This application is a national stage application under 35 U.S.C. 371 and claims the benefit of PCT Application No PCT/JP2015/003024 having an international filing date of 17 Jun. 2015, which designated the United States, which PCT application claimed the benefit of Japanese Patent Application No. 2014-136489 filed 2 Jul. 2014, the disclosures of which are incorporated herein by reference in their entirety.
The present technology relates to headphones.
In the past, a variety of headphones having a slide mechanism in order to conform to a size of a head have been proposed (Patent Literature 1).
Patent Literature 1 JP2012-54780A
In headphones disclosed in Patent Literature 1, adjustment of a length of a slider is complex and consumes time and effort.
The present technology has been made in view of the above circumstances and provides headphones that can be easily regulated by a user.
In order to solve the above problem, the present technology provides headphones including: a head band; a first slider that is provided on one end side of the head band and slides with respect to the head band; a second slider that is provided on the other end side of the head band and slides with respect to the head band; a connecting portion that connects the first slider and the second slider and slides the second slider in linkage with a slide operation of the first slider; and a pair of housings that are provided on the first slide portion and the second slide portion, respectively, and each house a sound output unit.
According to the present technology, it is possible to link and slide e and right sliders.
Hereinafter, embodiments of the present technology will be described with reference to the drawings. The description will proceed in the following order.
<1. First Embodiment>
[1-1. Configuration of Headphones]
<2. Modified Examples>
[1-1. Configuration of Headphones]
The head band 20 is formed in a curved shape along a head of a user, comes into contact with a parietal region of a user in a worn state, and thus supports the entire headphones 10. The head band 20 is made of a synthetic resin such as plastic or a metal and has flexibility with a predetermined degree of rigidity and elasticity. Therefore, the housings and the ear pads are pressed in a direction of a temporal region of the user when the headphones 10 are worn, and thus it is possible to maintain a worn state of the headphones 10.
A cover for covering the head band 20 is provided on the head band 20. The cover functions as a cushioning material in a portion abutting the parietal region of the user on an inner surface of the head band 20 and has a role of preventing an internal structure of the head band from being exposed. Alternatively, an elastic body such as a cushion and a rubber may be provided on the portion abutting the parietal region of the user instead of the cover. In addition, a hinge may be provided in the head band 20 so that the head band 20 is folded at its center when carried.
The L-side slider 31 and the R-side slider 32 are provided at both ends of the head band 20. The L-side hanger 41 is provided below the L-side slider 31. In addition, the R-side hanger 42 is provided below the R-side slider 32.
The L-side slider 31 and the R-side slider 32 are provided to be slidable inside the head band 20. When the L-side slider 31 and the R-side slider 32 slide, the L-side hanger 41, the R-side hanger 42, the L-side housing 51, and the R-side housing 52 can be moved downward or upward with respect to the head band 20. When the headphones 10 are worn, a degree of extension of the slider is regulated according to a size of the head of the user and a distance between an ear and a parietal region. Therefore, the L-side ear pad 61 and the R-side ear pad 62 can be adjusted to a position that faces the user's ear. Therefore, the user can obtain a sensation of wearing according to his or her physical features and preferences. On the other hand, when the headphones 10 are not used, the slider is retracted and is in a housed state, and thus it is possible to save storage space.
The L-side slider 31 and the R-side slider 32 have slide positions that may be maintained due to friction with the inner surface of the head band 20 or slide positions that may be maintained by a so-called click mechanism through which positions are maintained by protrusions that are engaged with a plurality of depressions.
The L-side hanger 41 is provided at a distal end of the L-side slider 31 and rotatably supports the L-side housing 51. Similarly, the R-side hanger 42 is provided at a distal end of the R-side slider 32 and rotatably supports the R-side housing 52. The L-side hanger 41 and the R-side hanger 42 rotatably support the L-side housing 51 and the R-side housing 52, respectively, by pivotally supported by support pins (not illustrated) that project inward from the pair of distal ends. Therefore, when the headphones 10 are worn, an orientation thereof is changed according to a shape of the user's ear region, and the L-side housing 51 and the R-side housing 52 can face the ears in a state suitable for the shape of the temporal region of the user.
The L-side housing 51 and the R-side housing 52 function as accommodating portions in which a sound processing circuit, a driver unit, and a speaker (not illustrated) are accommodated. The L-side housing 51 and the R-side housing 52 are made of, for example, a synthetic resin such as plastic. The sound processing circuit performs a predetermined sound signal process, for example, a noise canceling process, a signal amplifying process, and an equalizing process, of a sound signal for driving the speaker. The speaker is a sound output unit configured to output a sound signal on which a process is performed by the sound processing circuit as sound.
The L-side ear pad 61 is provided on a side surface that faces the temporal region of the user in the L-side housing 51. Similarly, the R-side ear pad 62 is provided on a side surface that faces the temporal region of the user in the R-side housing 52. The L-side ear pad 61 and the R-side ear pad 62 are formed to have elasticity, are provided between the housing and the temporal region of the user, and function as cushioning members between the housing and the temporal region of the user. That is, the ear pads prevent the housing made of a hard material that is less easily deformed from being in direct contact with the temporal region of the user when be or she wears the headphones and the user from feeling discomfort or pain.
In addition, the L-side ear pad 61 and the R-side ear pad 62 hermitically enclose spaces that are formed by the ear pads and the temporal region of the user, and have a role of improving sound quality, for example, improving reproducibility of a low frequency range, and also prevent sound output from the speakers from leaking to the outside. Further, the L-side ear pad 61 and the R-side ear pad 62 block noise from the outside and facilitate easy listening to sound from the speakers.
The L-side ear pad 61 and the R-side ear pad 62 include a cushioning portion that is formed in a ring shape and is made of a material having elasticity such as a urethane foam, cotton, or chemical fibers and a cover for covering the cushioning portion. However, the material of the cushioning portion is not limited thereto, and any material having appropriate elasticity may be used.
The cover covers the entire surface of the cushioning portion and is in direct contact with the temporal region of the user when be or she wears the headphones 10. The cover is preferably made of a material having good feeling on skin, for example, a natural leather and a synthetic leather.
The cord 70 has an inside through which an L channel conducting wire and an R channel conducting wire serving as conducting wires for a sound signal and a ground line pass, and transmits a sound signal. The cord 70 is connected to the sound processing circuit that is accommodated inside any one housing between the L-side housing 51 and the R-side housing 52. A conducting wire for a sound signal is supplied to the other housing to which the cord 70 is not connected through a bridge cord that passes through the inside of the head band 20. Alternatively, the two cords 70 may be connected to the L-side housing 51 and the R-side housing 52 such that a sound signal is supplied to the sound processing circuits inside the L-side housing 51 and the R-side.
In addition, a plug (not illustrated) is provided at the other end of the cord 70. When the plug is connected to a sound reproducing device (not illustrated) such as an MP3 player, the headphones 10 are connected to the sound reproducing device. In addition, the plug may be connected to the sound reproducing device through proximity wireless communication such as Wi-Fi or Bluetooth. In this case, a wireless transmitting and receiving unit is provided at a portion that corresponds to one end side of the cord 70. A power supply unit (not illustrated) configured to supply power to an antenna for wireless communication, the sound processing circuit, the driver unit, and the speakers is further accommodated inside the L-side housing 51 and the R-side housing 52.
The headphones 10 may be so-called closed type headphones or may be open air type headphones using ear pads of a urethane foam having air permeability.
Next, a configuration of the linkage slide mechanism will be described with reference to
As illustrated in
The L-side folded portion 111 has a shape including an internal hole through which the second wire rod 122 passes and is provided inside the L-side that is one end side of the head band 20.
The second wire rod 122 has the one end side that is connected to the R-side slider 32 and the other end side that is connected to the L-side slider 31. The second wire rod 122 is provided to pass through the inside of the head band 20 and extends downward toward an L-side end of the head band 20. Then, the second wire rod 122 is inserted into the L-side folded portion 111 that is provided at the L-side end of the head band 20 and is folded upward. The folded second wire rod 122 extends upward and is connected to an upper end of the L-side slider 31. A method of connecting the second wire rod 122 and the L-side slider 31 includes a method in which a hole is provided at, for example, the L-side slider 31, the second wire rod 122 passes through the hole, and the second wire rod 122 is fastened at and fixed to the hole
The first wire rod 121 has the one end side that is connected to the L-side slider 31 and the other end side that is connected to the R-side slider 32. The first wire rod 121 is provided to pass through the inside of the head band 20 and extends downward toward an R-side end of the head band 20. Then, the first wire rod 121 is inserted into the R-side folded portion 112 that is provided at the R-side end of the head band 20 and is folded upward. The folded first wire rod 121 extends upward and is connected to an upper end of the R-side slider 32. A method of connecting the first wire rod 121 and the R-side slider 32 includes a method in which a hole is provided at, for example, the R-side slider 32, the first wire rod 121 passes through the hole, and the first wire rod 121 is fastened at and fixed to the hole.
In this manner, the L-side folded portion 111 and the R-side folded portion 112, and the first wire rod 121 and the second wire rod 122 are provided inside the headphones 10 in a bilaterally symmetrical manner.
The first wire rod 121 and the second wire rod 122 are made of, for example, an aramid fiber, a metallic wire, or a carbon nanotube. When such a material having high rigidity is used, it is possible to downsize and increase durability of the headphones 10. However, the material of the first wire rod 121 and the second wire rod 122 is not limited thereto, and any material that is linear and has a strength by which it is not disconnected even when repeatedly pulled can be used.
In addition, the first wire rod 121 and the second wire rod 122 are covered by an outer tube made of an elastic material, for example, rubber. Therefore, it is possible to protect the wire rod. In addition, it is possible to reduce friction when the wire rod is pulled and moved.
Next, a sliding linkage by the first wire rod 121 will be described with reference to
First, when the user slides the L-side slider 31 downward, the first wire rod 121 is pulled downward in the same direction as a slide direction of the L-side slider 31 by the L-side slider 31 at a position A. Thus, at a position B, the first wire rod 121 is pulled upward in linkage with the pulling at the position A.
Since the first wire rod 121 is folded at the R-side folded portion 112, next, at a position C, the first wire rod 121 is pulled downward opposite to the upward pulling at the position B. Thus, since the other end of the first wire rod 121 is connected to the R-side slider 32, the first wire rod 121 that is pulled downward at the position C pulls the R-side slider 32 downward as indicated by an arrow D.
Then, in linkage with the downward sliding of the L-side slider 31, the R-side slider 32 also slides downward in the same direction. Therefore, when the user slides the L-side slider 31 downward, the R-side slider 32 can automatically slide downward in linkage therewith.
Since all distances which the first wire rod 121 is pulled at the position A, the position B, the position C, and the position D are substantially the same, slide distances of the L-side slider 31 and the R-side slider 32 are also substantially the same. Accordingly, when the L-side slider 31 is slid, the R-side slider 32 can be slid only substantially the same distance as the slide distance.
Next, an operation in which a slider is housed in a direction will be described with reference to
When the R-side slider 32 is slid upward in a housing direction by the R-side slider 32 that slides upward at the position D, the first wire rod 121 is pulled upward in the same direction as a slide direction of the R-side slider 32 at the position C.
Since the first wire rod 121 is folded at the R-side folded portion 112, next, at the position B, the first wire rod 121 is pulled downward opposite to the upward pulling at the position C. Thus, since the other end of the first wire rod 121 is connected to the L-side slider 31, the first wire rod 121 pulls the L-side slider 31 upward at the position A.
Then, in linkage with the upward sliding of the R-side slider 32, the L-side slider 31 also slides upward in the same direction. Therefore, when the user slides the R-side slider 32 upward, the L-side slider 31 can automatically slide upward in linkage therewith.
All distances which the first wire rod 121 is pulled are substantially the same at the position A, the position B, the position C, and the position D, slide distances of the L-side slider 31 and the R-side slider 32 are also substantially the same. Accordingly, when the L-side slider 31 is slid, the R-side slider 32 can be slid only substantially the same distance as the slide distance.
Next, a slide operation of the second wire rod 122 will be described with reference to
First, an operation in which a slider is drawn in a direction will be described. First, when the user slides the R-side slider 32 downward, the second wire rod 122 is pulled downward in the same direction as a slide direction of the R-side slider 32 by the R-side slider 32 at the position A. Thus, at the position B, the second wire rod 122 is pulled upward in linkage with pulling at the position A.
Since the second wire rod 122 is folded at the L-side folded portion 111, next, at the position C, the second wire rod 122 is pulled downward opposite to the upward pulling at the position B. Thus, since the other end of the second wire rod 122 is connected to the L-side slider 31, the second wire rod 122 that is pulled downward at the position C pulls the L-side slider 31 downward.
Then, in linkage with the downward sliding of the R-side slider 32, the L-side slider 31 also slides downward in the same direction. Therefore, when the user slides the R-side slider 32 downward, the L-side slider 31 can automatically slide downward in linkage therewith.
Since all distances which the first wire rod 122 is pulled at the position A, the position B, the position C, and the position D are substantially the same, slide distances of the R-side slider 32 and the L-side slider 31 are also substantially the same. Accordingly, when the R-side slider 32 is slid, the L-side slider 31 can be slid only substantially the same distance as the slide distance.
Next, an operation in which a slider is housed in a direction by the second wire rod 122 will be described with reference to
When the L-side slider 31 is slid upward in the housing direction by the L-side slider 31 that slides upward at the position D, the second wire rod 122 is pulled upward in the same direction as a slide direction of the L-side slider 31 at the position C.
Since the second wire rod 122 is folded at the L-side folded portion 111, next, at the position B, the second wire rod 122 is pulled downward opposite to the upward pulling at the position C. Thus, since the other end of the second wire rod 122 is connected to the R-side slider 32, the second wire rod 122 pulls the R-side slider 32 upward at the position A.
Then, in linkage with the upward sliding of the L-side slider 31, the R-side slider 32 also slides upward in the same direction. Therefore, when the user slides the L-side slider 31 upward, the R-side slider 32 can automatically slide upward in linkage therewith.
All distances which the second wire rod 122 is pulled are substantially the same at the position A, the position B, the position C, and the position D, slide distances of the R-side slider 32 and the L-side slider 31 are also substantially the same. Accordingly, when the R-side slider 32 is slid, the L-side slider 31 can be slid only substantially the same distance as the slide distance.
Accordingly, when the L-side slider 31 is slid, the R-side slider 32 slides the same slide distance in the same direction in linkage therewith. Further, when the R-side slider 32 is slid, the L-side slider 31 slides the same slide distance in the same direction in linkage therewith. Therefore, it is not necessary to separately slide the L-side slider 31 and the R-side slider 32. In addition, it is possible to remove a burden of separately sliding sliders while visually confirming whether slide distances of the left and right sliders are the same. Accordingly, there is no lateral difference in slide distances of sliders and it is possible to quickly wear the headphones 10. In addition, an operation feeling is unlikely to change since mechanical operations in a drawing direction and the housing direction on the L-side and the R-side are mirror-symmetric.
When the user wears the headphones 10, first, be or she puts the head band 20 on his or her head. Next, be or she grips the L-side housing 51 with his or her left hand and grips the R-side housing 52 with his or her right hand, and be or she simultaneously slides the L-side housing 51 and the R-side housing 52 downward in the drawing direction to move them to positions that be or she desires.
Then, by the linkage slide mechanism including the first folded portion 111, the second folded portion 112, the first wire rod 121, and the second wire rod 122 described above, both the L-side slider 31 and the R-side slider 32 slide substantially the same distance and both the left and right sliders are uniformly drawn.
A method of wearing the headphones 10 is not limited to the above method. Before the head band 20 abuts the head, when the L-side slider 31 and the R-side slider 32 are slid, they are uniformly drawn. Then, the headphones 10 may be worn on the head.
While an embodiment of the present technology has been specifically described above, the present technology is not limited to the above-described embodiment, and various modifications based on the scope of the present technology can be provided.
First, a first modified example will be described with reference to
In the first modified example, an elastic body 130 is provided to connect the head band 20 and the L-side slider 31. As the elastic body 130, for example, a coil spring or rubber is exemplified. The elastic body 130 is always biased upward in a housing direction of the L-side slider 31.
When the L-side slider 31 is slid downward in a drawing direction and the headphones 10 are worn, a position of the L-side slider 31 is fixed due to friction between the L-side slider 31 and the head band 20 and friction and interlocking between the user's ear and the L-side ear pad 61. Therefore, when the headphones 10 are worn, the L-side slider 31 does not slide in the housing direction and positions of the L-side housing 51 and the L-side ear pad 61 do not change.
Then, when use of the headphones 10 ends and the headphones 10 are removed from the head, the L-side slider 31 pulled by the elastic body 130 slides upward in the housing direction.
Next, a second modified example will be described with reference to
If the first folded portion is configured by the pulley 140, the pulley 140 rotates when the second wire rod 122 is pulled according to sliding of the L-side slider 31, and the second wire rod 122 is pulled more smoothly. Therefore, the first slider 31 also slides more smoothly. Further, it is possible to prevent damage due to wear of the first folded portion and the second folded portion. Although not illustrated, in the second modified example, the second folded portion may also be configured by a pulley.
Next, a third modified example will be described. In the above-described embodiment, a wire rod is dedicated to linked sliding using an aramid fiber, a metallic wire, or a carbon nanotube. However, the wire rod is not limited to a wire rod using such a material, and a conducting wire for a sound signal may be used as the wire rod.
Then, the R channel conducting wire and the ground line extend to the R-side housing 52 through the inside of the head band 20 as the bridge cord 150, and are connected to the sound processing circuit and the driver unit inside the R-side housing 52.
In this case, the R channel conducting wire that passes through the inside of the head band 20 and the bridge cord 150 serving as the ground line are covered by an outer tube and handled as a single wire rod. Then, as illustrated in
Next, a fourth modified example will be described with reference to
In the present modified example, a first connector 161 is provided on one end side of the first wire rod 121. A first connector receiving portion 162 is provided at the upper end of the L-side slider 31. In addition, a second connector 171 is provided at one end of the second wire rod 122 that extends from the R-side slider 32 to the L-side slider 31. A second connector receiving portion 172 is provided at the upper end of the L-side slider 32.
As illustrated in
As illustrated in
In addition, the second connector 171 is provided at one end of the second wire rod 122, and the second connector receiving portion 172 is provided at the upper end of the L-side slider 32. The second connector 171 and the second connector receiving portion 172 are connected similarly to the connection of the first connector 161 and the first connector receiving portion 162. Therefore, the second wire rod 122 and the L-side slider 32 are connected. The R-side slider 32, the first wire rod 121, and the second wire rod 122 are similarly connected using a connector
In this manner, when the connector is used to connect the wire rod and the slider, since it is possible to reduce time and effort for attaching the wire rod to the connector, it is possible to simplify a manufacturing process.
The structure of the connector is not limited to those illustrated in
The headphones 10 including two wire rods such as the first wire rod 121 and the second wire rod 122 have been described in the embodiment. However, the number of wire rods is not limited to two, and may be one. When the number of wire rods is one, one folded portion may be provided.
When a wire rod to be used has insufficient rigidity between the L-side and the R-side, a slider on a side in which no folded portion is provided is set as a slider for drawing that slides during drawing. On the other hand, a slider on a side in which the folded portion is provided is set as a slider for housing that slides during housing. As described with reference to
Additionally, the present technology may also be configured as below.
(1)
Headphones including:
a head band;
a first slider that is provided on one end side of the head band and slides with respect to the head band;
a second slider that is provided on the other end side of the head band and slides with respect to the head band;
a connecting portion that connects the first slider and the second slider and slides the second slider in linkage with a slide operation of the first slider; and
a pair of housings that are provided on the first slide portion and the second slide portion, respectively, and each house a sound output unit.
(2)
The headphones according to (1), wherein
a folded portion is provided at the head band, and
the second slider is slid in the same direction as a slide direction of the first slider by the connecting portion being folded at the folded portion.
(3)
The headphones according to (1) or (2),
wherein the connecting portion slides the second slider substantially the same distance as a slide distance of the first slider by the slide operation of the first slider.
(4)
The headphones according to any one of (1) to (3), wherein
the folded portion is provided at one side and the other side of the head band, and
the connecting portion includes a first connecting portion and a second connecting portion, the first connecting portion slides the second slide portion in linkage with sliding of the first slide portion and the second connecting portion slides the first slide portion in linkage with sliding of the second slide portion.
(5)
The headphones according to any one of (1) to (4),
wherein the connecting portion is configured by a wire rod.
(6)
The headphones according to (5),
wherein the connecting portion is made of an aramid fiber, a metallic wire, or a carbon nanotube.
(7)
The headphones according to any one of (1) to (6),
wherein the connecting portion is covered by an outer tube.
(8)
The headphones according to (2),
wherein the folded portion is configured by a pulley.
(9)
The headphones according to any one of (1) to (8),
wherein the connecting portion is configured by a sound signal transmission line.
(10)
The headphones according to (9),
wherein the sound signal transmission line is electrically coupled to a signal line through which a sound signal from a sound reproducing device is transmitted.
(11)
The headphones according to any one of (1) to (10),
wherein the connecting portion, and the first slider and the second slider are connected by a connector.
(12)
The headphones according to any one of (1) to (11),
wherein the first slider and the second slider have positions that are maintained by friction with the head band.
(13)
The headphones according to (2), wherein
the folded portion is provided only at one side of the head band, and
a notation is provided to indicate a side at which the folded portion of the head band is provided and a side at which the folded portion of the head band is not provided.
Number | Date | Country | Kind |
---|---|---|---|
2014-136489 | Jul 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/003024 | 6/17/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/002150 | 1/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20110206216 | Brunner | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
51-32450 | Aug 1976 | JP |
54-10258 | May 1979 | JP |
57-51388 | Mar 1982 | JP |
57-91388 | Jun 1982 | JP |
2012-054780 | Mar 2012 | JP |
Entry |
---|
International Search Report prepared by the Japan Patent Office dated Aug. 26, 2015, for International Application No. PCT/JP2015/003024. |
Number | Date | Country | |
---|---|---|---|
20170201820 A1 | Jul 2017 | US |