This Application claims priority of China Patent Application No. 201610055454.8, filed on Jan. 27, 2016, the entirety of which is incorporated by reference herein.
The present invention relates to a headphone, and in particular to a multi-channel headphone.
Conventional multi-channel headphones have a cover, a subwoofer speaker, a plurality of single channel cases, and a plurality of single channel speakers. The single channel cases are disposed in the cover, and the subwoofer speaker is also disposed in the cover. The cover is utilized as a resonance case. The single channel speakers are respectively disposed on the single channel cases. The multi-channel headphone provides sound output of at least four channels and the two subwoofer channels.
However, a conventional multi-channel headphone simply provides monotonous sound output. Additionally, the speakers of the conventional multi-channel headphone are located on the same level, which cannot realize a diversified sound environment and the spatial sense of the sound field.
In one embodiment, a headphone is provided. The headphone includes a housing, a first speaker, and a second speaker. The housing includes a sound output side, a first layer structure, a first output path, a first trench, a first recess, and a second recess. The first speaker is disposed in the first recess, wherein the first speaker comprises a first speaker orientation, and the first speaker orientation corresponds to the first output path. The second speaker is disposed in the second recess. The first output path comprises the first trench, which is located at the first layer structure, that extends around the first speaker, and is connected to the sound output side.
In one embodiment, the housing further comprises a second output path, a second layer structure and a cover structure, the first speaker comprises a second speaker orientation, wherein the second speaker orientation corresponds to the second output path, and the first recess and the second recess are disposed in the second layer structure.
In one embodiment, the headphone further comprises a crossfeed speaker, wherein the crossfeed speaker comprises a crossfeed speaker orientation, the crossfeed speaker orientation corresponds to a crossfeed output path, and the first speaker, the second speaker and the crossfeed speaker are disposed between the first and second layer structures.
In one embodiment, the housing further comprises a third output path and a fourth output path, the second speaker comprises a third speaker orientation and a fourth speaker orientation, the first speaker and the second speaker are arranged at a tilt, the third and fourth speaker orientation respectively correspond to the third and fourth output path, and the lengths of the first and third output paths are respectively longer than the lengths of the second and fourth output paths.
In one embodiment, the second layer structure comprises a third recess, the first recess comprises a first inclined surface, the second recess comprises a second inclined surface, the first speaker in the first recess is in contact with the first inclined surface, the second speaker in the second recess is in contact with the second inclined surface, and the crossfeed speaker is disposed in the third recess.
In one embodiment, the first speaker, the second speaker and the crossfeed speaker are respectively attached in the first recess, the second recess and the third recess by magnetic force.
In one embodiment, the crossfeed output path extends between the second layer structure and the cover structure, and passes the second layer structure and the first layer structure to the sound output side, and the second layer structure comprises an opening portion, a second trench and a first through hole, the opening portion corresponds to the crossfeed speaker, the second trench communicates with the opening portion and the first through hole, and the crossfeed output path extends along the opening portion, the second trench and the first through hole, and leaves the second layer structure.
In one embodiment, the cover structure comprises a sound chamber, the sound chamber communicates with the opening portion and the second trench, the crossfeed output path extends along the opening portion, the sound chamber, the second trench and the first through hole, and leaves the second layer structure.
In one embodiment, the first layer structure comprises a second through hole, the second through hole corresponds to the first through hole, and the crossfeed output path travels from the second layer structure, passing the first layer structure to the sound output side along the first through hole and the second through hole.
In one embodiment, the first layer structure comprises a third through hole, the third through hole is connected to the first trench, and the first output path travels along the first trench and the third through hole to leave the first layer structure.
In one embodiment, the first layer structure further comprises a third trench and a fourth through hole. The third trench extends around the second speaker and is connected to the fourth through hole, and the third output path travels along the third trench and the fourth through hole to leave the first layer structure.
In one embodiment, at least a portion of the third trench extends around the first speaker.
In one embodiment, the third through hole is adjacent to the fourth through hole.
In one embodiment, the second through hole is located between the first speaker and the second speaker.
In one embodiment, the first speaker is located between the second through hole and the third through hole.
In one embodiment, the first trench comprises a comb-shaped portion. The comb-shaped portion, the second through hole, the third through hole and the fourth through hole are arranged around the first speaker.
In one embodiment, the second output path extends in the first layer structure and passes through the first layer structure to the sound output side.
In one embodiment, the first speaker provides a low pitch sound, the second speaker provides a high pitch sound, the crossfeed speaker provides a crossfeed sound, and the crossfeed sound is synthesized by the low pitch sound and the high pitch sound.
In one embodiment, the sound output side has a sound field center, and the sound field center is located in front of an ear canal.
Utilizing the headphone of the embodiment of the invention with the crossfeed speaker, both the left ear and the right ear of the user can hear the sound of the right sound channel and the left sound channel. The design of the path length, as well as the shapes of the first trench, the second trench and the third trench, modify the time difference of the sound therein. Additionally, the frequency can be modified by the design of breathable holes and the first trench.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
In this embodiment, the second trench 131 is a straight-line shaped trench.
With reference to
With reference to
In one embodiment, the first trench 122 includes a comb-shaped portion 122A, and the comb-shaped portion 122A delays the transmission of the sound.
With reference to
With reference to
Utilizing the headphone of the embodiment of the invention with the crossfeed speaker, both the left ear and the right ear of the user can hear the sound of the right sound channel and the left sound channel. The design of the path length and the shapes of the first trench, the second trench and the third trench modify the time difference of the sound therein. Additionally, the frequency can be modified by the design of breathable holes and the first trench.
In one embodiment, when the volume of the low pitch speaker 20 and the high pitch speaker 30 is high, the volume of the crossfeed speaker 40 is low. When the volume of the low pitch speaker 20 and the high pitch speaker 30 is low, the volume of the crossfeed speaker 40 is high. Therefore, stereo sound is provided.
With reference to
With reference to
With reference to
Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having the same name (but for use of the ordinal term).
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0055454 | Jan 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4005278 | Gorike | Jan 1977 | A |
20010005422 | Nakamura | Jun 2001 | A1 |
20040218775 | Huang | Nov 2004 | A1 |
20130336512 | Kim | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
204069266 | Dec 2014 | CN |
103067827 | May 2015 | CN |
Entry |
---|
TW Office Action dated Feb. 10, 2017 in Taiwan application (No. 105102457). |
Number | Date | Country | |
---|---|---|---|
20170214999 A1 | Jul 2017 | US |