The present disclosure relates generally to implantable cochlear stimulation (or “ICS”) systems.
ICS systems are used to help the profoundly deaf perceive a sensation of sound by directly exciting the intact auditory nerve with controlled impulses of electrical current. Ambient sound pressure waves are picked up by an externally worn microphone and converted to electrical signals. The electrical signals, in turn, are processed by a sound processor, converted to a pulse sequence having varying pulse widths, rates, and/or amplitudes, and transmitted to an implanted receiver circuit of the ICS system. The implanted receiver circuit is connected to an implantable electrode array that has been inserted into the cochlea of the inner ear, and electrical stimulation current is applied to varying electrode combinations to create a perception of sound. The electrode array may, alternatively, be directly inserted into the cochlear nerve without residing in the cochlea. A representative ICS system is disclosed in U.S. Pat. No. 5,824,022, which is entitled “Cochlear Stimulation System Employing Behind-The-Ear Sound processor With Remote Control” and incorporated herein by reference in its entirety. Examples of commercially available ICS sound processors include, but are not limited to, the Harmony™ BTE sound processor, the Naida™ CI Q Series sound processor and the Neptune™ body worn sound processor, which are available from Advanced Bionics.
As alluded to above, some ICS systems include an implantable cochlear stimulator (or “cochlear implant”), a sound processor unit, a battery, and a microphone that is part of, or is in communication with, the sound processor unit. The cochlear implant communicates with the sound processor unit, and some ICS systems include a headpiece that is in communication with both the sound processor unit (e.g., a body worn processor or behind-the-ear processor) and the cochlear implant. The headpiece communicates with the cochlear implant by way of a transmitter (e.g., an antenna) on the headpiece and a receiver (e.g., an antenna) on the implant. The headpiece and the cochlear implant may include respective magnets (or respective pluralities of magnets) that are attracted to one another, thereby retaining the headpiece on the head and maintaining the position of the headpiece transmitter on the head over the implant receiver. The skin and subcutaneous tissue that separates the headpiece magnet and implant magnet is sometimes referred to as the “skin flap.” In other instances, all of the external components (e.g., the battery, microphone, sound processor, antenna coil and magnet) are carried within a single headpiece. One example of such a system is disclosed in U.S. Pat. Pub. No. 2010/0046778, which is entitled “Integrated Cochlear Implant Headpiece,” which is incorporated herein by reference in its entirety.
One issue associated with cochlear implants is compatibility with magnetic resonance imaging (“MRI”) systems. For example, the magnets in many conventional cochlear implants are disk-shaped and have north and south magnetic dipoles that are aligned in the axial direction of the disk. Such magnets produce a magnetic field that is perpendicular to the patient's skin and parallel to the axial direction, and this magnetic field direction is not aligned with, and may be perpendicular to, the direction of the MRI magnetic field (typically 1.5 Tesla or more). The misalignment of the interacting magnetic fields may result in demagnetization of the implant magnet or generate a significant amount of torque on the implant magnet that can dislodge the implant magnet and induce tissue damage.
One proposed method of accommodating an MRI magnetic field involves the use of a magnet apparatus with a diametrically magnetized disk-shaped magnet that is rotatable relative to the remainder of the implant about an axis, and that has a N-S orientation which is perpendicular to the axis. One example of a cochlear implant with such a magnet is the cochlear implant 10 illustrated in
The cochlear implant 10 may be used in conjunction with a headpiece 30 that includes a housing 32 in which components, such as a microphone array with a pair of microphones 34 and a printed circuit board (not shown) that carries an antenna 36 and other electronic components, are located. The housing 32 includes a pair of microphone apertures 38. An electrical connector 40 connects the circuit board to a sound processor (e.g., a BTE sound processor) by way of a cable 42. A diametrically magnetized disk-shaped magnet 44 is also provided. The magnetic attraction between the magnets 22 and 44 maintains the position of the headpiece 30 against the skin flap over the cochlear implant 10, and causes the N and S poles of the rotatable implant magnet 22 to align with the S and N poles of the headpiece magnet 44 in the manner shown. U.S. Pat. No. 8,634,909 (“the '909 patent”) discloses a cochlear implant system with a diametrically magnetized and rotatable disk-shaped implant magnet and a diametrically magnetized disk-shaped headpiece magnet. The '909 patent indicates that the headpiece magnet may either be fixed within the headpiece to prevent its rotation, or allowed to rotate on its axis like the implant magnet.
The microphones 34 of the microphone array are spaced along a microphone axis MA and are fixed in place, i.e., are not movable relative to the housing 32. The microphone axis MA is perpendicular to the cable 42 and, as a result, the microphone axis MA will point to the target source when, for example, the user is standing and looking at the target source.
The present inventors have determined that there are a number of issues associated with the above-described cochlear implant systems. For example, the proper retention of the headpiece 30 depends on the normal retention force NRF and the lateral retention force LRF (
Given that headpieces are typically worn with the headpiece cable extending downwardly in the gravitational direction G (
A cochlear implant headpiece in accordance with one of the present inventions includes a housing, a diametrically magnetized headpiece magnet, defining an axis and a N-S direction, within the housing and rotatable about the axis, whereby the N-S direction of the headpiece magnet self-aligns with the gravitational direction when the axis is perpendicular to the gravitational direction, and a headpiece antenna associated with the housing. The present inventions also include cochlear stimulation systems with a sound processor and/or a cochlear implant in combination with such a headpiece. There are a variety of advantages associated with such headpieces and systems. By way of example, but not limitation, alignment of the N-S direction of the headpiece magnet with the gravitational direction maximizes the lateral retention force for a given normal retention force.
A cochlear implant headpiece in accordance with one of the present inventions includes a first headpiece portion defining a rotational axis, a second headpiece portion mounted on the first headpiece portion and rotatable relative to the first housing portion about the rotational axis, including a headpiece antenna and first and second microphones defining a microphone array axis, and having a center of gravity located such that the microphone array axis will be perpendicular to the gravitational direction when the rotational axis is perpendicular to the gravitational direction, and a headpiece magnet associated with the first headpiece portion. The present inventions also include cochlear stimulation systems with a cochlear implant in combination with such a headpiece. There are a variety of advantages associated with such headpieces and systems. By way of example, but not limitation, orienting the microphone array axis in a direction that is perpendicular to the gravitational direction, regardless of magnet orientation, increases the likelihood that the microphone array axis will point at the target sound source when the user is standing and looking at the target source.
The above described and many other features of the present inventions will become apparent as the inventions become better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings.
Detailed descriptions of the exemplary embodiments will be made with reference to the accompanying drawings.
The following is a detailed description of the best presently known modes of carrying out the inventions. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the inventions.
An exemplary headpiece in accordance with at least one of the present inventions is illustrated in
The internal volume of the exemplary housing 102 includes a microphone 121 and a printed circuit board (PCB) 122 that is connected to the microphone and that carries various other headpiece electronic components on one side. Other implementations may include an array of two or more microphones 121. An antenna 124 is associated with housing 102, i.e., the antenna is located on, is located within, or is otherwise carried by the housing. The other side of the PCB 122 includes the antenna 124, which is within an annular protective covering 126 (
In the illustrated implementation, the housing main portion 104 includes a cylindrical wall 140 that define the side surface of the receptacle 112 and a bottom wall 142. The housing cover 106 includes a bottom wall 144 and an annular indentation 146 for the antenna's protective covering 126. The bottom (or “exterior”) surface of the bottom wall 144 may be concave or flat, and may include a plurality of protrusions 148. The housing 102 and cap 108 may be attached to one another with any suitable instrumentalities. In the illustrated implementation, the housing main portion 104 includes a plurality of latch indentations 150 that are engaged by a corresponding plurality of latches 152 on the cap 108 when the cap is positioned over the housing 102 in the manner illustrated in
The magnet, bearing and weight in embodiments of the present headpieces may be secured to, or otherwise associated with, one another in any suitable fashion. Referring to
Referring again to
There are a number of advantages associated with the exemplary headpiece. The rotatability of the remainder of the headpiece 100 relative to the magnet 110 allows the N-S direction of the magnet self-align with the gravitational direction, regardless of the preferred orientation of the headpiece 100, when the axis of rotation A is perpendicular to the gravitational direction G. In other words, if not already aligned, the magnet 110 will rotate without the application of force (other than gravitational force) in such a manner that the N-S direction of the magnet self-align with the gravitational direction, regardless of the preferred orientation of the headpiece 100, when the axis of rotation A is perpendicular to the gravitational direction G. For example, and referring to the cutaway views illustrated in
It should also be noted that the present inventions are not limited to any particular bearing configuration or any particular weight shape or weight location so long as the desired rotation and off-axis center of gravity is achieved. By way of example, but not limitation, the magnet apparatus 120a in
Another exemplary headpiece is generally represented by reference numeral 100b in
As illustrated for example in
Another exemplary magnet apparatus with an imbalanced load is generally represented by reference numeral 120b′ in
The exemplary headpiece 100 (or 100b or 100b′) may be used in ICS systems such as, for example, the exemplary ICS system 60 illustrated in
The exemplary sound processor 200 is a body worn sound processor that includes a housing 202 in which and/or on which various components are supported. Such components may include, but are not limited to, sound processor circuitry 204, a headpiece port 206 that may be connected to the headpiece 100 by a cable 208, an auxiliary device port 210 for an auxiliary device such as a mobile phone or a music player, a control panel 212, one or more microphones 214, and a power supply receptacle 216 for a removable battery or other removable power supply 218 (e.g., rechargeable and disposable batteries or other electrochemical cells). The sound processor circuitry 204 converts electrical signals from the microphone 214 into stimulation data.
During use, the above-described headpiece magnet 110 (or 110b) will be attracted to the implant magnet 22, thereby aligning the headpiece antenna 124 with the implant antenna 20. The stimulation data and, in many instances power, is supplied to the headpiece 100, which transcutaneously transmits the stimulation data, and in many instances power, to the cochlear implant 10 by way of a wireless link between the antennas. In at least some implementations, the cable 208 will be configured for forward telemetry and power signals at 49 MHz and back telemetry signals at 10.7 MHz. It should be noted that, in other implementations, communication between a sound processor and a headpiece and/or auxiliary device may be accomplished through wireless communication techniques. Additionally, given the presence of the microphone(s) 214 on the sound processor 200, the headpiece microphone 121 may be omitted in some instances.
It should be noted that the present inventions have application in ICS systems which are configured such that all of the external components (e.g., the battery, the microphone, the sound processor, and the antenna coil) are carried within a single headpiece. One example of such a headpiece is generally represented by reference numeral 100c in
The internal volume of the exemplary housing 102c includes a pair of microphones 121 and a printed circuit board (PCB) 122c that is connected to the microphones and that carries the various other headpiece electronic components, such as sound processor circuitry 119, on one side. The other side of the PCB 122c includes an antenna 124. The microphones 121, which define a microphone array and are spaced along a microphone axis MA, and are fixed in place, i.e., are not movable relative to the housing 102c. Other implementations may include only one microphone 121, or more than two microphones. The PCB 122c also includes an aperture 128c through which the tubular member 117c extends. The housing has a pair of microphone ports 136c that extend through the cover end wall 107c, and shields (not shown) may be positioned over the ports 136c on the inner surface of the housing 102c. A power supply receptacle 123c for a plurality of removable power supplies 125c (e.g., rechargeable and disposable batteries or other electrochemical cells) is located within the housing 102c. Other receptacles that are configured for use with other power supplies may also be employed.
Referring more specifically to
The sound processor 119 may be operable in an omni-directional mode or in a directional mode. In the directional mode, the user points the microphone array at the target source and the sound processor 119 performs a beamforming operation on the signals from the microphones 121 in, for example, the manner discussed in U.S. Pat. No. 7,995,771, which is incorporated herein by reference in its entirety. Other directional sound processing examples are incorporated into the Phonak SmartLink+™ and ZoomLink+™ transmitters. Briefly, spatial processing is performed on the signals from the microphones 121, whereby signals associated with sound from the target sources at which (or near which) the microphone axis MA is pointing are enhanced and signals associated with sound from the non-target sources are attenuated.
The exemplary headpiece 100c may be used in ICS systems such as, for example, an exemplary ICS system that includes the cochlear implant 10.
Referring to
The exemplary magnet 110c-2 also includes indicia 176c that may be used to indicate the N-S direction of the associated diametrically magnetized magnetic member 168c-2 as well as the strength of the magnet relative to other magnets in the associated magnet system, as is described below with reference to
Turning to
The respective uncompressed thicknesses TMU (
In the illustrated implementation, the number of chevrons 160a identifies the relative strengths of the magnets 110c-1 to 110c-4. A single chevron 176c is indicative of the weakest magnet (i.e., magnet 110c-1) and four chevrons are indicative of the strongest magnet (i.e., magnet 110c-4). Alternatively, or in addition, other types of strength representative indicia (e.g., numbers or color) may also be employed. The chevrons 160a (or other indicia) may also be provided on the top and bottom surfaces of the magnets 110c-1 to 110-4. The chevrons 176c or other indicia may, for example, be provided on adhesive labels 178c (as shown) or formed directly on the associated surfaces.
The number of magnetic strength options provided by the exemplary magnet system 110c is greater than the number of magnets in the system. The magnets 110c-1 to 110c-4, each of which has a different strength, may be inserted with the magnetic member 168c-1 to 168c-4 facing the implant magnet 22 or with the associated compressible non-magnetic member 170c-1 to 170c-4 facing the implant magnet. Put another way, the magnets 110c-1 to 110c-4 may be inserted into the receptacle 112c in such a manner that the non-magnetic member 154-1 to 154-4 is between the associated magnetic member 168c-1 to 168c-4 and the bottom wall 114c, or in such a manner that the non-magnetic member is not between the associated magnetic member and the bottom wall. The user can, therefore, select either of two possible magnetic member to implant magnet distances for each of the magnets 110c-1 to 110c-4 depending upon the insertion orientation of the magnet. Additionally, given the slightly lesser thickness of the magnet 110c-1, the compressible spacer 111b may be placed between the magnet 110c-1 and the bottom end of the reservoir 112c when the magnet 110c-1 is in either orientation. Accordingly, each of the magnets 110c-2 to 110c-4 is capable of creating two different magnetic attraction forces with the same implant magnet, while the magnet 110c-1 is capable of creating four different magnetic attraction forces with the same implant magnet.
It should also be noted that the magnet system 110c may be employed in a headpiece similar to the headpiece 100. For example, the bearing 116 may be modified in such a manner that the projections 160 are omitted and the entire bearing remains within the receptacle. Weights similar to weights 118 may be added to the magnetic members 168c in the magnet system 110c.
The location and number of the microphones may also be adjusted as desired. By way of example, but not limitation, the exemplary headpiece 100d illustrated in
Turning to
Another exemplary headpiece that is configured such that all of the external components (e.g., the battery, the microphone, the sound processor, and the antenna coil) are carried within a single headpiece is generally represented by reference numeral 100f in
To that end, and referring to
During use, the magnets 110f and 178f of the headpiece 100f are positioned over the magnets 22 and 23f of the cochlear implant 10f. The magnets 22 and 110f retain the headpiece 100f on the user's head, while the magnets 23f and 178f align the antennas 20 and 124 and set the orientation of the headpiece 100f (and microphone array axis MA) relative to the user's head. For example, as illustrated in
The implant and headpiece magnets 22, 23f, 110f and 178f may be any suitable magnets. In some instances, such as the illustrated implementation, the implant and headpiece magnets 22, 23f, 110f and 178f may diametrically magnetized disk-shaped magnet that are rotatable relative to the remainders of the cochlear implant 10f and headpiece 100f about respective axes A in the manner described above, with or without associated bearings.
Although the inventions disclosed herein have been described in terms of the preferred embodiments above, numerous modifications and/or additions to the above-described preferred embodiments would be readily apparent to one skilled in the art. The inventions also include any combination of the elements from the various species and embodiments disclosed in the specification that are not already described. It is intended that the scope of the present inventions extend to all such modifications and/or additions and that the scope of the present inventions is limited solely by the claims set forth below.
This application is continuation of U.S. application Ser. No. 16/966,885, filed Aug. 1, 2020, now abandoned, which is the U.S. National Stage of PCT App. Ser. No. PCT/US2018/018451, filed Feb. 15, 2018.
Number | Name | Date | Kind |
---|---|---|---|
4214366 | Laban | Jul 1980 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4595390 | Hakim et al. | Jun 1986 | A |
4606329 | Hough | Aug 1986 | A |
4612915 | Hough et al. | Sep 1986 | A |
4618949 | Lister | Oct 1986 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
5290281 | Tschakaloff | Mar 1994 | A |
5755762 | Bush | May 1998 | A |
5824022 | Zilberman et al. | Oct 1998 | A |
5945762 | Chen et al. | Aug 1999 | A |
6032677 | Blechman et al. | Mar 2000 | A |
6178353 | Griffith et al. | Jan 2001 | B1 |
6190305 | Ball et al. | Feb 2001 | B1 |
6217508 | Ball et al. | Apr 2001 | B1 |
6227820 | Jarvik | May 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6348070 | Teissl et al. | Feb 2002 | B1 |
6358281 | Berrang et al. | Mar 2002 | B1 |
6461288 | Holcomb | Oct 2002 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6838963 | Zimmerling | Jan 2005 | B2 |
7091806 | Zimmerling et al. | Aug 2006 | B2 |
7190247 | Zimmerling | Mar 2007 | B2 |
7266208 | Charvin et al. | Sep 2007 | B2 |
7566296 | Zimmerling et al. | Jul 2009 | B2 |
7609061 | Hochmair | Oct 2009 | B2 |
7642887 | Zimmerling | Jan 2010 | B2 |
7680525 | Damadian | Mar 2010 | B1 |
7774069 | Olson et al. | Aug 2010 | B2 |
7856986 | Darley | Dec 2010 | B2 |
7881800 | Daly et al. | Feb 2011 | B2 |
7976453 | Zimmerling et al. | Jul 2011 | B2 |
8013699 | Zimmerling | Sep 2011 | B2 |
8027735 | Tziviskos et al. | Sep 2011 | B1 |
8118725 | Zimmerling et al. | Feb 2012 | B2 |
8255058 | Gibson et al. | Aug 2012 | B2 |
8340774 | Hochmair et al. | Dec 2012 | B2 |
8634909 | Zimmerling et al. | Jan 2014 | B2 |
8733494 | Leigh | May 2014 | B1 |
8734475 | Ekvall et al. | May 2014 | B2 |
8744106 | Ball | Jun 2014 | B2 |
8758394 | Zimmerling et al. | Jun 2014 | B2 |
8787608 | Van Himbeeck et al. | Jul 2014 | B2 |
8790409 | Van den Heuvel et al. | Jul 2014 | B2 |
8825171 | Thenuwara et al. | Sep 2014 | B1 |
8891795 | Andersson | Nov 2014 | B2 |
8897475 | Ball et al. | Nov 2014 | B2 |
RE45701 | Zimmerling et al. | Sep 2015 | E |
9126010 | Shah et al. | Sep 2015 | B2 |
9162054 | Dalton | Oct 2015 | B2 |
9227064 | Duftner | Jan 2016 | B2 |
9295425 | Ball | Mar 2016 | B2 |
9314625 | Kasic, II et al. | Apr 2016 | B2 |
9352149 | Thenuwara et al. | May 2016 | B2 |
RE46057 | Zimmerling et al. | Jul 2016 | E |
9392382 | Nagl et al. | Jul 2016 | B1 |
9420388 | Ball | Aug 2016 | B2 |
9549267 | Nagl et al. | Jan 2017 | B2 |
9615181 | Nagl et al. | Apr 2017 | B2 |
9656065 | Tourrel et al. | May 2017 | B2 |
9919154 | Lee | Mar 2018 | B2 |
9931501 | Smyth | Apr 2018 | B2 |
10300276 | Lee et al. | May 2019 | B2 |
10463849 | Lee et al. | Nov 2019 | B2 |
10532209 | Lee et al. | Jan 2020 | B2 |
10646712 | Smith et al. | May 2020 | B2 |
10646718 | Smith et al. | May 2020 | B2 |
10806936 | Crawford et al. | Oct 2020 | B2 |
10821279 | Lee et al. | Nov 2020 | B2 |
11097095 | Smith et al. | Aug 2021 | B2 |
11287495 | Smith et al. | Mar 2022 | B2 |
11364384 | Smith et al. | Jun 2022 | B2 |
11471679 | Smith et al. | Oct 2022 | B2 |
11476025 | Lee et al. | Oct 2022 | B2 |
20040012470 | Zimmerling et al. | Jan 2004 | A1 |
20040059423 | Barnes et al. | Mar 2004 | A1 |
20040063072 | Honkura et al. | Apr 2004 | A1 |
20040210103 | Westerkull | Oct 2004 | A1 |
20040260362 | Darley | Dec 2004 | A1 |
20050001703 | Zimmerling | Jan 2005 | A1 |
20050004629 | Gibson et al. | Jan 2005 | A1 |
20050062567 | Zimmerling et al. | Mar 2005 | A1 |
20060015155 | Charvin et al. | Jan 2006 | A1 |
20060116743 | Gibson et al. | Jun 2006 | A1 |
20060244560 | Zimmerling et al. | Nov 2006 | A1 |
20070053536 | Westerkull | Mar 2007 | A1 |
20070126540 | Zimmerling | Jun 2007 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080103350 | Farone | May 2008 | A1 |
20080192968 | Ho et al. | Aug 2008 | A1 |
20080195178 | Kuzma | Aug 2008 | A1 |
20090048580 | Gibson | Feb 2009 | A1 |
20090099403 | Zimmerling et al. | Apr 2009 | A1 |
20090134721 | Zimmerling | May 2009 | A1 |
20090248155 | Parker | Oct 2009 | A1 |
20090287278 | Charvin | Nov 2009 | A1 |
20100004716 | Zimmerling et al. | Jan 2010 | A1 |
20100036458 | Duftner | Feb 2010 | A1 |
20100046778 | Crawford et al. | Feb 2010 | A1 |
20100046779 | Crawford et al. | Feb 2010 | A1 |
20110009925 | Leigh et al. | Jan 2011 | A1 |
20110022120 | Ball et al. | Jan 2011 | A1 |
20110068885 | Fullerton et al. | Mar 2011 | A1 |
20110218605 | Cryer | Sep 2011 | A1 |
20110224756 | Zimmerling et al. | Sep 2011 | A1 |
20110255731 | Ball | Oct 2011 | A1 |
20110264172 | Zimmerling | Oct 2011 | A1 |
20120296155 | Ball | Nov 2012 | A1 |
20130079749 | Overstreet et al. | Mar 2013 | A1 |
20130150657 | Leigh et al. | Jun 2013 | A1 |
20130184804 | Dalton | Jul 2013 | A1 |
20130281764 | Bjorn et al. | Oct 2013 | A1 |
20130343588 | Karunasiri | Dec 2013 | A1 |
20140012069 | Ball | Jan 2014 | A1 |
20140012070 | Nagl et al. | Jan 2014 | A1 |
20140012071 | Nagl et al. | Jan 2014 | A1 |
20140012349 | Zimmerling | Jan 2014 | A1 |
20140121449 | Kasic et al. | May 2014 | A1 |
20140121586 | Bertrand et al. | May 2014 | A1 |
20140163692 | Van den Heuvel et al. | Jun 2014 | A1 |
20140336447 | Bjorn et al. | Nov 2014 | A1 |
20140343626 | Thenuwara et al. | Nov 2014 | A1 |
20150025613 | Nyberg, II et al. | Jan 2015 | A1 |
20150073205 | Ball et al. | Mar 2015 | A1 |
20150087892 | Tourrel et al. | Mar 2015 | A1 |
20150094521 | Neuman et al. | Apr 2015 | A1 |
20150100109 | Feldman et al. | Apr 2015 | A1 |
20150112407 | Hartley et al. | Apr 2015 | A1 |
20150265842 | Ridler | Sep 2015 | A1 |
20150320523 | Way et al. | Nov 2015 | A1 |
20150367126 | Smyth | Dec 2015 | A1 |
20150374989 | Hazard et al. | Dec 2015 | A1 |
20150382114 | Andersson et al. | Dec 2015 | A1 |
20160008596 | Gibson et al. | Jan 2016 | A1 |
20160023006 | Ridler et al. | Jan 2016 | A1 |
20160037273 | Gustafsson | Feb 2016 | A1 |
20160144170 | Gibson et al. | May 2016 | A1 |
20160205484 | Nagl et al. | Jul 2016 | A1 |
20160213936 | Heerlein | Jul 2016 | A1 |
20160310737 | Tourrel et al. | Oct 2016 | A1 |
20160361537 | Leigh et al. | Dec 2016 | A1 |
20160381473 | Gustafsson | Dec 2016 | A1 |
20160381474 | Gustafsson et al. | Dec 2016 | A1 |
20170050027 | Andersson et al. | Feb 2017 | A1 |
20170078808 | Kennes | Mar 2017 | A1 |
20170156010 | Verma et al. | Jun 2017 | A1 |
20170239476 | Lee et al. | Aug 2017 | A1 |
20170347208 | Jurkiewicz | Nov 2017 | A1 |
20180028818 | Anderson et al. | Feb 2018 | A1 |
20180056084 | Alam | Mar 2018 | A1 |
20180110985 | Walter | Apr 2018 | A1 |
20180110986 | Lee | Apr 2018 | A1 |
20180133486 | Smith | May 2018 | A1 |
20180146308 | Leigh et al. | May 2018 | A1 |
20180160241 | Gustafsson et al. | Jun 2018 | A1 |
20180160242 | Sriskandarajah | Jun 2018 | A1 |
20180185634 | Smyth | Jul 2018 | A1 |
20180249262 | Santek | Aug 2018 | A1 |
20180270591 | Kennes | Sep 2018 | A1 |
20180296826 | Lee et al. | Oct 2018 | A1 |
20180303602 | Leigh | Oct 2018 | A1 |
20180304078 | Crawford et al. | Oct 2018 | A1 |
20180369586 | Lee et al. | Dec 2018 | A1 |
20190015662 | Raje et al. | Jan 2019 | A1 |
20190046797 | Calixto et al. | Feb 2019 | A1 |
20190053908 | Cook et al. | Feb 2019 | A1 |
20190076649 | Lee | Mar 2019 | A1 |
20190255316 | Lee et al. | Aug 2019 | A1 |
20190298417 | Barrett et al. | Oct 2019 | A1 |
20200114151 | Smith et al. | Apr 2020 | A1 |
20200230422 | Gibson et al. | Jul 2020 | A1 |
20200238088 | Smith et al. | Jul 2020 | A1 |
20200330777 | Smith et al. | Oct 2020 | A1 |
20200391023 | Lee et al. | Dec 2020 | A1 |
20210046311 | Brehm et al. | Feb 2021 | A1 |
20210106815 | Smith et al. | Apr 2021 | A1 |
20210156934 | Smith et al. | May 2021 | A1 |
20210299456 | Smith et al. | Sep 2021 | A1 |
20210316136 | Smith et al. | Oct 2021 | A1 |
20220273948 | Calixto et al. | Sep 2022 | A1 |
20220280793 | Smith et al. | Sep 2022 | A1 |
Number | Date | Country |
---|---|---|
212542072 | Feb 2021 | CN |
202006017662 | Sep 2007 | DE |
0241307 | Oct 1987 | EP |
2117489 | May 2010 | EP |
2853287 | Apr 2015 | EP |
2560730 | Nov 2016 | EP |
3138605 | Mar 2017 | EP |
2098198 | Sep 2017 | EP |
WO9858990 | Dec 1998 | WO |
WO03081976 | Oct 2003 | WO |
WO03092326 | Nov 2003 | WO |
WO2004004416 | Jan 2004 | WO |
WO2004014269 | Feb 2004 | WO |
WO2004014270 | Feb 2004 | WO |
WO2007024657 | Mar 2007 | WO |
WO2009124045 | Oct 2009 | WO |
WO2009124174 | Oct 2009 | WO |
WO2009149069 | Dec 2009 | WO |
WO2010000027 | Jan 2010 | WO |
WO2010083554 | Jul 2010 | WO |
WO2011011409 | Jan 2011 | WO |
WO2011109486 | Sep 2011 | WO |
WO2011133747 | Oct 2011 | WO |
WO2012010195 | Jan 2012 | WO |
WO2013043176 | Mar 2013 | WO |
WO2013063355 | May 2013 | WO |
WO2014011441 | Jan 2014 | WO |
WO2014011582 | Jan 2014 | WO |
WO2014046662 | Mar 2014 | WO |
WO2014164023 | Oct 2014 | WO |
WO2015065442 | May 2015 | WO |
WO2016016821 | Feb 2016 | WO |
WO2016190886 | Dec 2016 | WO |
WO2016191429 | Dec 2016 | WO |
WO2016207856 | Dec 2016 | WO |
WO2017027045 | Feb 2017 | WO |
WO2017027046 | Feb 2017 | WO |
WO2017029615 | Feb 2017 | WO |
WO2017034530 | Mar 2017 | WO |
WO2017046650 | Mar 2017 | WO |
WO2017087004 | May 2017 | WO |
WO2017105510 | Jun 2017 | WO |
WO2017105511 | Jun 2017 | WO |
WO2017105604 | Jun 2017 | WO |
WO2017172566 | Oct 2017 | WO |
WO2018190813 | Oct 2018 | WO |
WO2018191314 | Oct 2018 | WO |
WO2018199936 | Nov 2018 | WO |
WO2018200347 | Nov 2018 | WO |
WO2018217187 | Nov 2018 | WO |
WO2019027745 | Feb 2019 | WO |
WO2019083540 | May 2019 | WO |
WO2019160555 | Aug 2019 | WO |
WO2020092185 | May 2020 | WO |
WO2021201845 | Oct 2021 | WO |
Entry |
---|
U.S. Appl. No. 16/499,311, filed Sep. 29, 2019, 20210106815 A1. |
U.S. Appl. No. 16/603,868, filed Oct. 9, 2019, 20200114151 A1. |
U.S. Appl. No. 16/754,126, filed Apr. 6, 2020, 20200330777 A1. |
U.S. Appl. No. 16/966,885, filed Aug. 1, 2020, 20210046311 A1. |
PCT International Search and Written Opinion dated Feb. 27, 2019 for PCT App. Ser. No. PCT/US2018/018451. |
Ju Hyun Jeon et al., “Reversing the Polarity of a Cochlear Implant Magnet After Magnetic Resonance Imaging,” Auris Nasus Larynx, vol. 39, No. 4, pp. 415-417, Aug. 1, 2012. |
Teissl et al., “Magentic Resonance Imaging and Cochlear Implants: Compatibility and Safety Aspects,” Journal of Magnetic Resonance Imaging, Society For Magnetic Resonance Imaging, vol. 9, No. 1, pp. 26-38, Jan. 1, 1999. |
U.S. Appl. No. 17/073,322, filed Oct. 17, 2020. |
U.S. Appl. No. 17/008,291, filed Aug. 31, 2020, 20200391023 A1. |
U.S. Appl. No. 16/610,502, filed Nov. 2, 2019, 20210156934 A1. |
U.S. Appl. No. 17/355,225, filed Jun. 23, 2021. |
U.S. Appl. No. 17/346,343, filed Jun. 14, 2021. |
U.S. Appl. No. 15/568,469, filed Oct. 21, 2017, 20180110985 A1. |
U.S. Appl. No. 15/770,207, filed Apr. 22, 2018, U.S. Pat. No. 10,806,936. |
U.S. Appl. No. 17/073,322, filed Oct. 17, 2020, 20210170167 A1. |
U.S. Appl. No. 16/060,383, filed Jun. 7, 2018, U.S. Pat. No. 10,532,209. |
U.S. Appl. No. 15/591,054, filed May 9, 2017, U.S. Pat. No. 9,919,154. |
U.S. Appl. No. 16/009,600, filed Jun. 15, 2018, U.S. Pat. No. 10,821,279. |
U.S. Appl. No. 16/403,582, filed May 5, 2019, U.S. Pat. No. 10,463,849. |
U.S. Appl. No. 17/008,291, filed Aug. 31, 2020, U.S. Pat. No. 11,476,025. |
U.S. Appl. No. 16/610,502, filed Nov. 2, 2019, U.S. Pat. No. 11,287,495. |
U.S. Appl. No. 15/568,470, filed Oct. 21, 2017, U.S. Pat. No. 10,300,276. |
U.S. Appl. No. 16/101,390, filed Aug. 10, 2018, 20190046797 A1. |
U.S. Appl. No. 17/680,217, filed Feb. 24, 2022, 20220273948 A1. |
U.S. Appl. No. 15/703,808, filed Sep. 13, 2017, U.S. Pat. No. 10,646,712. |
U.S. Appl. No. 15/805,025, filed Nov. 6, 2017, U.S. Pat. No. 10,646,718. |
U.S. Appl. No. 16/852,457, filed Apr. 18, 2020, 20200238088 A1. |
U.S. Appl. No. 16/499,311, filed Sep. 29, 2019, U.S. Pat. No. 11,097,095. |
U.S. Appl. No. 17/355,225, filed Jun. 23, 2021, 20210316136 A1. |
U.S. Appl. No. 16/603,868, filed Oct. 9, 2019, U.S. Pat. No. 11,364,384. |
U.S. Appl. No. 17/750,352, filed May 22, 2022, 20220280793 A1. |
U.S. Appl. No. 16/754,126, filed Apr. 6, 2020, U.S. Pat. No. 11,471,679. |
U.S. Appl. No. 17/346,343, filed Jun. 14, 2021, 20210299456 A1. |
U.S. Appl. No. 17/499,813, filed Oct. 12, 2021. |
Number | Date | Country | |
---|---|---|---|
20210339021 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16966885 | US | |
Child | 17335161 | US |