The invention relates to a headlamp for vehicles having a light source, having a lens unit and having a liquid crystal shutter comprising a multitude of surface areas, each being electrically controllable to change the respective surface areas to a transparent or a non-transparent state, so that a given light distribution pattern is generated.
From DE 10 2008 008 484 A1, a headlamp for vehicles is known, which works according to the projection principle. The headlamp has a light source, a lens unit and a shutter, the shutter being arranged in the focal plane of the lens. To generate a light distribution pattern suitable for the current traffic situation, the shutter is embodied as a liquid crystal shutter comprising a multitude of electrically controllable pixels. By means of these, the state of the surface areas of the liquid crystal shutter can be changed from a transparent to a non-transparent state, so that, for example, a dazzle-free high-beam light distribution pattern can be generated, which has a non-dazzling area preventing the traffic object in the traffic area in front of the vehicle from being dazzled. When electric voltage is applied, the orientation of the liquid crystals in the pixels of the liquid crystal shutter changes. To be able to distinctly switch the surface areas from the transparent to the non-transparent state, it is necessary that polarized light hits the liquid crystal shutter. To this end, it is known that standard polarizing filters are arranged between the light source and the liquid crystal shutter. In such polarizing filters, it is disadvantageous that a share of the light with a non-usable polarization direction is transformed into heat, which in turn leads to efficiency losses.
It is therefore the task of the present invention to further develop a headlamp for vehicles comprising a liquid crystal shutter so that the liquid crystal shutter is employed in an effective manner for the generation of various light distribution patterns and particularly to increase efficiency.
According to the invention, a polarizing reflector having dual function is provided. On the one hand, it allows a bundling of the light beam via its curved reflector surfaces to generate a concentrated luminous intensity distribution in the area of the liquid crystal shutter, which is then projected via the lens unit. On the other hand, the polarizing reflector is arranged relative to the light source, respectively the polarizing reflector is formed so that a linear, polarized light beam is reflected on the reflector surfaces of the polarizing reflector toward the liquid crystal shutter. Advantageously, a polarizing filter can either be dispensed with, or its thermal load will be significantly reduced. Due to this, the headlamp has a compact design. By using LEDs, the generation of infrared radiation is minimal, which in turn additionally relieves the thermal load of the liquid crystal shutter.
According to a preferred embodiment of the invention, the polarizing reflector is arranged relative to the light source in a manner, that the light beams emitted by the light source hit different reflector surfaces of the polarizing reflector under a Brewster angle and that they are reflected by it in the direction of the liquid crystal shutter. Advantageously, a degree of polarization of 100% of the reflected light beam is achieved. Therefore, the polarizing reflector allows the focusing and polarization of the light beam. By focusing the light beams, a concentrated luminous intensity distribution is achieved in the plane of the liquid crystal shutter, thus increasing the efficiency of the headlamp. The maximum of light distribution is increased. On the liquid crystal shutter, only relatively little light beam per solid angle segment needs to be switched in the non-transparent state.
The luminous intensity distribution is preferably concentrated centrally in the horizontal and vertical sections to achieve the maximum luminous intensities in the center of the light distribution pattern.
According to a further development of the invention, the polarizing reflector is onion-shaped, so that a concentrated and focused light beam can be emitted in the direction of the liquid crystal shutter.
According to a further development of the invention, the polarizing reflector is embodied in a transparent or partially transparent manner, so that a first partial light beam is polarized and reflected and a second partial light beam is not polarized and passes through. The second light beam, which passes through the polarizing reflector, is reflected by a second reflector, so that the second partial light beam which passes by the liquid crystal shutter can be used to generate a basic light distribution pattern. The second light beam, being partially polarized, which has passed through the polarizing reflector, effects an increase in efficiency, as both polarized parts of the light beam are used. The basic light distribution pattern is preferably a static basic light distribution pattern being superimposed by the dynamic light distribution pattern generated by means of the liquid crystal shutter.
According to a further development of the invention, a polarizing beam splitter is arranged between the polarizing reflector and the liquid crystal shutter, wherein a further partial light beam of the light source which is directly radiated in the direction of the liquid crystal shutter, i.e. without a previous reflection by the polarizing reflector, is split into a first polarized light beam being directly directed toward the liquid crystal shutter and into a second polarized light beam being deflected to a further reflector, from which the second polarized light beam can contribute to the generation of the light distribution pattern. Preferably, a quarter-wave layer is integrated in the polarizing beam splitter, so that the second polarized light beam is rotated in its polarization direction and can then also hit the liquid crystal shutter.
Alternatively, the quarter-wave layer can also be applied to a further reflector. Advantageously, the efficiency of the headlamp can be further increased.
According to a further development of the invention, several dish-shaped polarizing reflectors can be arranged at right angles relative to an optical axis, wherein the polarizing reflectors are embodied in an at least partially transparent manner. Advantageously, a relatively large light beam can be directed toward the liquid crystal shutter in a space-saving manner.
According to a further development of the invention, the light source is arranged relative to the polarizing reflector so that due to the angle of incidence 4% to 70%, preferably 8% of the light beam is reflected on the reflector surfaces. By this means, 8% of the light beam can be polarized to 100% while maintaining the Brewster angle. The polarization share can be further increased to an advantageous 40% to 70% by means of interference resp. polarizing coatings. In addition to linear polarization shares, circular polarization is also utilized.
According to a further development of the invention, the liquid crystal shutter is controlled depending on sensor data provided by a traffic space detect unit (camera) so that a non-dazzling area of the light distribution pattern always overlaps with a traffic object in traffic space not to be dazzled. By this means, a dazzle-free high beam light distribution pattern can for example be generated, in which the traffic space is largely illuminated without a further traffic object being dazzled, for example a vehicle driving ahead or an oncoming vehicle.
Reference is now made more particularly to the drawings, which illustrate the best presently known mode of carrying out the invention and wherein similar reference characters indicate the same parts throughout the views.
A headlamp can be employed for the generation of a dazzle-free high beam resp. a permanent high beam or a marker light or a display function in front of the vehicle. Where applicable, the variants of the headlamp according to the invention described below can be complemented by a light module serving the generation of the basic light distribution pattern.
According to a first embodiment of the invention according to
A liquid crystal shutter 6 is arranged at a distance, preferably at a short distance, to the polarizing reflectors 1, 1′ and in front of them in the main beam direction H. This liquid crystal shutter 6 is embodied in a plate-shaped manner and extends perpendicularly to the optical axis 2. The liquid crystal shutter 6 is preferably arranged in a focal plane of a lens unit 7 being arranged in front of the former in the main beam direction H. The liquid crystal shutter 6 is therefore arranged between the polarizing reflector 1, 1′, and the lens unit 7. In an exemplary manner, the lens unit 7 can be embodied as a plano-convex lens.
In an exemplary manner, the light source 3 can be embodied as an LED-light source. The polarizing reflector 1, 1′ is arranged relative to the light source 3 so that a light beam radiated from the light source 3 hits a reflector surface 9 of the polarizing reflector 1, 1′ essentially under a Brewster-angle θb. By means of the polarizing reflector 1, 1′, the light beam 8 is reflected in a linear, polarized manner in the direction of the liquid crystal shutter 6. Only the part of the light is reflected which is polarized in a perpendicular manner relative to the plane of incidence. The reflected polarized light beam 8′ lies in a range between 4% and 70%, preferably 8% of the light beam 8 hitting the polarizing reflector 1, 1′.
The liquid crystal shutter 6 is embodied as a liquid crystal plate having a multitude of electrically controllable surface areas resp. pixels. These surface areas can be changed from a transparent to a non-transparent state. The liquid crystal shutter 6 is for example controlled depending on sensor signals of a traffic space detect unit (CCD-camera) so that a light distribution pattern with a dazzle-free area is generated, which overlaps a traffic object in traffic space. By local variation of the non-dazzling area, a dazzle-free high-beam light distribution pattern can for example be generated, which ensures that a traffic object driving ahead or an oncoming traffic object is not dazzled.
By a respective control of the liquid crystal shutter, freely programmable light distribution patterns can be generated, which can be varied depending on the speed, using a traffic space detect unit, a navigation system, or street topography data.
As can be seen in
The light sources 3 are arranged at a larger distance to the optical axis 2 than edge regions 10 of the liquid crystal shutter 6.
According to a second embodiment of the headlamp following
Identical component parts and component part functions of the different exemplary embodiments receive identical reference numbers.
In addition, a polarizing beam splitter 19 is arranged between the light source 3 and the liquid crystal shutter 6, respectively, the polarizing beam splitter 19 is embodied as a polarizing cube beam splitter.
By this means a further, third partial light beam 20 of the light source 3 being emitted directly in the direction of the liquid crystal shutter 6, is split into a first polarized light beam 21 which is directly directed onto the liquid crystal shutter 6. The third partial light beam 20 is split into a second polarized light beam 24, being redirected at right angles to a further reflector 23. In an exemplary manner, a quarter wave layer 50 can be arranged on the incident light side of the liquid crystal shutter 6, so that the second polarized light beam 22 is rotated in its polarization direction before in hits the liquid crystal shutter 6, see dotted extension in
Alternatively, the second polarized light beam 22 can also be used for the generation of a basic light distribution pattern GLV, when the second polarized light beam 22 does not hit the liquid crystal shutter 6.
According to a further embodiment of the invention according to
According to a fourth embodiment of the invention according to
A first polarized light beam 31 is directly directed onto the liquid crystal shutter 6. A second polarized light beam 32 is redirected at right angles in the direction of a further reflector 33 on which the second polarized light beam 32 is redirected to the main beam direction H and can be used for the generation of the basic light distribution pattern GLV. In this case, the second polarized light beam 32 does not hit the liquid crystal shutter 6. Alternatively, the liquid crystal shutter 6 can also be embodied in an extended manner (shown as a dotted line in
According to a fifth embodiment of the invention according to
According to a further embodiment of the invention according to
The LCD displays are each optionally cooled by a fan which is not represented.
The characteristics mentioned above can be applied on their own or in any combination. The described embodiments are not to be understood as an exhaustive list, but instead they are examples for the description of the invention.
Number | Date | Country | Kind |
---|---|---|---|
102014113700.0 | Sep 2014 | DE | national |
This application claims priority to PCT Patent Application No. PCT/EP2015/069008, filed 19 Aug. 2015, which itself claims priority to German Application No. 10 2014 113700.0, filed 23 Sept. 2014, the entirety of both of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/069008 | 8/19/2015 | WO | 00 |