The present disclosure relates to a projector-style automobile headlamp emitting both a low-beam output and a high-beam output.
Automobiles are equipped with both low-beam and high-beam outputs from their headlights. The low-beam output is usually angled downward and slightly away from oncoming traffic, in order to reduce glare for oncoming vehicles on the opposite side of the road. The high-beam output is brighter and lacks the directional requirements of the low-beam output, and as such is suitable only when alone on the road. Because of the different angular requirements of the low-beam and high-beam outputs, switching between low and high beams is not as straightforward as making the headlamp brighter or dimmer.
For many years, until the mid-1980s, automobiles were typically equipped with separate headlamps for the low-beam and high-beam outputs. The low-beam and high-beam headlamps were mounted adjacent to each other on the front of vehicles, and were aimed appropriately to meet the angular requirements of the low and high beams.
For a variety of reasons, it is desirable to have a single headlamp produce both low-beam and high-beam outputs.
One example of a single headlamp that produces both low-beam and high-beam outputs is known as a projector lamp. Essentially, the typical configuration for the projector headlamp uses a shield or light baffle that is movable by a solenoid or other actuator. For low beams, the shield is in place, deliberately blocking a portion of the lamp output in order to achieve the desired angular output. For high beams, the shield is moved out of the way and uncovers the brightest part of the beam.
One potential drawback of this known configuration of projector lamp is that includes moving parts, which are more prone to failure than comparable stationary parts.
Accordingly, it would be advantageous to have a configuration of projection headlamp that produces both low-beam and high-beam outputs but lacks moving parts.
Other headlamps are known in U.S. Pat. No. 7,563,008 (Chinniah, et al.); U.S. Pat. No. 7,134,774 (Iwasaki) and U.S. Pat. No. 7,178,957 (Schug, et al.).
An embodiment a headlight producing a low-beam and a high-beam and having a generally horizontal longitudinal axis. The headlight includes a transmissive lens through which light exits the headlight. The headlight also includes a concave reflector that receives low-beam light from a low-beam source and directs reflected low-beam light toward the lens. The headlight also includes a cut-off edge disposed longitudinally adjacent to the lens that comprises an edge that blocks a portion of the reflected low-beam light and forms a bright/dark edge in the reflected low-beam light. The headlight also includes a stationary minor disposed proximate the edge of the cut-off edge. The minor receives high-beam light from a high-beam source and directs reflected high-beam light toward the lens. The reflected high-beam light lacks a bright/dark edge.
The foregoing and other objects, features and advantages disclosed herein will be apparent from the following description of particular embodiments disclosed herein, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles disclosed herein.
In this document, the directional terms “up”, “down”, “top”, “bottom”, “side”, “lateral”, “longitudinal” and the like are used to describe the absolute and relative orientations of particular elements. For these descriptions, it is assumed that light exits through a “front” of the headlight, with a spatial distribution centered around a longitudinal axis that is generally perpendicular to the front of the headlight, and is generally parallel to the ground. These descriptions include the minor angular deviations from orthogonality that account for reducing glare for oncoming vehicles. It will be understood that while such descriptions provide orientations that occur in typical use, other orientations are certainly possible. The noted descriptive terms, as used herein, still apply if the headlight is pointed upward, downward, horizontally, or in any other suitable orientation.
An automobile headlight produces both a low-beam output and a high-beam output, and does so without any moving parts. For the low-beams, a low-beam LED array is placed near the first focus of an ellipsoidal reflector. Light from the low-beam LED array is directed laterally against the reflector, which directs it toward the second focus of the reflector, while the high-beam LED array is not energized. A cut-off element is placed near the second focus, an edge of which forms a bright/dark edge in the low-beam light. In some cases, the element is a vertically-oriented light baffle, the top edge of which forms the bright/dark edge. In other cases, the element is a horizontally-oriented light occluding member, the front edge of which forms the bright/dark edge. The element is located at or near the focal point of a lens, so that the low-beam output is transmitted through the lens with a bright/dark edge in its angular output. For the high-beams, a stationary folding mirror is placed near the second focus of the reflector. The folding minor directs light from a high-beam LED array to the lens. The light reflecting from the folding mirror and transmitting through the lens forms the high-beam output, which lacks a bright/dark edge.
The above paragraph is merely a generalization of several of the elements and features described in detail below, and should not be construed as limiting in any way.
As a first-order approximation, one may think of the headlight 1 having an ellipsoidal reflector with an LED array at one focus of the ellipsoid, an image of the LED array formed at the second focus of the ellipsoid, and a lens having its focal point coincident with the second focus of the ellipsoid. The light baffle is located close to the second focus. Because the light baffle is at or near the focal point of the lens, the bright/dark edge formed by the light baffle becomes a bright/dark edge in the angular output of the low beams. For the high-beam output, a folding mirror is located close to the light baffle and close to the second focus, which directs light from another LED array through the lens. The high beams have no such bright-dark edge. Note that this is merely a first-order approximation. For instance, in order to improve the performance of the angular output, the reflector may deviate from being truly ellipsoidal and may even be non-rotationally symmetric. As another example, the surface profile of the reflector may be adjusted to improve the off-axis performance in imaging the LED array from the first focus to the second focus; note that the real LED array is an extended source, and is not a point source located exactly at the first focus. Keeping these first-order approximations in mind, we describe the components of the headlight 1 in more detail.
The headlight 1 includes a positive lens 2 that transmits both the low-beam and the high-beam outputs. In the configuration of
The lens 2 has a convex side 22 facing outward (i.e., toward the front of the automobile). In most configurations, the convex side 22 is aspheric (i.e., is not purely spherical). Typically, the convex side 22 of the lens includes one or more aspheric terms in its surface prescription, and may optionally include a non-zero conic constant. Optionally, one or both sides of the lens 2 may be rotationally asymmetric, in order improve the output characteristics of the low-beam and/or high-beam outputs.
The lens 2 may be “fluted”, where one or both sides of the lens may include one or more narrow ribs along its surface. These “flutes” may partially diffuse the light transmitted through the lens, which in some cases may improve the desired performance of the lens 2. The lens flutes, along with the surface profiles and the other geometry inside the housing 10, are one of several elements that can be varied during the design process to produce the desired output.
The lens 2 may have features that can assist with alignment or mounting. For instance, the outer circumference of the lens 2 may have a flange 23 that extends into a suitably sized groove 24 or notch 25 in the housing 10. One or both sides of the flange 23 may be flat, so that the lens may be aligned against a reference surface on the housing 10 by contacting the flat portion of the flange 23.
The lens 2 itself may be formed from any suitable glass or plastic material. In general, the lens material should be strong enough to endure years of use without fracturing or discoloring. In general, the lens 2 may use any one of a variety of known materials, including any that are used in current generations of headlights. Because the headlights 1 are produced in relatively large quantities, the lenses 2 are typically produced in a known manner by molding.
The lens 2 has a focal point roughly coincident with the second focus F2 of the concave reflector 3.
If the concave reflector 3 were a true ellipsoid, then at it second focus F2 it would form a perfect image of an object placed at its first focus F1. In practice, the imaging is not perfect due to diffraction and due to wavefront aberrations that occur from imaging an extended source (i.e., an LED array that has a finite size) with a nearly ellipsoidal surface. In order to improve the angular characteristics of the low-beam output, the reflector 3 is deviated slightly from a true ellipsoid. This deviation is smallest at the heel of the reflector 3 (i.e., the portion of the reflection that intersects the longitudinal axis Z), and becomes larger farther away from the heel. For the purposes of this document, the reflector 3 is said to be “generally ellipsoidal”, where the term “generally” is intended to account for these small deviations from the true ellipsoid. The imaging properties of the two foci still apply for the generally ellipsoidal shape. In other words, low-beam light that originates at the first focus F1 is still imaged onto the second focus F2, and is directed by the concave reflector 3 toward the lens 2.
Note that the concave reflector 3 need not extend fully around the longitudinal axis Z, but may only include the “top” half of the ellipsoid, where the “top” half is farther from the ground than a corresponding “bottom” half would be. Because the reflector 3 is intended to reflect light from a low-beam LED array 7, and the light from the low-beam LED array 7 extends only in the half-space adjacent to the low-beam LED array 7 (as opposed to the full space into which an incandescent bulb radiates), the reflector 3 need only be a half ellipsoid to collect all the light from the LED array 7. In other words, if the “bottom” half of the reflector 3 were present, the bottom half wouldn't receive any light from the low-beam LED array 7.
Note that the low-beam LED array 7 may be a generally rectangular or square array of LEDs. The LEDs in a typical array are square or rectangular, with thin “dead” spaces of non-emission between the individual LEDs. The array 7 may have a square configuration, such as 2 by 2, 3 by 3, 4 by 4, and so forth. The array 7 may alternatively have a rectangular configuration, such as 1 by 2, 1 by 3, 1 by 4, 2 by 3, 2 by 4, 3 by 4, and so forth. As a further alternative, the array may have an irregular shape, such a “plus” sign, a “T” shape, a generally circular or elongated footprint, and so forth. The LEDs in the array 7 may emit with a generally white light, and may be formed with a phosphorescent coating applied over a blue or violet emitter. In general, the structure and function of the low-beam LED array 7 is known.
The low-beam LED array 7 in the headlight 1 is arranged to project generally “upward”, away from the ground and perpendicular to the longitudinal axis Z. The light distribution from the LED array may be said to be centered around a vertical axis.
The concave reflector 3 images the low-beam LED array 7 from the first focus F1 onto the second focus F2. A light baffle 4 is superimposed onto the image of the LED array 7 at the second focus F2, which forms a bright/dark edge in the LED light. This bright/dark edge falls at the focal point of the lens 2, and becomes a bright/dark edge in angular space for the low-beam output. In other words, the angular output of the low-beam may have a sharp cutoff, with plenty of illumination below a particular threshold angle, and little or no illumination above the threshold angle. Such a sharp bright/dark edge is helpful in reducing glare for drivers in the oncoming direction.
The light baffle 4 may be formed in a variety of manners. In the configuration of
At its most basic, the light baffle 4 is simply an edge that forms a distinct bright/dark shadow in a low-beam light distribution that strikes the edge. The light baffle 4 may include two generally planar surfaces that intersect in an angled edge, as is shown for the example in
As drawn in
In practice, the light baffle 4 is very close to the second focal point F2 of the concave reflector 3, but is displaced slightly from it. The displacement may be toward the first focus F1 and away from the lens 2, or may alternatively be away from the first focus F1 and toward the lens 2. Such a displacement helps ensure that the angular bright-dark edge does not exhibit significant color artifacts, such as appearing particularly blue or red before going dark. Such artifacts are caused by the property of dispersion in the lens, where the refractive index of the lens differs between the red and blue portions of the spectrum. The displacement discussed here is less than 1 mm, and typically is much less than 1 mm.
The light baffle 4 is shown as being generally horizontal, which is into the page in
Note that in some cases, the light baffle 4 may not lie fully in a single plane, but may bend or curl at its edges. Specifically, for the lateral edges of the baffle closest to the reader (out of the page) and farthest away from the reader (into the page) in
The stationary folding mirror 5, as drawn in
Regarding the folding minor 5, the geometry shown in
Note that the high-beam LED array 8 may be similar in structure and function to the low-beam LED array 7, or may optionally include more or fewer LED elements and may optionally have a different footprint.
The headlight 1 may optionally include a light occluding member 100. The light occluding member 100 (or member 16, discussed herein below), is positioned to prevent light from low-beam LED array 7 from going below the lower edge of the folding mirror 5.
As an example, the configuration of
Note that for the configuration of
It will be understood that as long as the light occluding member 100 blocks light from the low-beam LED array 7 from passing below the lower edge of the folding minor 5, the light occluding member 100 may have any suitable orientation and shape. For instance, the light occluding member 100 may have some orientation other than horizontal, and/or may be inclined or bent as needed, provided that it still may block light from the low-beam LED array 7 from passing below the lower edge of the folding minor 5.
In some configurations, the light occluding member 100 may be a reflective surface, and may be configured as a low-beam reflector 6. Any low-beam light that strikes the low-beam reflector 6 may be reflected back upwards toward the concave reflector 3. In addition, the low-beam reflector 6 prevents low-beam light from passing below the stationary folding mirror 5.
In other embodiments, the light occluding member 100 may be a corner or an edge of a heat sink 200 disposed between the low-beam LED array 7 and the stationary folding mirror 5, and/or behind the stationary folding minor 5. The heat sink 200 can be formed by having the light occluding member 100 formed of metal or another thermally conductive mass and positioned in thermal communication with LED array 7 and/or LED array 8. Here, the light occluding member 100 may be an absorbing surface, may be a roughened surface that scatters incident light, or may be polished to be a reflecting surface.
In general, for any of the particular configurations, it is envisioned that the amount of light striking the light occluding member 100 will be relatively small, compared to the amount of light passing over the light occluding member and either striking the light baffle 4 or passing over the light baffle 4. If the light occluding member 100 is reflective, then the relatively small amount of light may be reclaimed as useful low-beam light.
It is instructive to consider the paths that light would take in
A bright/dark edge is formed in the low-beam light, arising from the light baffle 4, or it may arise from an edge of low-beam reflector 6, which can include a reflecting surface generally parallel with the ground or a portion of a heat sink 200. Alternatively, the bright/dark edge may be formed from an edge of the folding mirror 5, or from a structural element that holds the folding mirror 5 in place, or from a leading edge of a heat sink 200 supporting LED array 7. Alternatively, as will be discussed with reference to
In
Note that all or nearly all of the low-beam light shown in
As will be seen in
Note that
Note that adjustment of the low-beam output profile is done in a routine manner at the simulation stage of the headlight design. The output profile may be simulated by a variety of ray-tracing computer software, all of which can adjust the shapes and orientations of the low-beam LED array 7, the concave reflector 3, the light occluding member 100, the light baffle 4 and the lens 2. In general, all of these components except the lens 2 contribute only to the low-beam light output, and may be adjusted as needed without altering the high-beam output of the headlight 1.
There are several known ray-tracing programs that are commonly used to simulate the performance of the headlight and optimize the headlight design. For instance, the program Lucidshape is computer aided designing software for lighting design tasks, and is commercially available from the company Brandenburg GmbH, located in Paderborn, Germany. Other known computer software may also be used.
In general, a starting point for a typical design may use a rotationally symmetric ellipsoid as the concave reflector 3. The software may then adjust the surface profile of the concave reflector 3, and other components, to improve the performance, and coax the light output to resemble a desired set of specifications. The final concave reflector 3 may resemble an ellipsoid, but may deviate from a true ellipsoid, especially in the region closest to the lens 2. The final concave reflector 3 may also be rotationally asymmetric, which may improve performance without complicating the manufacturing process, since the components are typically produced by molding, rather than grinding and polishing.
Similarly,
The high-beam output adds a significant amount of light above the horizon, which is typically left/right centered. It is assumed that the high beams are on only when there is no oncoming traffic, so there is little concern about impairing the vision of oncoming drivers for the high beams. Performance of the high-beam output may be improved or optimized in the same manner as for the low-beam output, using known ray-tracing software at the simulation phase of the design process.
For the designs shown in
The low-beam and high-beam LED arrays are not shown in
The light occluding member 16 extends further toward the lens 2 at its horizontal lateral edges 61, 62 than at its center, which is near the folding mirror 5. In some cases, the extension is left/right symmetric, as is shown in
In some cases, the light occluding member 16 is planar. In some of those cases, the plane of the light occluding member 16 is horizontal, or parallel to the ground. In others of those cases, the plane of the light occluding member 16 is inclined with respect to the ground. For instance, the plane may be tilted forward, so that the front edge 63 of the light occluding member 16 is closer to the ground than the rear of the light occluding member 16. In some cases, the orientation of the plane may be left/right symmetric. In other cases, the plane may be tilted toward the left or the right of the headlight 11. In all of these cases, the light occluding member 16 is said to be “generally parallel” to the ground during use, even if the light occluding member 16 is inclined by one degree, two degrees, three degrees, four degrees, five degrees, ten degrees or more than ten degrees.
In some cases, the light occluding member 16 deviates from a plane. For instance, there may be some overall curvature to the light occluding member 16, or some localized curvature such as curling, ripples or waves at particular locations on the light occluding member 16.
In some cases, the light occluding member 16 extends laterally toward the concave reflector 3. In some cases, the light occluding member 16 and the concave reflector 3 define a volume that opens toward the lens 2, where the opening of the volume generally coincides with a top half of the lens 2. In some of these cases, the opening of the volume may be slightly smaller or slightly larger than the top half of the lens 2. In some cases, the light occluding member 16 is at or near the longitudinal axis of the headlight 11.
In some cases, the light occluding member 16 may extend laterally all the way out to the concave reflector 3. Such an extension may be complete around the relevant portion of the perimeter of the light occluding member 16, or may optionally include one or more breaks for clearance, ventilation, or other reasons. In other cases, the light occluding member 16 may extend out to, but not contact, the concave reflector 3.
Unless otherwise stated, use of the words “substantial” and “substantially” may be construed to include a precise relationship, condition, arrangement, orientation, and/or other characteristic, and deviations thereof as understood by one of ordinary skill in the art, to the extent that such deviations do not materially affect the disclosed methods and systems.
Throughout the entirety of the present disclosure, use of the articles “a” or “an” to modify a noun may be understood to be used for convenience and to include one, or more than one, of the modified noun, unless otherwise specifically stated.
Elements, components, modules, and/or parts thereof that are described and/or otherwise portrayed through the figures to communicate with, be associated with, and/or be based on, something else, may be understood to so communicate, be associated with, and or be based on in a direct and/or indirect manner, unless otherwise stipulated herein.
Although the methods and systems have been described relative to a specific embodiment thereof, they are not so limited. Obviously many modifications and variations may become apparent in light of the above teachings. Many additional changes in the details, materials, and arrangement of parts, herein described and illustrated, may be made by those skilled in the art.