug 1991 | FR |
2749176 | Dec 1997 | FR |
2804421 | Aug 2001 | FR |
190224431 | Dec 1902 | GB |
339522 | Dec 1930 | GB |
826198 | Dec 1959 | GB |
880824 | Oct 1961 | GB |
979357 | Jan 1965 | GB |
1467828 | Mar 1977 | GB |
2133275 | Jul 1984 | GB |
2173274 | Oct 1986 | GB |
2186801 | Aug 1987 | GB |
2188236 | Sep 1987 | GB |
1211268 | Apr 2000 | GB |
2478305 | Sep 2011 | GB |
2491227 | Nov 2012 | GB |
2553475 | Mar 2018 | GB |
S46-12114 | Apr 1971 | JP |
46-016719 | Jun 1971 | JP |
S55-89072 | Jul 1980 | JP |
62-024721 | Feb 1987 | JP |
H09-010311 | Jan 1997 | JP |
2000-325481 | Nov 2000 | JP |
2004-016488 | Jan 2004 | JP |
2003-053874 | Sep 2004 | JP |
2005-529687 | Oct 2005 | JP |
2005-537906 | Dec 2005 | JP |
2007-516750 | Jun 2007 | JP |
2008-502380 | Jan 2008 | JP |
2009-125306 | Jun 2009 | JP |
2010-090973 | Apr 2010 | JP |
2000-102624 | May 2013 | JP |
2018-127729 | Aug 2018 | JP |
10-2011-0028950 | Mar 2011 | KR |
531332 | Feb 2004 | NZ |
534606 | Aug 2004 | NZ |
528029 | Mar 2005 | NZ |
548575 | Jul 2006 | NZ |
551103 | Nov 2006 | NZ |
585295 | Dec 2011 | NZ |
WO 82003548 | Oct 1982 | WO |
WO 9512432 | May 1995 | WO |
WO 9732494 | Sep 1997 | WO |
WO 98003225 | Jan 1998 | WO |
WO 9804310 | Feb 1998 | WO |
WO 9804311 | Feb 1998 | WO |
WO 98018514 | May 1998 | WO |
WO 98024499 | Jun 1998 | WO |
WO 98048878 | Nov 1998 | WO |
WO 9857691 | Dec 1998 | WO |
WO 9904842 | Feb 1999 | WO |
WO 9943375 | Sep 1999 | WO |
WO 99058181 | Nov 1999 | WO |
WO 99058198 | Nov 1999 | WO |
WO 00050122 | Aug 2000 | WO |
WO 0050122 | Aug 2000 | WO |
WO 00057942 | Oct 2000 | WO |
WO 00069497 | Nov 2000 | WO |
WO 0074509 | Dec 2000 | WO |
WO 00074758 | Dec 2000 | WO |
WO 00078384 | Dec 2000 | WO |
WO 0100266 | Jan 2001 | WO |
WO 0132250 | May 2001 | WO |
WO 01041854 | Jun 2001 | WO |
WO 01058293 | Aug 2001 | WO |
WO 01062326 | Aug 2001 | WO |
WO 0194721 | Dec 2001 | WO |
WO 0197892 | Dec 2001 | WO |
WO 01097892 | Dec 2001 | WO |
WO 01097893 | Dec 2001 | WO |
WO 02005883 | Jan 2002 | WO |
WO 02011804 | Feb 2002 | WO |
WO 0244749 | Jun 2002 | WO |
WO 02047749 | Jun 2002 | WO |
WO 02074372 | Sep 2002 | WO |
WO 03035156 | May 2003 | WO |
WO 03092755 | Nov 2003 | WO |
WO 04007010 | Jan 2004 | WO |
WO 04096332 | Jan 2004 | WO |
WO 04012803 | Feb 2004 | WO |
WO 04022147 | Mar 2004 | WO |
WO 04030736 | Apr 2004 | WO |
WO 04041341 | May 2004 | WO |
WO 04041342 | May 2004 | WO |
WO 04071565 | Aug 2004 | WO |
WO 04073777 | Sep 2004 | WO |
WO 04073778 | Sep 2004 | WO |
WO 05010608 | Feb 2005 | WO |
WO 05016403 | Feb 2005 | WO |
WO 05018523 | Mar 2005 | WO |
WO 05021075 | Mar 2005 | WO |
WO 05032634 | Apr 2005 | WO |
WO 05046776 | May 2005 | WO |
WO 05051468 | Jun 2005 | WO |
WO 05063326 | Jul 2005 | WO |
WO 05063328 | Jul 2005 | WO |
WO 05079726 | Sep 2005 | WO |
WO 05086943 | Sep 2005 | WO |
WO 05086946 | Sep 2005 | WO |
WO 05097247 | Oct 2005 | WO |
WO 05123166 | Dec 2005 | WO |
WO 06000046 | Jan 2006 | WO |
WO 06050559 | May 2006 | WO |
WO 06069415 | Jul 2006 | WO |
WO 06074513 | Jul 2006 | WO |
WO 06074514 | Jul 2006 | WO |
WO 06074515 | Jul 2006 | WO |
WO 06096924 | Sep 2006 | WO |
WO 06130903 | Dec 2006 | WO |
WO 06138346 | Dec 2006 | WO |
WO 06138416 | Dec 2006 | WO |
WO 07006089 | Jan 2007 | WO |
WO 07009182 | Jan 2007 | WO |
WO 07021777 | Feb 2007 | WO |
WO 07022562 | Mar 2007 | WO |
WO 07041751 | Apr 2007 | WO |
WO 07041786 | Apr 2007 | WO |
WO 07045008 | Apr 2007 | WO |
WO 07048174 | May 2007 | WO |
WO 07053878 | May 2007 | WO |
WO 07068044 | Jun 2007 | WO |
WO 07114492 | Oct 2007 | WO |
WO 07125487 | Nov 2007 | WO |
WO 07147088 | Dec 2007 | WO |
WO 08007985 | Jan 2008 | WO |
WO 08011682 | Jan 2008 | WO |
WO 08014543 | Feb 2008 | WO |
WO 08030831 | Mar 2008 | WO |
WO 08060295 | May 2008 | WO |
WO 08068966 | Jun 2008 | WO |
WO 08070929 | Jun 2008 | WO |
WO 08106716 | Sep 2008 | WO |
WO 08148086 | Dec 2008 | WO |
WO 09026627 | Mar 2009 | WO |
WO 09038918 | Mar 2009 | WO |
WO 09022248 | Apr 2009 | WO |
WO 09052560 | Apr 2009 | WO |
WO 09059353 | May 2009 | WO |
WO 09092057 | Jul 2009 | WO |
WO 09108995 | Sep 2009 | WO |
WO 2009108994 | Sep 2009 | WO |
WO 09139647 | Nov 2009 | WO |
WO 09148956 | Dec 2009 | WO |
WO 10066004 | Jun 2010 | WO |
WO 10073142 | Jul 2010 | WO |
WO 10131189 | Nov 2010 | WO |
WO 10135785 | Dec 2010 | WO |
WO 10139014 | Dec 2010 | WO |
WO 11014931 | Feb 2011 | WO |
WO 11059346 | May 2011 | WO |
WO 11060479 | May 2011 | WO |
WO 11072739 | Jun 2011 | WO |
WO 11077254 | Jun 2011 | WO |
WO 1207300 | Jan 2012 | WO |
WO 12040791 | Apr 2012 | WO |
WO 12045127 | Apr 2012 | WO |
WO 12052902 | Apr 2012 | WO |
WO 12069951 | May 2012 | WO |
WO 12071300 | May 2012 | WO |
WO 12143822 | Oct 2012 | WO |
WO 12177152 | Dec 2012 | WO |
WO 13006913 | Jan 2013 | WO |
WO 13026091 | Feb 2013 | WO |
WO 13026092 | Feb 2013 | WO |
WO 13064930 | May 2013 | WO |
WO 14020469 | Feb 2014 | WO |
WO 14025267 | Feb 2014 | WO |
WO 14031673 | Feb 2014 | WO |
WO 14075141 | May 2014 | WO |
WO 14077708 | May 2014 | WO |
WO 14109749 | Jul 2014 | WO |
WO 14110622 | Jul 2014 | WO |
WO 14110626 | Jul 2014 | WO |
WO 14129913 | Aug 2014 | WO |
WO 14175752 | Oct 2014 | WO |
WO 14175753 | Oct 2014 | WO |
WO 15033287 | Mar 2015 | WO |
WO 15070289 | May 2015 | WO |
WO 15079396 | Jun 2015 | WO |
WO 15083060 | Jun 2015 | WO |
WO 15151019 | Oct 2015 | WO |
WO 15187986 | Dec 2015 | WO |
WO 16000040 | Jan 2016 | WO |
WO 16043603 | Mar 2016 | WO |
WO 17030447 | Feb 2017 | WO |
WO 17049356 | Mar 2017 | WO |
WO 17049357 | Mar 2017 | WO |
WO 17150990 | Sep 2017 | WO |
WO 17158474 | Sep 2017 | WO |
WO 17158544 | Sep 2017 | WO |
WO 17160166 | Sep 2017 | WO |
WO 2017158544 | Sep 2017 | WO |
WO 2017160166 | Sep 2017 | WO |
WO 17216708 | Dec 2017 | WO |
WO 18007966 | Jan 2018 | WO |
WO 18064712 | Apr 2018 | WO |
WO 19003094 | Jan 2019 | WO |
Entry |
---|
U.S. Appl. No. 60/493,515, filed Aug. 8, 2002, Sleeper et al. |
U.S. Appl. No. 60/496,059, filed Aug. 18, 2003, Ho et al. |
U.S. Appl. No. 60/529,696, filed Dec. 16, 2003, Lithgow et al. |
U.S. Appl. No. 61/064,406, filed Mar. 4, 2008, Wehbeh. |
U.S. Appl. No. 61/071,893, filed May 22, 2008, Wehbeh et al. |
U.S. Appl. No. 61/136,617, filed Sep. 19, 2008, Wehbeh et al. |
Philips Respironics ‘System One Heated Humidifier—User Manual’, 2011, pp. 1-16, [retrieved on Nov. 25, 2013] from the internet: URL: http://www.cpapxchange.com/cpap-machines-biap-machines/system-one-60-seri- es-cpap-humidifier-manual.pdf front cover, pp. 3-4 and 6. |
Australian Examination Report in patent application No. 2012265597 dated Dec. 19, 2013, 5 pages. |
Australian Examination Report in patent application No. 2015201920, dated Jul. 20, 2015, 3 pages. |
Australian Examination Report in patent application No. 2007273324, dated May 22, 2012, 3 pages. |
Australian Examination Report in patent application No. 2010241390, dated Jan. 9, 2015, 4 pages. |
Australian Examination Report in patent application No. 2010246985, dated Mar. 4, 2014, 5 pages. |
Australian Examination Report in patent application No. 2015202814, dated Aug. 14, 2015, 8 pages. |
Canadian Examination Report in patent application No. 2655839, dated Oct. 4, 2013, 2 pages. |
Canadian Examination Report in patent application No. 2890556, dated Jan. 27, 2016, 3 pages. |
Chinese Examination Report in patent application No. 2007800266164, dated Feb. 17, 2011, 5 pages. |
Chinese Examination Report in patent application No. 201080061122.1, dated Sep. 3, 2015, 10 pages. |
Chinese First Office Action in patent application No. 201210080441.8, dated Mar. 24, 2014, 4 pages. |
Chinese Second Office Action for Chinese Patent Application No. 201210080441.8 dated Dec. 1, 2014 in 11 pages (with English translation). |
European Extended Search Report; dated Apr. 2, 2014; Application No. 09819444.2; 8 pages. |
European Examination Report in patent application No. 07808683.2, dated Jul. 8, 2015, 8 pages. |
European Extended Search Report in patent application No. 10774623.2, dated Sep. 8, 2015, 7 pages. |
European Extended Search Report in patent application No. 10830251.4, dated Sep. 4, 2015, 7 pages. |
Great Britain Combined Search and Examination Report in patent application No. GB1406401.8, dated May 7, 2014, 4 pages. |
Great Britain Combined Search and Examination Report in patent application No. GB1406402.6, dated May 7, 2014, 6 pages. |
International Search Report for International application No. PCT/NZ2007/000185, dated Oct. 31, 2007, in 3 pages. |
International Search Report, PCT/NZ2009/000072, dated Jul. 28, 2009, 4 pages. |
International Search Report, International application No. PCT/NZ2009/000219, dated Feb. 2, 2010, 3 pages. |
International Preliminary Report on Patentability (IPRP), international application No. PCT/NZ2009/000219, dated Apr. 12, 2011, 9 pages. |
International Search Report, PCT/NZ2010/000229, dated Mar. 18, 2011, 8 pages. |
International Preliminary Report on Patentability and Written Opinion of the ISA, International application No. PCT/NZ2010/000229, dated May 22, 2012, 14 pages. |
International Search Report, application No. PCT/NZ2013/000138, dated Nov. 1, 2013, 7 pages. |
Japanese Examination Report in patent application No. 2012-510418, dated Feb. 10, 2014, 4 pages. |
Japanese Examination Report in patent application No. 2012-538784, dated Aug. 5, 2015, 8 pages. |
Japanese Examination Report in patent application No. 2015-098324, dated Jul. 22, 2015, 8 pages. |
Fisher & Paykel HC200 Series Nasal CPAP Blower & Heated Humidifier User Manual, 17 pp., May 1998. |
Fisher & Paykel Healthcare, FlexiFit® 431 Full Face Mask instructions, 2010, 4 pp. |
Fisher & Paykel Healthcare, FlexiFit™ 431 Full Face Mask, specification sheet, 2004, 2 pp. |
Fisher & Paykel Healthcare, Interface Solutions Product Profile, 2006, 12 pp. |
Fisher & Paykel MR810 Manual, Rev. C, 2004, 43 pp. |
HomeDepot.com—Ring Nut Sales Page (Retrieved Oct. 16, 2015 from http://www.homedepot.com/p/Everbilt-1-2-in-Galvanized-HexNut-804076/20464- 7893), 4 pp. |
Malloy, 1994, Plastic Part Design for Injection Molding, Hanswer Gardner Publications, Inc, Cincinnati, OH, 14 pp. |
Merriam-Webster's Collegiate Dictionary, Eleventh Edition, 2004, pp. 703, 905, 1074, 1184. |
ResMed Exhibit, FlexiFit™ 431, product brochure, web pages (Wayback Machine), 2006, 23 pp. |
ResMed Origins Brochure (Retrieved Apr. 7, 2016 from http://www.resmed.com/us/dam/documents/articles/resmedorigins.pdf), 64 pp. |
ResMed Ultra Mirage™ Full Face Mask, product brochure, 2004, 2 pp. |
ResMed Ultra Mirage™ Full Face Mask, product brochure, web pages (Wayback Machine), 2006, 9 pp. |
ResMed, Jun. 29, 1997, Mask Frames (Source: Wayback Machine Internet Archive); http://web.archive.org/web/19970629053430/http://www.resmed.com- /maskframes/mask.htm, 2 pp/. |
ResMed, Mirage Swift™ Nasal Pillows System from ResMed, product brochure, 2004, 6 pp. |
ResMed, Mirage Swift™ Nasal Pillows System: User's Guide, product brochure, 2004,11 pp. |
ResMed, Mirage Vista™ Nasal Mask: Components Card, product brochure, 2005, 1 p. |
The American Heritage Dictionary of the English Language, Fourth Edition, 2006, pp. 1501, 1502, 1650. |
WeddingBands.com—Men's Wedding Ring Shopping Page (Retrieved Oct. 16, 2015 from http://www.weddingbands.com/ProductPop.sub.-wedding.sub.-band- s.sub.-metal/48214W.html), 3 pp. |
Australian Examination Report No. 1, in patent application No. AU 2013300237, dated Jun. 8, 2017, in 4 pages. |
Australian Examination Report in patent application No. 2016238904 dated May 4, 2018, 5 pages. |
Australian Examination Report in patent application No. 2010241390, dated Sep. 28, 2016, 4 pages. |
Australian Examination Report in patent application No. 2016202799, dated May 31, 2016, 2 pages. |
Australian examination report in patent application No. 2016202801, dated Jun. 20, 2016, 2 pages. |
Australian Examination Report in patent application No. 2016204384, dated Aug. 5, 2016, 2 pages. |
Australian examination report in patent application No. 2017200991, dated Oct. 13, 2017, 3 pages. |
Australian examination report in patent application No. 2017201021, dated Apr. 7, 2017, 6 pages. |
Canadian Examination Report in patent application No. 2780310, dated Jul. 26, 2016, 4 pages. |
Canadian Examination Report in patent application No. 2780310, dated Jan. 25, 2018 4 pages. |
Canadian Examination Report in patent application No. 2890556, dated Nov. 28, 2016, 4 pages. |
Canadian Examination Report in patent application No. 2918167, dated Oct. 3, 2016, 4 pages. |
Chinese Examination Report in patent application No. 201080028029.0, dated Mar. 27, 2014, 16 pages. |
Chinese Second Office Action in patent application No. 201080028029.0, dated Jan. 19, 2015, 16 pages. |
Chinese Examination Report in patent application No. 201080028029.0, dated Sep. 14, 2015, 3 pages. |
Chinese Examination Report in patent application No. 201080061122.1, dated Jul. 17, 2015, 10 pages. |
Chinese Office Action in patent application No. 201610116121.1, dated Sep. 28, 2017, 5 pages. |
Chinese Third Office Action in patent application No. 201080061122.1, dated Apr. 1, 2016, 5 pages. |
Chinese Examination Report in patent application No. 201610114706.X, dated Jul. 30, 2018, 9 pp., with translation. |
European Examination Report in patent application No. 07808683.2, dated May 9, 2018, 3 pages. |
European Search Report and Written Opinion dated May 12, 2016 in patent application No. 09746823.5; 11 pages. |
European Summons to Attend Oral Proceedings and Written Opinion dated Dec. 13, 2017 in patent application No. 09746823.5; 7 pages. |
European Examination Report in patent application No. 09746823.5, dated Apr. 3, 2017, 2 pages. |
European Examination Report, European Application 13828380.9, dated Apr. 7, 2017, 7 pp. |
European Examination Report, European Application 13828380.9, dated Jul. 27, 2018, 8 pp. |
European extended search report dated Jul. 23, 2018 in patent application No. 18163847.9, 7 pp. |
European Extended Search Report in patent application No. 17179765.7, dated Dec. 11, 2017. |
European Search Report in patent application No. 11830981.4, dated Aug. 24, 2015, 6 pages. |
Great Britain Examination Report in patent application No. GB1119385.1, dated May 9, 2013, 4 pages. |
Great Britain Search and Examination Report, in patent application No. GB1210075.6, dated Mar. 14, 2013, 2 pages. |
Great Britain Combined Search and Examination Report in patent application No. GB1719334.3, dated Nov. 30, 2017, in 9 pages. |
Great Britain examination report dated May 30, 2018 in patent application No. GB1719334.3, 4 pp. |
Great Britain examination report dated Jul. 20, 2018 in patent application No. GB1719334.3, 3 pp. |
Great Britain combined search and examination report dated May 11, 2018 in patent application No. GB1805606.9, 7 pp. |
Great Britain examination report dated Jul. 5, 2018 in patent application No. GB1805606.9, 3 pp. |
Great Britain examination report dated May 11, 2018 in patent application No. GB1803255.7, 7 pp. |
Great Britain examination report dated May 11, 2018 in patent application No. GB1805605.1, 7 pp. |
Great Britain examination report in patent application No. GB1501499.6, dated Jun. 1, 2017, in 8 pages. |
Great Britain Combined Search and Examination Report under Section 18(3), Application No. GB1501499.6, dated Oct. 12, 2017, in 4 pages. |
International Search Report for application No. PCT/NZ2005/000062 dated May 27, 2005. |
International Search Report, PCT/NZ2011/000211, dated Feb. 17, 2012, 4 pages. |
Written Opinion, PCT/NZ2011/000211, dated Feb. 17. 2012, 7 pages. |
Written Opinion of the International Searching Authority. PCT/NZ2013/000139, dated Nov. 1, 2013. |
International Search Report for International application No. PCT/NZ2014/000021, filed Feb. 21, 2014. |
Indian Office Action in Patent Application No. 5250/KOLNP/2008, dated May 23, 2017, 8 pages. |
Japanese Examination Report in patent application No. 2012-538784, dated Aug. 25, 2014, 3 pages. |
Japanese Examination Report in patent application No. 2012-538784, dated Jul. 25, 2016, 2 pages. |
Japanese Examination Report in patent application No. 2017-040092, dated Feb. 5, 2018. |
Japanese Official Action dated Sep. 3, 2018 in patent application No. 2017-238259. |
Japanese examination report in patent application No. 2015-526496, dated Apr. 17, 2017, in 13 pages. |
Japanese Examination Report in patent application No. 2015-526496, dated Feb. 28, 2018, 2 pp. |
U.S. Appl. No. 61/064,406, 34 pages, copy provided by USPTO on Feb. 23, 2009. |
U.S. Appl. No. 61/071,893, 43 pages, copy provided by USPTO on Feb. 23, 2009. |
U.S. Appl. No. 61/136,617, 82 pages, copy provided by USPTO on Feb. 23, 2009. |
Petition for Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01714, dated Sep. 7, 2016. |
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,479,741, IPR2016-01714, filed Dec. 14, 2016. |
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 37 C.F.R. § 42.108, IPR2016-01714, entered Mar. 10, 2017. |
Declaration of Dr. John Izuchukwu, Ph.D., P.E., U.S. Pat. No. 8,443,807, IPR Nos. 2016-1726 & 2016-1734, dated Sep. 7, 2016. |
Declaration of Dr. John Izuchukwu, Ph.D., P.E., U.S. Pat. No. 8,479,741, IPR Nos. 2016-1714 & 2016-1718, dated Sep. 7, 2016. |
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,479,741, IPR2016-01718, filed Dec. 16, 2016. |
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 37 C.F.R. § 42.108, IPR2016-01718, entered Mar. 13, 2017. |
Petition for Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01718, dated Sep. 7, 2016. |
Petition for Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01726, dated Sep. 7, 2016. |
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,443,807, IPR2016-01726, filed Dec. 13, 2016. |
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 37 C.F.R. § 42.108, IPR2016-01726, entered Mar. 6, 2017. |
Petition for Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01734, dated Sep. 7, 2016. |
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,443,807, IPR2016-01734, filed Dec. 22, 2016. |
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 37 C.F.R. § 42.108, IPR2016-01734, entered Mar. 13, 2017. |
File History of U.S. Pat. No. 8,479,741 to McAuley et al., published Oct. 1, 2009. |
File History of U.S. Pat. No. 8,443,807 to McAuley et al., published Jan, 7, 2010. |
Patent Owner's Complaint for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 2:16-cv-06099-R-AJW (C.D. Cal.), dated Aug. 15, 2016. |
Patent Owner's Notice of Voluntary Dismissal Without Prejudice for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 2:16-cv-06099-R-AJW (C.D. Cal.), dated Aug. 16, 2016. |
Patent Owner's Complaint for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 3:16-cv-02068-GPC-WVG (S.D. Cal.), dated Aug. 16, 2016. |
Petitioners' Complaint for ResMed Inc., et al. v. Fisher & Paykel Healthcare Corp. Ltd., et al., Case No. 3:16-cv-02072-JAH-MDD (S.D. Cal.), dated Aug. 16, 2016. |
Petitioners' Notice of Voluntary Dismissal Without Prejudice for ResMed Inc., et al. v. Fisher & Paykel Healthcare Corp. Ltd., et al., Case No. 3:16-cv-02072-JAH-MDD (S.D. Cal.), dated Aug. 18, 2016. |
Statutory Declaration made by Alistair Edwin McAuley, Apr. 9, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited. |
Resmed Mirage Swift™ II Nasal Pillows System product page (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows._system/Mirage-Swift-II-Nasal-Pillows-System.html?menu=products); archived Jul. 21, 2008, 2 pp. |
Resmed Mirage Swift™ II user brochure (http://www.resmed.com/en us/products/masks/mirage-swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-brochure-patient-english-usa.pdf) copyright 2007, 4 pp. |
ResMed Mirage Swift II Fitting guide (http://www;resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift_ii_np-fitting_English.pdf) copyright 2006, 2 pp. |
ResMed Mirage Swift II comparison to older Swift patient interface (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-comparison-guide.pdf, 2007, 6 pp. |
ResMed Mirage Swift II user guide (http://www.resmed.com/en-us/products/service_and_support/documents/60893rl_mirage_swiftII_nasal_userglide_us_multi.pdf) copyright 2006, 1 p. |
ResMed Mirage Swift II component card (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-cc-usa.pdf); copyright 2006, 2 pp. |
Resmed Swift™ LT Nasal Pillows System, product page, (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/Mirage-Swift-II-Nasal_Pillows-System.html?menu=products), Jul. 3, 2008, 2 pp. |
Resmed Swift LT user brochure, (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-brochure-patient-english-usa.pdf), copyright 2008, 4 pp. |
Resmed Swift ™ LT component card (http://www.resmed.com/en-us/assets/documents/product/swift_It/components_card/1012463_swift-It_components-card_usa_eng.pdf) copyright 2008, 46 pp. |
Resmed Swift™ LT fitting guide, (http://www.resmed.com/en-us/assets/ciocuments/product/swift-II/clinicai_fact_sheet/1012406 swift-ii_fact-sheet_usa_eng.pdf), 2008, 2 pp. |
Resmed Swift™ LT fact sheet (http://www.resmcd.com/en-us/assets/documents/product/swift-It/clinical_fact_sheet/1012406 swiftIt_fact-sheet_usa_eng.pdf, copyright 2008, 4 pp. |
Resmed Swift™ LT image gallery (http://www.resmed.com/en-us/products/masks/swift_It_nasal_pillows_system/imagegallery.html?menu=products, Apr. 25, 2008, 2 pp. |
Resmed Swift™ LT interactive fitting guide—screenshot from troubleshooting part (http://www.resmed.com/enus/assets/multimedia/product/swift-It/flash/swift-It-fitting-eng.swf), Jul. 3, 2008, 2 pp. |
Puritan Bennett Breeze® SleepGear® CPAP Interface, product page (http:/puritanbennett.com/prod/product.aspx?id=233); archived Oct. 19, 2007, 2 pp. |
Puritan Bennett Breeze® SleepGear® User's Guide (http://puritanbennett.com/_catalog/pdf/dfu/107598a00[I].pdf); copyright 2007, 18 pp. |
Puritan Bennett Breeze® SleepGear® sales sheet (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeSleepGear.pdf) copyright 2016, 7 PP. |
Puritan Bennett mask coding matrix (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeSipGear(ST03700).pdf) copyright 2006, 3 pp. |
Puritan Bennett Breeze fitting guide (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeFittingPoster.pdf, Oct. 19, 2007, 1 p. |
Respironics Optilife Pillows mask product page (http://optilife.respironics.com:80/); archived Nov. 21, 2007, 2 pp. |
Respironics Optilife Pillows mask part numbers page (http://opfilife.respironics.com:80/Parts.aspx); archived Nov. 23, 2007, 4 pp. |
Respironics Optilife Pillows mask FAQ (http;//optilife.respironics.com:80/fags.aspx); archived Nov. 23, 2007, 6 pp. |
Respironics Optilife Pillows mask feature page (http://opti1ife.respironics.com:80/features.aspx); archived Nov. 23, 2007, 4 pp. |
Respironics Optilife Pillows mask fitting guide screen shot (http://optilife.respironics.com:80/fittingGuide.aspx); archived Aug. 7, 2008, 1 p. |
Respironics Optilife Pillows mask adjustment video screenshots, https://www.youtube.com/watch?v=shjcNmvvcBA); uploaded Aug. 3, 2008, 2 pp. |
Puritan Bennett Breeze description; copyright 2000 by Mallinckrodt Inc., 4 pp. |
Fisher & Paykel Opus product page, archived Sep. 3, 2009, 2 pp. |
Fisher & Paykel Opus patient interface product photographs, Jul. 2007, 6 pp. |
Photographs of Opus 360 nasal pillows mask patient instructions RevB, Jul. 2007, 4 pp. |
Respironics Optilife brochure detailing updates; copyright 2008; dated Mar. 26, 2008, 3 pp. |
Fisher & Paykel Opus product page, archived Sep. 7, 2009, 2 pp. |
Fisher & Paykel Opus “Off-the-lips” pillows explanation page, archived Aug. 23, 2009, 2 pp. |
Fisher & Paykel Opus “Off-the-lips” patient interface brochure, archived Oct. 14, 2009, 6 pp. |
Fisher & Paykel Opus user-guide, archived Nov. 17, 2009, 2 pp. |
Australian examination report in patent application No. 2018202409, dated Jan. 21, 2019, 4 pages. |
Australian examination report in patent application No. 2018201975, dated Mar. 30, 2019, 4 pages. |
Australian examination report in patent application No. 2018217307, dated Mar. 4, 2019, 4 pages. |
Australian examination report in patent application No. 2018236891, dated Jun. 25, 2019, 3 pages. |
Brazilian office action dated Jul. 11, 2019 in patent application No. BR11201211420-4. |
Canadian Examination Report: in patent application No. 2780310, dated Oct. 9, 2018, 3 pp. |
Canadian Examination Report in patent application No. 2998247, dated Jan. 8, 2019, 4 pages. |
Canadian Examination Report in patent application No. 3010066, dated May 3, 2019, 4 pages. |
Canadian Examination Report in patent application No. 2880749, dated May 16, 2019, 5 pages. |
Canadian Examination Report in patent application No. 3017161, dated Aug. 21, 2019, 3 pp. |
Chinese Third Office Action in patent application No. 201610116121.1, dated Apr. 28, 2019, 16 pages. |
Chinese Fourth Office Action in patent application No. 201610116121.1, dated Sep. 30, 2019, 16 pages. |
Chinese Second Examination Report in patent application No. 201610114706.X, dated Apr. 24, 2019 8 pp., with translation. |
Chinese Examination Report dated Feb. 22, 2019 in patent application No. 201611251618.0. |
Chinese First Office Action in patent application No. 201710824612.6, dated Sep. 30, 2019, 25 pp. |
European extended search report dated Sep. 21, 2018 in patent application No. 18178220.2, 7 pp. |
European extended search report dated Oct. 31, 2018 in patent application No. 18171619.2, 9 pp. |
European Extended Search Report dated Feb. 14, 2019 in patent application No. 18195537.8. |
Indian Examination Report in patent application No. 1431/KOLNP/2012. |
Indian Examination Report Mar. 14, 2019 in patent application No. 8767/CHENP/2011. |
Japanese Decision for Final Rejection dated Jul. 1, 2019 in patent application No. 2017-238259, 2 pp. |
Japanese office action dated Sep. 1, 2019 in patent application No. 2018-188040. |
Statutory Declaration made by Alistair Edwin McAuley, Apr. 14, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited. |
Statutory Declaration made by Alistair Edwin McAuley, Apr. 17, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited. |
Statutory Declaration made by Alistair Edwin McAuley, Sep. 16, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited. |
First Affidavit of Alistair Edwin McAuley, Dec. 5, 2016, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia. |
Second Affidavit of Alistair Edwin McAuley, Dec. 21, 2016, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia. |
Third Affidavit of Alistair Edwin McAuley, Jan. 31, 2017, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia, 284 pp. |
Declaration of Anthony Michael Ging in IPR 2019-000172, IPR 2019-000173, IPR 2019-000177, IPR 2019-000178, dated Nov. 8, 2018, 329 pp. |
McGraw-Hill Dictionary of Scientific and Technical Terms, Sixth Edition, 2003, Tube, p. 2200. |
Claim Chart for AirFit P10, U.S. Pat. No. 9,333,315, dated Nov. 7, 2018, 3 pp. |
Scheduling Order dated Jul. 16, 2019 in IPR2019-00180, 12 pp. |
Decision to Institute dated Jul. 16, 2019 in IPR2019-00180, 34 pp. |
Decision Denying Institute of Inter Partes Review dated Jul. 16, 2019 in IRP2019-00179, 32 pp. |
Chinese Second Office Action in patent application No. 201810366796.0, dated Feb. 9, 2021. |
Australian Examination Report No. 1 in patent application No. 2019280016, dated Jul. 22, 2020. |
Brazilian office action dated Aug. 28, 2020 in patent application No. PI1012207-9. |
Canadian Examination Report for patent application No. 2880749, dated Oct. 5, 2020, 4 pp. |
Chinese Fourth Examination Report in patent application No. 201610114706.X, dated Aug. 28, 2020, with translation. |
European Extended Search Report dated Jul. 7, 2020 in patent application No. 19217524.8, 13 pp. |
German examination report dated Aug. 31, 2020 in patent application No. 11 2010 011 994.0, 18 pp. |
Australian Examination Report No. 2 for patent application No. 2018217307, dated Mar. 3, 2020, 4 pp. |
Canadian Examination Report in patent application No. 3010066, dated Dec. 19, 2019, 4 pages. |
Canadian Examination Report for patent application No. 2880749, dated Feb. 28, 2020, 4 pp. |
Chinese Third Examination Report in patent application No. 201610114706.X, dated Jan. 16, 2020, with translation. |
European examination report dated Sep. 5, 2019 in patent application No. 18163847.9, 5 pp. |
Japanese Pretrial Examination Report dated Jan. 7, 2020 in patent application No. 2017-238259. |
cpap.com, InnoMed/Resp Care Bravo Nasal Pillow CPAP Mask with Headgear, (http://web.archive.org/web/*/https://www.cpap.com/productpage/bravo-nasal-interfece/), downloaded Feb. 24, 2020, 5 pp. |
Pad A Cheek, LLC, Sleep apnea can make beautiful sleep elusive, (http://web.archive.org/web/20070701000000*/http://www.padacheek,com/;Wayback Machine), downloaded Feb. 24, 2020, 3 pp. |
Australian examination report in patent application No. 2018236891, dated Jun. 9, 2020, 3 pages. |
Canadian Examination Report in patent application No. 3017161, dated Apr. 22, 2020, 4 pp. |
Chinese Second Office Action in patent application No. 201710824612.6, dated May 25, 2020. |
European Examination Report, European Application 13828380.9, dated Mar. 3, 2020, 8 pp. |
European examination report dated Jun. 16, 2020 in patent application No. 18163847.9, 5 pp. |
European Examination Report dated Mar. 16, 2020 in patent application No. 18195537.8. |
European Search Report in patent application No. 191976761.1, dated Mar. 3, 2020, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20200171260 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
61681024 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15047436 | Feb 2016 | US |
Child | 16509958 | US | |
Parent | 14420284 | US | |
Child | 15047436 | US |