Headgear for protective headwear

Information

  • Patent Grant
  • 10681953
  • Patent Number
    10,681,953
  • Date Filed
    Tuesday, May 29, 2018
    6 years ago
  • Date Issued
    Tuesday, June 16, 2020
    3 years ago
Abstract
In one aspect, a headgear for engaging and supporting protective headwear on a wearer's head includes a first side member positioned on a first side of the headgear, a second side member positioned on a second side of the headgear opposite the first side, a forehead strap coupled to the first and second side members and positioned on a front half of the headgear, and an occipital strap having an end coupled to one of the first side member and the second side member on the front half of the headgear and the occipital strap extending to a rear half of the headgear.
Description
FIELD OF THE INVENTION

The present disclosure generally relates to protective headwear and, more particularly, to headgear within protective headwear.


BACKGROUND

Protective headwear typically includes headgear within the headwear to engage a wearer's head and support the protective headwear upon the wearer's head. Conventional headgear is uncomfortable, unstable on a wearer's head, and poor at accommodating different size heads.


SUMMARY

Thus, a need exists for headgear that resolves one or more of these deficiencies.


In one aspect, it is desirable to have headgear that is comfortable, stable, and capable of adequately accommodating heads of varying size.


In one aspect, a headgear for protective headwear is provided and includes a pivotal forehead strap.


In one aspect, a headgear for protective headwear is provided and includes a forehead strap including a first member, a second member space-apart from the first member and a cavity between the first member and the second member.


In one aspect, a headgear for protective headwear is provided and includes an occipital strap including two ends with one end on each side of the headgear and the two ends positioned on a front half of the headgear, wherein the occipital strap is pivotable about the two ends.


In one aspect, a headgear for engaging and supporting protective headwear on a wearer's head is provided. The headgear includes a first side member positioned on a first side of the headgear, a second side member positioned on a second side of the headgear opposite the first side, a forehead strap coupled to the first and second side members and positioned on a front half of the headgear, and an occipital strap having an end coupled to one of the first side member and the second side member on the front half of the headgear and the occipital strap extending to a rear half of the headgear.


In one aspect, the occipital strap may be pivotally coupled to the one of the first and second side members at the end of the occipital strap.


In one aspect, the forehead strap may be pivotally coupled to the first and second side members. The occipital strap and the forehead strap may be pivotally coupled to the one of the first and second side members at a same location.


In one aspect, the forehead strap may be pivotally coupled to the first and second side members. The forehead strap and the occipital strap may pivot about a same pivot axis.


In one aspect, the headgear may further include a tightening member. The occipital strap may be engaged by the tightening member on the rear half of the headgear.


In one aspect, the occipital strap may include a body having an arcuate shape along at least a portion of the body.


In one aspect, the occipital strap may include a body having a complex shape comprised of at least one linear portion and at least one arcuate portion.


In one aspect, the body of the occipital strap may have a first linear portion, a first arcuate portion, a second linear portion and a second arcuate portion.


In one aspect, a headgear for engaging and supporting a protective shell on a wearer's head is provided. The protective shell is rotatable relative to the headgear about a shell axis. The headgear includes a first side member positioned on a first side of the headgear, a second side member positioned on a second side of the headgear opposite the first side, a forehead strap coupled to the first and second side members and positioned on a front side of the shell axis, and an occipital strap having an end coupled to one of the first side member and the second side member on the front side of the shell axis and the occipital strap extending to a rear side of the shell axis opposite the front side.


In one aspect, the occipital strap may be pivotally coupled to the one of the first and second side members at the end of the occipital strap.


In one aspect, the forehead strap may be pivotally coupled to the first and second side members. The occipital strap and the forehead strap may be pivotally coupled to the one of the first and second side members at a same location.


In one aspect, the forehead strap may be pivotally coupled to the first and second side members. The forehead strap and the occipital strap may pivot about a same pivot axis.


In one aspect, the pivot axis may be positioned above the shell axis.


In one aspect, the headgear may further include a tightening member. The occipital strap may engage the tightening member on the rear side of the headgear.


In one aspect, a protective headwear is provided and includes a shell, a shield coupled to the shell and configured to allow at least partial viewing there through by a wearer of the protective headwear, and a headgear pivotally coupled to the shell. The headgear is configured to engage a wearer's head to support the shell relative to the wearer's head and facilitate pivoting of the shell about a shell axis relative to the headgear between a downward position and an upward position. The headgear includes a first side member on a first side of the headgear, a second side member on a second side of the headgear opposite the first side, and a forehead strap coupled to and extending between the first and second side members on a front side of the shell axis. The forehead strap is configured to engage a wearer's forehead with the headgear worn by a wearer. The headgear also includes an occipital strap having an end coupled to one of the first member and the second member on the front side of the shell axis and extending to a rear side of the shell axis opposite the front side.


In one aspect, the occipital strap may be pivotally coupled to the one of the first and second side members at the end of the occipital strap.


In one aspect, the forehead strap may be pivotally coupled to the first and second side members. The occipital strap and the forehead strap may be pivotally coupled to the one of the first and second side members at a same location.


In one aspect, the forehead strap may be pivotally coupled to the first and second side members. The forehead strap and the occipital strap may pivot about a same pivot axis.


In one aspect, the pivot axis may be positioned above the shell axis.


In one aspect, the headgear may further include a tightening member. The occipital strap may be engaged by the tightening member on the rear side of the headgear.


In one aspect, the protective headwear may be a welding helmet and the shield may be a welding shield.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the disclosure.



FIG. 1 is a top, front perspective view of one example of a protective headwear, according to one aspect of the present disclosure.



FIG. 2 is a side view of one example of a portion of headgear that may be included in the protective headwear shown in FIG. 1, according to one aspect of the present disclosure.



FIG. 3 is a side view of a portion of the headgear shown in FIG. 2, according to one aspect of the present disclosure.



FIG. 4 is a side view of a portion of the headgear shown in FIG. 2 illustrating one example of an area that may be occupied by a pivot of an occipital strap, according to one aspect of the present disclosure.



FIG. 5 is a top view of a portion of the headgear shown in FIG. 2, according to one aspect of the present disclosure.



FIG. 6 is a rear view of a portion of the headgear shown in FIG. 2, according to one aspect of the present disclosure.



FIG. 7 is a side view of a portion of the headgear shown in FIG. 2, according to one aspect of the present disclosure.



FIG. 8 is a side view of one example of an occipital strap of the headgear shown in FIG. 2, according to one aspect of the present disclosure.





DETAILED DESCRIPTION

Referring to FIG. 1, one example of protective headwear 20 is illustrated. In this illustrated example, the protective headwear 20 is a welding helmet. The welding helmet 20 includes an outer shell 24, a first shield 28, a second shield (beneath the first shield 28 and not shown in the figures), and headgear 36 (see FIG. 2) positioned within the outer shell 24. The first shield 28 may be a welding shield and is coupled to the outer shell 24 over the second shield. The first shield 28 is tinted or otherwise darkened in order to inhibit damage to a wearer's eyes while performing a welding process. The second shield is coupled to the outer shell 24 beneath the first shield 28 and is less tinted or more transparent than the first shield 28. In one example, the second shield has no tinting or darkening and is completely transparent. The second shield may be referred to as a grinding shield.


Referring now to FIGS. 2-7, one example of headgear 36 is illustrated. One side of the headgear 36 is illustrated in FIG. 2, but it should be understood that the headgear 36 may be a substantial mirror image about a vertical plane extending through a center of the headgear 36 from front to rear (and a wearer's head when the headgear 36 is worn). In other words, the headgear 36 is symmetrical on both sides of a wearer's head. The headgear 36 is capable of coupling to and being part of the exemplary protective headwear 20 illustrated in FIG. 1 or the headgear 36 may be coupled to and be part of other types of protective headwear 20. For example, the headgear 36 may be coupled to hard hats, bicycle helmets, or any other type of headwear capable of providing protection to a wearer's head. The headgear 36 is capable of engaging a wearer's head and supporting the protective headwear 20 on the wearer's head. The headgear 36 may be coupled to the outer shell 24 of the protective headwear 20 in a variety of manners such as, for example, movably coupled, pivotally coupled, rigidly coupled, unitarily formed as one-piece with, among other manners.


With particular reference to FIG. 2, the headgear 36 includes a coupling member 40 on each side of the headgear 36 for coupling to the outer shell 24 on both sides of the outer shell 24. Each coupling member 40 allows for selective coupling of the outer shell 24 to the headgear 36 in a plurality of positions. The outer shell 24 is coupled to the headgear 36 in one position at a time on each side and remains rigidly coupled to the headgear 36 in that position until the outer shell 24 is actively decoupled from the headgear 36. The various mounting positions provide a wearer with the ability to adjust the outer shell 24 relative to the wearer's head.


In another example, an outer shell may be coupled to headgear in another manner. In this example, the outer shell may include a track or path defined in both sides thereof and the headgear may include a coupling member on each side thereof to cooperate with the respective track. Each coupling member may include a projection positioned within and slidable along the respective track. A securing member may be coupled to each coupling member and may be selectively engaged and disengaged to lock or secure the coupling members relative to the outer shell. In this example, each securing member may include a threaded member that may be turned in a first direction to tighten or secure the respective coupling member to the outer shell and inhibit movement of the headgear relative to the outer shell, and turned in a second direction to loosen or unsecure the respective coupling member from the outer shell to allow movement of the coupling member relative to the outer shell. This movement allows the wearer to adjust the outer shell relative to the wearer's head as desired. In this example, the coupling member and headgear translate or slide relative to the outer shell. In other examples, the tracks and coupling members may have different shapes, and the coupling members and the headgear may move in different manners than the illustrated translation. For example, the tracks may have arcuate shapes, at least in part, and the coupling members and the headgear 36 may move along an arcuate path relative to the outer shell. It should be understood that the headgear may be moveable relative to the outer shell in any desired manner and all of such possibilities are intended to be within the spirit and scope of the present disclosure. It should also be understood that the headgear may be coupled, locked or secured to the outer shell in any desired manner and all of such possibilities are intended to be within the spirit and scope of the present disclosure.


In another example, an outer shell may be coupled to headgear in another manner. In this example, the headgear allows pivot action between the outer shell and headgear. The headgear has laterally extending arms with a non-pivoting end. The non-pivoting end is coupled to a component which has a track that allows the non-pivoting end of the headgear arms to slide forward and backwards within that track. This allows the user to adjust a distance of the outer shell relative to their face. The component does not rotate and is fixed to the headgear with one degree of freedom allowing the components to slide forwards and backwards. The component is coupled to a second component. The second component is then coupled to the outer shell. The outer shell rotates with respect to the headgear as the second component pivots on the component. This pivot action is guided by posts that rotate within slotted holes. A bushing is coupled to the second component and placed between the component and the second component to reduce the frictional wear as the two components rotate about each other. A third component has a threaded hub through which a screw from the component threads. The third component can be rotated to adjust compressive forces for the pivot mechanism components sandwiched between the first and third components. This allows the user to control the frictional resistance of the pivot mechanism allowing control over angular velocity of the outer shell as it rotates about the headgear. The second component has a multitude of holes allowing fins protruding from the outer shell to slide into these holes locking the second component and the outer shell together preventing them from rotating about one another. The angle at which the second component is coupled to the outer shell is controlled by which the holes and the fins are slid into. This controls the tilt angle of the outer shell relative to the user's face. A fourth component is a snap-on piece that is non-rotatably coupled to the end of a threaded screw. As the first component remains fixed relative to the outer shell and the second component, the coupling of the fourth component to the first component allows it to also remain fixed. So as the third component is rotated to adjust the friction resistance, the fourth component will remain stationary relative to it.


Referring again to FIGS. 2-7, the headgear 36 also includes a side member 64 on each side of the headgear 36, a forehead strap 68, a top strap 72, a rear strap 76, an occipital strap 80 on each side of headgear 36 and a tightening member 84 coupled to the occipital straps 80. The top strap 72 is pivotally coupled at its ends 88 to respective side members 64 and is positioned to extend over a crown or top of a wearer's head. Each side member 64 includes a plurality of coupling locations 86 to which the ends 88 of the top strap 72 may be selectively pivotally coupled. In the illustrated example, the side members 64 each include four coupling locations 86. Alternatively, the side members 64 may include any number of coupling locations 86 and all of such possibilities are intended to be within the spirit and scope of the present disclosure.


Protective headwear 20 is commonly used in non-level orientations such as, for example, a downward angle (e.g., during welding, the welder is looking downward and forward toward the welding area), an upward angle (e.g., a wearer may be looking upward and overhead), etc. In such non-level orientations, the top strap 72 minimizes shifting of the protective headwear 20 relative to the wearer's head as a result of the top strap 72 extending over the crown or top of the wearer's head. The rear strap 76 is pivotally coupled at its ends 92 to respective side members 64 and is positioned to extend around a rear of a wearer's head. In the illustrated example, the top strap 72 and the rear strap 76 are oriented in a perpendicular manner relative to each other. In other examples, the top strap 72 and the rear strap 76 may be oriented in other manners relative to each other. The ends 88, 92 of the top and rear straps 72, 76, and their associated pivots or pivot points, are located in close proximity to each other on the side members 64, which may also minimize shifting of the protective headwear 20. In other examples, one or both of the top and rear straps 72, 76 may be rigidly and non-pivotally coupled to the side members 64.


In the illustrated example, the headgear 36 may be considered to include a single occipital strap 80 with two portions, one portion on each side of the headgear that are coupled together at a rear of the headgear 36 by the tightening member 84, or the headgear 36 may be considered to include two occipital straps 80, one occipital strap 80 on each side of the headgear and coupled together at a rear of the headgear by the tightening member 84. For purposes of the following description, which is not intended to be limiting one way or the other, but rather to demonstrate principles of the present disclosure, this example will reference two occipital straps 80 with one occipital strap 80 on each side of the headgear 36.


In one example, the occipital straps 80 are pivotally connected at ends 96 to respective side members 64, are positioned under the side members 64 (i.e., between the side members 64 and a wearer's head), extend rearward and downward relative to the side members 64, drop down below the rear strap 76, wrap around or extend along the occipital crest of a wearer, then extend under the occipital crest. The occipital straps 80 have a height or thickness that is smaller than a height or thickness of the top and rear straps 72, 76. The position of the occipital straps 80 allow pressure originating from the protective headwear 20 to be applied to bony structure (e.g., the occipital bone and crest of a skull) of the wearer's head where the wearer has less of a perception of pressure than on soft tissue of the wearer's head.


In the illustrated example, the occipital straps 80 are compliant to the wearer's head. The occipital straps 80 may be made of a variety of different materials and have a variety of shapes, as long as the occipital strap 80 is compliant.


In one example, pivots 98 where the occipital straps 80 pivotally couple at ends 96 to the side members 64 are positioned on a front half 99 of the headgear 36 or protective headwear 20. That is, if a vertical plane 101 was oriented through a center of the headgear 36 or a wearer's head when wearing the protective headwear 20 and extended from one side member 64 to the other side member 64 or from a wearer's ear to ear (rather than front to rear), the pivots 98 would be positioned to a front or front side of such a vertical plane 101. In other words, the pivots 98 would be positioned between the vertical plane 101 and a forward most part of the forehead strap 68. The pivots 98 define a pivot axis 97 about which each end of the occipital straps 80 pivots.


In one example, the pivots 98 of the occipital straps 80 are positioned in front of a pivot axis or shell axis 102 about which the outer shell 24 rotates relative to the headgear 36. In this example, the pivots 98 are located between the pivot axis 102 and a forward most part of the forehead strap 68.


In one example, the pivots 98 of the occipital straps 80 are positioned in front of and above the pivot axis 102 of the outer shell 24. In this example, the pivots 98 are located between the pivot axis 102 of the outer shell 24 and a forward most part of the forehead strap 68, and are between the pivot axis 102 of the outer shell 24 and an upper most part of the top strap 72.


In one example, the pivots 98 may be located above and forward of a wearer's ears (see FIG. 7). In one example, the pivots 98 are positioned adjacent or on a wearer's forehead.


With reference to FIG. 4, one example of a possible area that may be occupied by the pivots 98 and pivot axis 97 is illustrated. In this example, a dashed box 103 represents one example of an area that may be occupied by the pivots 98 and the pivot axis 97. This exemplary area is between the pivot axis 102 of the outer shell 24 and pivots 105 of the forehead strap 68, and above the pivot axis 102 of the outer shell 24. This dashed box 103 is intended to demonstrate that the pivots 98 of the occipital straps 80 may be positioned in a wide variety of locations, not all of which may necessarily be explicitly mentioned herein, but all of which are intended to be within the spirit and scope of the present disclosure. The pivots 105 of the forehead strap 68 define a pivot axis 106 at each end 104 of the forehead strap 68.


In one example and with reference to FIGS. 2, 3 and 5-7, the pivots 98 of the occipital straps 80 may be at the same position as the pivots 105 of the forehead strap 68. That is, the forehead strap 68 and the occipital straps 80 may be coupled to the side members 64 at the same position and pivot relative to the side members 64 about the same pivot axis. In this example, the pivot axes 97, 106 may be the same pivot axis or they may be co-linear.


The high and forward pivots 98 of the occipital straps 80 may allow for a greater range of motion in the occipital straps 80 (see, e.g., FIG. 3) and direct pressure or force to the forehead strap 68.


The headgear 36 further includes a pad 100 coupled to the occipital straps 80 and positioned at a rear of the headgear 36. The pad 100 is capable of engaging a rear of the wearer's head to provide comfort and further support. When the tightening member 84 is tightened by pulling the occipital straps 80 and causing the occipital straps 80 to overlap to a greater extent at a rear of the headgear 36 (see FIGS. 5 and 6), the pad 100 rises up and under the occipital crest of the wearer's head to secure the headgear 36 in place using the natural geometry of the wearer's head.


Referring now to FIG. 8, one example of one of the occipital straps 80 is shown. As indicated above, an occipital strap 80 is positioned on each side of the headgear 36 and such occipital straps 80 are substantial mirror images of each other relative to a vertical plane 107 extending through a middle or center of the headgear from a front of the headgear 36 to a rear of the headgear 36. Thus, only a single occipital strap 80 will be addressed in greater detail herein with it being understood that this description of the occipital strap 80 also applies to the other occipital strap 80. The illustrated example of an occipital strap 80 is not intended to be limiting upon the present disclosure. Rather, the occipital straps 80 may have a wide variety of shapes and sizes, and all of such possibilities are intended to be within the spirit and scope of the present disclosure.


In this illustrated example, the occipital strap 80 includes a coupling 109 comprised of a hub 110 and an aperture 111 extending through the hub 110. The coupling 109 provides the location for pivots 98 to pivotally couple the occipital strap 80 to the respective side member 64 and provides the pivot axis 97 about which the occipital strap 80 pivots. The occipital strap 80 also includes an adjustment portion 112 and a body 113 extending between the coupling 109 and the adjustment portion 112. In the illustrated example, the adjustment portion 112 defines an adjustment aperture 114 therein including a flat or smooth side 115 and a jagged or saw-tooth side 117. The jagged side 117 of the adjustment aperture 114 includes a plurality of projections 118 engageable by the tightening member 84 to facilitate adjustment of the occipital strap 80. The adjustment aperture 114 may include any number of projections 118 and any size of projections 118. In the illustrated example, the body 113 has a first height or thickness 119, which is smaller or less than heights or thicknesses 121, 122 of both the coupling 109 and the adjustment portion 112.


In one example, the body 113 of the occipital strap 80 is at least partially arcuate. In one example, the body 113 of the occipital strap 80 is at least partially straight or linear and at least partially arcuate. In one example, the occipital strap 80 includes an arcuate portion and a straight or linear portion. In one example, the body 113 has a complex shape. As used herein, an object having a complex shape may refer to the object changing shape at least once. For example, the body 113 of the occipital strap 80 may have a complex shape if the body changes from being linear to being arcuate. In one example and with reference to the illustrated example, the body 113 has a complex shape and includes a first straight or linear portion 126, a first curved or arcuate portion 128, a second straight or linear portion 130 and a second curved or arcuate portion 132. Intersections of dashed lines 134 illustrated in FIG. 8 represent changes in shape. In the illustrated example, the body 113 of the occipital strap 80 changes shape three times. For example, the body 113 changes from: 1) the first linear portion 126 to the first arcuate portion 128; 2) the first arcuate portion 128 to the second linear portion 130; and 3) the second linear portion 130 to the second arcuate portion 132. The shape of the occipital strap 80 is important to position the occipital strap 80 so it does not interfere with a wearer's ear no matter the position to which the occipital strap 80 is pivoted and to apply force to desired locations on a wearer's head (as described above). The illustrated example and other possible examples of the occipital straps 80 accomplish this feat.


In one example, the occipital straps 80 extend from a position in a front half 99 of the headgear 36 or protective headwear 20 to a position in a rear half 123 of the headgear 36 or protective headwear 20. In one example, the occipital straps 80 extend from a position in front of the shell axis 102 about which the outer shell 24 rotates relative to the headgear 36 to a position rearward of the shell axis 102 about which the outer shell 24 rotates relative to the headgear 36. In one example, the occipital straps 80 extend from pivots 105 about which the forehead strap 68 rotates to a position rearward of the shell axis 102 about which the outer shell 24 rotates relative to the headgear 36. In one example, the occipital straps 80 extend from a position above the shell axis 102 to a position below the shell axis 102. In one example, the occipital straps 80 extend from a position in front of and above the shell axis 102 to a position rearward of and below the shell axis 102.


With continued reference to FIGS. 2-7, the forehead strap 68 is pivotally coupled to the remainder of the headgear 36 at the pivots 105. In other examples, the forehead strap 68 may be rigidly and non-pivotally coupled to the side members 64. In such examples, the forehead strap 68 may be bonded, fastened, unitarily formed as one-piece, adhered, or rigidly and non-pivotally coupled to the side members in any other manner.


Returning to the illustrated example, the forehead strap 68 includes two ends 104 with both ends 104 pivotally coupled to respective side members 64 adjacent the wearer's forehead. Human heads have a variety of forehead slopes and the pivoting forehead strap 68 accommodates such varying forehead slopes. As a wearer begins to place the headgear 36 on his/her head, the wearer will pull the headgear 36 down onto his/her head, the forehead strap 68 will slide down the wearer's forehead, and will terminate sliding down the wearer's head at an appropriate point on the wearer's forehead based on the slope of the wearer's forehead. It is likely that the remainder of the headgear 36 is not completely down and supported upon the wearer's head when the forehead strap 68 is in this position. The pivoting ends 104 or pivots 105 of the forehead strap 68 allow the remainder of the headgear 36 to continue to move downward until the top strap 72 engages the crown of the head and the headgear 36 is supported on the wearer's head. The pivoting forehead strap 68 will lie flat or substantially flat against a wearer's forward and evenly distribute pressure to the wearer's forehead, rather than apply a significant quantity of pressure at a single point or edge.


In the illustrated example, the pivots 105 of the forehead strap 68 are at the same positions as pivots 98 of the occipital straps 80, thereby causing the forehead strap 68 and the occipital straps 80 to pivot relative to the side members 64 about the same pivot axis. In other words, the pivot axis 106 of the forehead strap 68 and the pivot axis 97 of the occipital straps 80 are co-linear or substantially co-linear.


As can be seen in FIG. 2, a longitudinal extent of the forehead strap 68 is not aligned, co-linear or co-planar with a longitudinal extent of the side members 64 and the rear strap 76, and is instead angled or transverse slightly upward to match a forehead slope of a wearer. In this example, the wearer's head has a forehead slope that prevents the forehead strap 68 from aligning with the side members 64 and the rear strap 76. In conventional headgear, the forehead strap is not pivotal and is aligned with the rear strap. In some instances of conventional headgear, the forehead strap and the rear strap are the same, unitary strap. With such a conventional design, the conventional forehead strap would have prevented the headgear from settling completely onto a wearer's head and/or a front bottom edge of the conventional forehead strap would dig into the wearer's forehead. The pivotal forehead strap 68 of the present disclosure allows the headgear 36 to settle completely and properly on a wearer's head and inhibits a front lower edge 108 of the forehead strap 68 from digging into the wearer's head.


In some examples, the pivoting forehead strap 68 may eliminate the need to include a tightening member that provides additional pressure to secure the headgear 36 to a wearer's head. In some examples, the forehead strap 68 may also include padding or other soft material on at least an interior surface thereof (and, alternatively, wrapped around the forehead strap 68) configured to engage a wearer's forehead and provide additional comfort. The pivoting forehead strap 68 also provides a self-adjusting feature that allows a wearer to adjust or move the protective headwear 20 and headgear 36 relative to their head and the pivoting forehead strap 68 accommodates that movement to resettle the headgear 36 and the protective headwear 20 on the wearer's head.


With continued reference to FIGS. 2-7, the forehead strap 68 is a split forehead strap 68 including an upper member 116, a lower member 120 and a space or cavity 124 between the upper member 116 and the lower member 120. The split forehead strap 68 distributes pressure or force applied to a wearer's forehead by the protective headwear 20 over a larger surface area, while also having minimal contact area with the wearer's forehead as a result of the cavity 124. Additionally, air can access a wearer's forehead through the cavity 124, thereby increasing the comfort of a wearer while wearing the protective headwear 20 and the headgear 36.


In one example, by locating the pivots 98 of the occipital straps 80 above and forward of a wearer's ears in conjunction with the forehead strap 68 capable of pivoting about pivots 105, compressive force or pressure is directed to the forehead strap 68, which alleviates or decreases a constricting feeling, oftentimes experienced in conventional headgear, since the pressure or force is directed at major bone structures in a wearer's head and avoids applying compressing forces or pressures to areas of the wearer's head that are more likely to perceive pressure (e.g., soft tissue, concentration of nerves, etc.).


It should be understood that the headgear 36 may have a variety of shapes, sizes, and configurations and all of such possibilities are intended to be within the spirit and scope of the present disclosure.


It should be understood that the use of any orientation or directional terms herein such as, for example, “top”, “bottom”, “front”, “rear”, “back”, “left”, “right”, “side”, etc., is not intended to imply only a single orientation of the item with which it is associated or to limit the present disclosure in any manner. The use of such orientation or directional terms is intended to assist with the understanding of principles disclosed herein and to correspond to the exemplary orientation illustrated in the drawings. For example, the protective headwear 20 and headgear 36 may be utilized in any orientation and use of such terms is intended to correspond to the exemplary orientation of the protective headwear 20 and headgear 36 illustrated in the drawings. The use of these terms in association with the protective headwear 20 and headgear 36 is not intended to limit the protective headwear 20 and headgear 36 to a single orientation or to limit the protective headwear 20 and headgear 36 in any manner.


The Abstract of the disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.


While various embodiments of the disclosure have been described, it will be apparent to those of ordinary skill in the art that other embodiments and implementations are possible within the scope of the disclosure. Accordingly, the disclosure is not to be restricted except in light of the attached claims and their equivalents.

Claims
  • 1. A headgear for engaging and supporting a protective shell on a wearer's head, the headgear comprising: a first side member including a front end, a rear end opposite the front end, and a first coupling location;a second side member spaced-apart from the first side member, wherein the second side member includes a front end, a rear end opposite the front end, and a second coupling location;a forehead strap coupled to the first and second side members and extending between the front ends of the first and second side members;a top strap extending between the first and second side members and including a first end and a second end, wherein the first end of the top strap is directly coupled to the first side member at the first coupling location and the second end of the top strap is directly coupled to the second side member at the second coupling location; andan occipital strap having an end directly coupled to the first side member in between the first coupling location and the front end of the first side member, wherein the occipital strap and the forehead strap are coupled to the first side member at a same location.
  • 2. The headgear of claim 1, wherein the occipital strap is pivotally coupled to the first side member at the end of the occipital strap.
  • 3. A headgear for engaging and supporting a protective shell on a wearer's head, the headgear comprising: a first side member including a front end, a rear end opposite the front end, and a first coupling location;a second side member spaced-apart from the first side member, wherein the second side member includes a front end, a rear end opposite the front end, and a second coupling location;a forehead strap coupled to the first and second side members and extending between the front ends of the first and second side members;a top strap extending between the first and second side members and including a first end and a second end, wherein the first end of the top strap is directly coupled to the first side member at the first coupling location and the second end of the top strap is directly coupled to the second side member at the second coupling location; andan occipital strap having an end directly coupled to the first side member in between the first coupling location and the front end of the first side member, wherein the occipital strap and the forehead strap are pivotally coupled to the first side member at a same location.
  • 4. The headgear of claim 3, further comprising a tightening member engaged with the occipital strap.
  • 5. A headgear for engaging and supporting a protective shell on a wearer's head, the headgear comprising: a first side member including a front end, a rear end opposite the front end, and a first coupling location;a second side member spaced-apart from the first side member, wherein the second side member includes a front end, a rear end opposite the front end, and a second coupling location;a forehead strap coupled to the first and second side members and extending between the front ends of the first and second side members;a top strap extending between the first and second side members and including a first end and a second end, wherein the first end of the top strap is directly coupled to the first side member at the first coupling location and the second end of the top strap is directly coupled to the second side member at the second coupling location; andan occipital strap having an end directly coupled to the first side member in between the first coupling location and the front end of the first side member, wherein the top strap is pivotally coupled to the first side member at the first coupling location and pivotally coupled to the second side member at the second coupling location.
  • 6. A headgear for engaging and supporting a protective shell on a wearer's head, the headgear comprising: a first side member including a front end, a rear end opposite the front end, and a first coupling location;a second side member spaced-apart from the first side member, wherein the second side member includes a front end, a rear end opposite the front end, and a second coupling location;a forehead strap coupled to the first and second side members and extending between the front ends of the first and second side members;a top strap extending between the first and second side members and including a first end and a second end, wherein the first end of the top strap is directly coupled to the first side member at the first coupling location and the second end of the top strap is directly coupled to the second side member at the second coupling location;an occipital strap having an end directly coupled to the first side member in between the first coupling location and the front end of the first side member; anda rear strap coupled to and extending between the first and second side members.
  • 7. The headgear of claim 6, wherein the rear strap is coupled to and extends between rear ends of the first and second side members.
  • 8. The headgear of claim 6, wherein the rear strap is pivotally coupled to the first and second side members.
  • 9. The headgear of claim 6, further comprising a pad coupled to the occipital strap.
  • 10. A protective headwear comprising: a shell;a shield coupled to the shell and configured to allow at least partial viewing there through by a wearer of the protective headwear; anda headgear pivotally coupled to the shell, wherein the headgear is configured to engage a head of the wearer to support the shell relative to the wearer's head and facilitate pivoting of the shell relative to the headgear between a downward position and an upward position, wherein the headgear includes a first side member including a front end, a rear end, and a first coupling location,a second side member spaced-apart from the first side member and including a front end, a rear end, and a second coupling location,a forehead strap pivotally coupled to and extending between the front ends of the first and second side members,a top strap including a first end and a second end and extending between the first side member and the second side member, wherein the first end of the top strap is directly coupled to the first side member at the first coupling location and the second end of the top strap is directly coupled to the second side member at the second coupling location, andan occipital strap having a first end and a second end, wherein the first end of the occipital strap is pivotally coupled to the first side member in between the first coupling location and the front end of the first side member,wherein the forehead strap and the occipital strap are coupled to the first and second side members at a same location.
  • 11. The protective headwear of claim 10, wherein the headgear further includes a tightening member engaging the occipital strap.
  • 12. The protective headwear of claim 10, wherein the protective headwear is a welding helmet and the shield is a welding shield.
  • 13. The protective headwear of claim 10, wherein the occipital strap includes a body having an arcuate shape along at least a portion of the body.
  • 14. The protective headwear of claim 10, wherein the occipital strap includes a body comprised of at least one linear portion and at least one arcuate portion.
  • 15. The protective headwear of claim 10, wherein the occipital strap includes a body comprised of a first linear portion, a first arcuate portion, a second linear portion and a second arcuate portion.
  • 16. A protective headwear comprising: a shell;a shield coupled to the shell and configured to allow at least partial viewing there through by a wearer of the protective headwear; anda headgear pivotally coupled to the shell, wherein the headgear is configured to engage a head of the wearer to support the shell relative to the wearer's head and facilitate pivoting of the shell relative to the headgear between a downward position and an upward position, wherein the headgear includes a first side member including a front end, a rear end, and a first coupling location,a second side member spaced-apart from the first side member and including a front end, a rear end, and a second coupling location,a forehead strap pivotally coupled to and extending between the front ends of the first and second side members,a top strap including a first end and a second end and extending between the first side member and the second side member, wherein the first end of the top strap is directly coupled to the first side member at the first coupling location and the second end of the top strap is directly coupled to the second side member at the second coupling location, andan occipital strap having a first end and a second end, wherein the first end of the occipital strap is pivotally coupled to the first side member in between the first coupling location and the front end of the first side member,wherein the forehead strap and the occipital strap are pivotally coupled to the first and second side members, and wherein the occipital strap and the forehead strap are pivotally coupled to the first side member at a same location.
RELATED APPLICATIONS

The present application is a continuation of U.S. Non-Provisional patent application Ser. No. 14/722,832, filed May 27, 2015, which claims the priority benefit of U.S. Provisional Patent Application Ser. No. 62/012,483, filed Jun. 16, 2014, all of which are incorporated by reference herein.

US Referenced Citations (168)
Number Name Date Kind
1182367 Gravell May 1916 A
1338022 Lamoreaux Apr 1920 A
1601830 Huntsman Oct 1926 A
1994103 Huey Mar 1935 A
2169745 Shipman Aug 1939 A
2194492 Evans Mar 1940 A
2402820 Kitchen Jun 1946 A
2411831 Lehmberg et al. Nov 1946 A
2487848 Bowers Nov 1949 A
2658200 Bowers Sr. Nov 1953 A
2700158 Andrens Jan 1955 A
2763006 Amundsen Sep 1956 A
3074072 Edwards et al. Jan 1963 A
3112745 Boyer Dec 1963 A
3119279 Clark Jan 1964 A
3214768 Bohner Nov 1965 A
3413972 Depping Dec 1968 A
3430263 Newcomb Mar 1969 A
3584314 Hobson Jun 1971 A
3609765 Molitoris Oct 1971 A
3696442 Amundsen Oct 1972 A
3868727 Paschall Mar 1975 A
3881478 Rosendahl May 1975 A
3914796 Barta Oct 1975 A
3955570 Hutter, III May 1976 A
4011865 Morishita Mar 1977 A
4040123 Williams Aug 1977 A
4080664 Morris et al. Mar 1978 A
4109320 Anderson Aug 1978 A
4293757 Niemi Oct 1981 A
4335472 Rappleyea Jun 1982 A
D270642 Watts Sep 1983 S
4464800 Edwards Aug 1984 A
4479738 Kubnick Oct 1984 A
4499630 Harris Feb 1985 A
4793001 Accardi Dec 1988 A
4853973 Boochard Aug 1989 A
D316020 Fushiya Apr 1991 S
5003632 Claude Apr 1991 A
5012528 Pernicka May 1991 A
5040528 O'Neill Aug 1991 A
5044019 Shewchenko Sep 1991 A
5077836 Idoff et al. Jan 1992 A
D329590 Chapman Sep 1992 S
5386592 Checkeroski Feb 1995 A
5412811 Hildenbrand May 1995 A
D365666 Gumpp Dec 1995 S
5724119 Leight Mar 1998 A
D393933 Huh Apr 1998 S
5752280 Hill May 1998 A
D398421 Crafoord Sep 1998 S
D421116 Mattila Feb 2000 S
6032297 Barthold et al. Mar 2000 A
6035451 Burns et al. Mar 2000 A
6055983 Metzger May 2000 A
6102033 Baribeau Aug 2000 A
D433751 Reischel Nov 2000 S
6154881 Lee Dec 2000 A
6185739 Verkic et al. Feb 2001 B1
6260197 Hoogewind Jul 2001 B1
6264392 Wise Jul 2001 B1
D449103 Legare Oct 2001 S
6298498 Burns et al. Oct 2001 B1
6341382 Ryvin et al. Jan 2002 B1
6367085 Berg Apr 2002 B1
6393617 Paris May 2002 B1
D465568 Petherbridge Nov 2002 S
D467489 Rubinson Dec 2002 S
D489492 Wu May 2004 S
D492559 Itano Jul 2004 S
6782558 Keen, Sr. et al. Aug 2004 B1
6973672 Huh Dec 2005 B2
6973676 Simpson Dec 2005 B1
D520856 Osiecki May 2006 S
D520859 Osiecki May 2006 S
D521190 Wu May 2006 S
7089603 Ketterer et al. Aug 2006 B2
D530185 Osiecki Oct 2006 S
7178932 Buckman Feb 2007 B1
D543828 Strutin-Belinoff Jun 2007 S
7284281 Huh Oct 2007 B2
D557128 Sawdon Dec 2007 S
7308719 Huh Dec 2007 B2
7318437 Gunaratnam Jan 2008 B2
7441282 Heine Oct 2008 B2
D584003 Juhlin Dec 2008 S
D589654 Juhlin Mar 2009 S
D589776 Camp Apr 2009 S
D590232 Demers Apr 2009 S
7534005 Buckman May 2009 B1
D600094 Hwang Sep 2009 S
D602639 Ho Oct 2009 S
D617459 Bogue Jun 2010 S
D626963 Kim Nov 2010 S
D632944 Kang Feb 2011 S
D635721 Cheng Apr 2011 S
8056152 Brace Nov 2011 B2
D654224 Wu Feb 2012 S
D654634 Wu Feb 2012 S
8214920 Edgar Jul 2012 B1
D667173 Juhlin et al. Sep 2012 S
8286269 Springer et al. Oct 2012 B2
8336114 Lee Dec 2012 B1
D674150 Juhlin et al. Jan 2013 S
D674153 Daniels et al. Jan 2013 S
D676551 Desai Feb 2013 S
8381312 Seo Feb 2013 B2
8387162 Huh Mar 2013 B2
D684252 Okada Jun 2013 S
8584265 Lilenthal et al. Nov 2013 B2
8627517 Ahlgren et al. Jan 2014 B2
D710546 Wu Aug 2014 S
8826464 Wu Sep 2014 B2
D722259 Conner Feb 2015 S
8990963 Matthews Mar 2015 B2
9038198 Feinberg May 2015 B2
D735949 Dion Aug 2015 S
D735951 Birath Aug 2015 S
9125448 Klotz Sep 2015 B2
9155923 Proctor Oct 2015 B2
D742596 Peng Nov 2015 S
D743629 Peng Nov 2015 S
D747556 Fujita Jan 2016 S
D749796 Barmore Feb 2016 S
9427040 Leyland Aug 2016 B2
D767829 Wu Sep 2016 S
9516911 Happel Dec 2016 B2
9706805 Pereira Jul 2017 B2
9956118 Sernfalt May 2018 B2
20030135911 Wang-Lee Jul 2003 A1
20040179149 Wang-Lee Sep 2004 A1
20060080761 Huh Apr 2006 A1
20060225187 Wu Oct 2006 A1
20070050892 Charles Mar 2007 A1
20070113318 Weston May 2007 A1
20070220649 Huh Sep 2007 A1
20070245467 Lilenthal Oct 2007 A1
20080060102 Matthews Mar 2008 A1
20090089908 Huh Apr 2009 A1
20090210989 Becker et al. Aug 2009 A1
20090235420 Chiang Sep 2009 A1
20100050325 Wang-Lee Mar 2010 A1
20100212058 Wanhainen Aug 2010 A1
20100229286 Ahlgren Sep 2010 A1
20100235971 Ahlgren Sep 2010 A1
20100287676 Seo Nov 2010 A1
20100294270 Curran Nov 2010 A1
20110101890 Robinson May 2011 A1
20110113537 Peng May 2011 A1
20110167542 Bayne Jul 2011 A1
20110179541 Wright Jul 2011 A1
20110219506 Uttrachi Sep 2011 A1
20110265790 Walker et al. Nov 2011 A1
20120144565 Huh Jun 2012 A1
20120291172 Wills Nov 2012 A1
20130111653 Huh May 2013 A1
20130152919 Billingsley et al. Jun 2013 A1
20140007312 Wright Jan 2014 A1
20140208476 Chen Jul 2014 A1
20140298557 Townsend, Jr. Oct 2014 A1
20150143618 Pereira May 2015 A1
20150143669 Pereira et al. May 2015 A1
20150264992 Happel Sep 2015 A1
20150359680 Gardner Dec 2015 A1
20160081856 Hofer-Kraner Mar 2016 A1
20160183622 Patel Jun 2016 A1
20160360821 Benton Dec 2016 A1
20170112226 Watkins Apr 2017 A1
Foreign Referenced Citations (17)
Number Date Country
101056677 Oct 2007 CN
101795645 Aug 2010 CN
101815556 Aug 2010 CN
101827538 Sep 2010 CN
102370541 Mar 2012 CN
102525731 Jul 2012 CN
102551956 Jul 2012 CN
203264074 Nov 2013 CN
2 184 039 May 2010 EP
2 462 825 Jun 2012 EP
2 462 826 Jun 2012 EP
2 907 401 Aug 2015 EP
2008025083 Mar 2008 WO
2009048829 Apr 2009 WO
2009048836 Apr 2009 WO
2014160149 Oct 2014 WO
2015195495 Dec 2015 WO
Non-Patent Literature Citations (13)
Entry
Inyopools.com, How to set up the zodiac T5 suction cleaner through your skimmer, https://webarchive.org/web/20130627095500/http://www.inyopools.com/HowToPage/How-to-set-up-the-zodiac0t5-cleaner-through-your-skimmer.aspx, Jun. 27, 2013, Retreived via Wayback Machine on Apr. 19, 2016.
International Search Report and Written Opinion for PCT/US2015/035713 dated Oct. 27, 2015, 17 pages.
International Search Report and Written Opinion for PCT/US2015/033054 dated Aug. 31, 2015, 12 pages.
International Search Report and Written Opinion for PCT/US2015/035714 dated Oct. 8, 2015, 11 pages.
Miller 9400i welding helmet with an integrated grind shield, published at least as early as Jun. 16, 2014, 1 page.
Speedglas 9100FX welding helmet with an integrated grind shield, published at least as early as Jun. 16, 2014, 1 page.
Speedglas 9002X Flexview welding helmet with an integrated grind shield, published at least as early as Jun. 16, 2014, 1 page.
Miller 9400i PAPR welding helmet with powered air purifying system, belt mounted blower with breathing tube connecting to manifold inside head assembly, published at least as early as Jun. 16, 2014, 1 page.
Speedglas 9100X Air Adflo welding helmet with airflow delivery mechanism, published at least as early as Jun. 16, 2014, 1 page.
Speedglas 9100FX Air Adflo welding helmet with airflow delivery mechanism, published at least as early as Jun. 16, 2014, 1 page.
Miller headgear for a welding helmet, published at least as early as Jun. 16, 2014, 1 page.
Speedglas headgear for a welding helmet, published at least as early as Jun. 16, 2014, 1 page.
Communication pursuant to Rule 94(3) EPC issued for EP 15 7 2 8 713.7 dated Jul. 11, 2018, 5 pages.
Related Publications (1)
Number Date Country
20180271200 A1 Sep 2018 US
Provisional Applications (1)
Number Date Country
62012483 Jun 2014 US
Continuations (1)
Number Date Country
Parent 14722832 May 2015 US
Child 15991440 US