Heads for dermatology treatment

Information

  • Patent Grant
  • 8109924
  • Patent Number
    8,109,924
  • Date Filed
    Thursday, March 24, 2011
    13 years ago
  • Date Issued
    Tuesday, February 7, 2012
    12 years ago
Abstract
Methods and apparatus for dermatology treatment are provided which involve the use of continuous wave (CW) radiation, preheating of the treatment volume, precooling, cooling during treatment and post-treatment cooling of the epidermis above the treatment volume, various beam focusing techniques to reduce scattering and/or other techniques for reducing the cost and/or increasing the efficacy of optical radiation for use in hair removal and other dermatological treatments. A number of embodiments are included for achieving the various objectives indicated above.
Description
FIELD OF THE INVENTION

This invention relates to apparatus for using optical radiation to treat dermatological problems and, more particularly, to heads for such apparatus which heads provide an elongated focus area at a selected depth and/or selected preconditioning, for example heating and/or cooling, of a treatment area.


BACKGROUND OF THE INVENTION

Lasers, lamps, and other sources of electromagnetic radiation, particularly in the optical wavebands, are being increasingly utilized for various dermatological treatments and, in particular, for the removal of unwanted hair, spider veins, leg veins, other veins or other blood vessels which are visible through the patient's skin, lesions, port-wine stains, tattoos, and the like. In performing such treatments, it is desirable that the cost for the treatment be kept as low as possible, consistent with achieving desired results, and that risk of injury to the patient be minimized.


Since continuous wave (CW) lasers and other CW radiation sources are typically substantially less expensive than pulsed sources of comparable wavelength and energy, for cost reasons, it would be preferable to use CW sources rather than pulsed sources for such dermatological treatments. However, in order to avoid injury to the patient, the duration of energy application to a given area of the patient's skin must be controlled, this generally resulting in the more expensive pulsed light sources being used for the various dermatological treatments. Further, since the only way to get radiation to areas where treatment is desired, which areas are normally in the dermis, is to transmit the radiation to such area through the overlying epidermis, some portion of incident radiation is absorbed in the epidermis creating the potential for damage thereto. This is a particular problem where melanin is being targeted in the dermis, as is for example the case for various hair removal treatments, since there is a substantial concentration of melanin in the lower portion of the epidermis at the dermal/epidermal (DE) junction. Further, the deeper in the dermis that treatment is desired, and/or the larger the element being treated, the more energy must be used, this generally involving the use of a more powerful laser or other radiation source and/or operating such source for longer time durations. This further increases the potential for epidermal damage.


Some attempts have been made in the past to scan a CW radiation source, such as the laser, over a treatment area, which has been done with the radiation source spaced from the skin in order to facilitate movement of the source. However, techniques currently utilized for protecting the epidermis frequently involve contact cooling of the epidermis and, for certain treatments such as hair removal, performing the treatment with pressure applied to the patient's skin is also desirable. Irradiation by use of a head in contact with the skin also permits more efficient transfer of energy into the patient's skin, thereby reducing the size of the source required for a given treatment energy density and, therefore, reducing the cost of such source. This cost could be further reduced if the radiation source is not the only source being utilized to heat the area under treatment.


Another problem in performing laser dermatology treatments, particularly when such treatment is to be performed over an area larger than the optical aperture of the applicator being utilized, is to obtain substantially uniform irradiation over the area so that sufficient radiation is applied to all portions of the area to achieve the desired treatment, while no portion of the area has so much radiation applied thereto as to cause thermal damage to the skin. Such uniform irradiation is very difficult with a pulsed source which typically utilize a circular aperture. Typically, the procedure followed is to irradiate a spot with a given pulse and to then reposition the head to an adjacent spot for irradiation. If the spots do not overlap, there will be portions of the area under treatment which do not receive radiation and, unfortunately, the radiation output is frequently not uniform over the entire optical aperture, being greater near the center, and less at the edges. Therefore, there is generally some overlap between adjacent spots. However, this results in some portions of the area under treatment receiving at least a double dose of radiation, which poses a potential danger of thermal damage in these overlap areas. Substantially uniform irradiation of a treatment area is therefore virtually impossible with a pulsed radiation source utilizing existing techniques.


Another problem which increases the energy required from the radiation source utilized is that, for existing systems, heating of the target to achieve the desired therapeutic effect is accomplished solely by radiation from the radiation source. If the temperature of the target could be increased by some type of preheating of the target volume, the amount of energy required from the radiation source to complete the job would be substantially reduced. However, such preheating must be achieved in a way such that the cost of such preheating is not greater than the savings achieved by reduced requirements on the radiation source.


Similarly, in order to protect the epidermis, many procedures require that the epidermis be cooled, preferably to the DE junction, to at least a selected temperature, for example 10° C., 0° C., or even slightly lower, before radiation is applied. If contact cooling starts when the head is over the target area, this means that there is some delay, perhaps half a second to a second, between the time the head is applied to the patient's skin and the time the radiation source is fired. With CW, such a delay once the radiation source is over the target area is difficult to achieve and it is therefore preferable that precooling of the epidermis occur for the target area before the radiation source is thereover. An ideal procedure would be to preheat the skin down to the target depth and then to precool to the DE junction, leaving the target depth preheated. Mechanisms in general, and heads in particular, for achieving such precooling and/or preheating followed by precooling have not heretofore existed.


It is also desirable to be able to focus the optical radiation at substantially the target depth. While heads have heretofore existed which are capable of achieving such a focus on a given spot, faster operation, particularly when operating in CW mode, although also when operating in pulse mode under some circumstances, can be achieved if there is a line focus at the target depth rather than a point focus. Mechanisms for achieving such a line focus have also not heretofore existed.


A need therefore exists for improved apparatus for utilizing optical radiation to treat various dermatological conditions, and in particular, improved heads for use in such apparatus which facilitate preheating and/or precooling of the target area, particularly when operating in CW mode, but also when operating in other modes, and which also facilitate achieving of a line focus for the radiation at a selected target depth for enhanced, and in particular, more rapid treatment.


SUMMARY OF THE INVENTION

In accordance with the above, this invention provides various heads for use in apparatus for effecting a selected dermatologic treatment in an area of a patient's skin. For some embodiments, the head includes a block formed of a material having good thermal transfer properties, a plurality of first optical waveguide elements and a plurality of second optical waveguide elements extending through the block, the first and second optical waveguide elements being angled at first and second angles respectively, which angles are selected so that light passing through the first and second optical waveguide elements converge at a selected depth. The optical waveguide elements have radiation applied thereto which is appropriate for the selected dermatologic treatment. The selected depth is in the area under treatment at which the dermatologic treatment is to occur. For some embodiments, a recess is formed in a surface of the head in contact with the patient's skin, the recess being at the distal end of the optical waveguide elements, and the selected depth is at a selected location in the recess. For these embodiments, a means is provided for moving skin in the area under treatment into said recess as said recess passes thereover. This means may, for example, include a source of negative pressure connected to the recess. For preferred embodiments, the block also has a skin contacting surface which retroreflects radiation leaving the patient's skin. A mechanism may also be provided for controlling the temperature of either the entire block or selected portions thereof.


For other embodiments, the head includes an astigmatic lens having an elongated outer surface, one side of said surface contacting the patient's skin in the area to be treated along an elongated line. A mechanism is provided which delivers light of a wavelength suitable for the dermatologic procedure to the lens on a side thereof other than the side contacting the patient's skin, the lens focusing light delivered thereto to a selected depth in the patient's skin. The lens may be a cylindrical lens with a diameter such that light delivered thereto is focused to the selected depth, and may be mounted to be either stationary or rotating as the head is moved over a treatment area. For some embodiments, the lens is treated so as to normally have total internal reflection, the total internal reflection being broken at a surface of the lens in contact with the patient's skin. To achieve the desired focus, the radius of curvature of the cylindrical lens for some embodiments is less than or equal 10 mm. For some embodiments, the selected depth is that for a portion of a hair follicle responsible at least in part for hair growth, for example, the hair bulge or the hair bulb. The selected depth may, for example, be 1 mm to 5 mm.


The mechanism for delivering light to the lens may deliver light along a line substantially parallel to the elongated line contacting the patient's skin surface and/or may cause light to be delivered to the lens at a variety of angles. A cooling mechanism may also be available for the patient's skin before the lens makes contact with the skin and/or while the lens is in such contact, the cooling mechanism for some embodiments, including a mechanism for cooling the lens. For some embodiments, the lens focuses light at said selected depth to an astigmatic focus area having a long dimension substantially parallel to the elongated line of lens contact with the skin. Finally, for some embodiments, the mechanism delivering light to the lens scans along the lens in its elongated direction, the scanning being at a selected rate.


More generally, the invention includes a focusing element having a light receiving region, a light delivery region which is adapted to be in contact with the patient's skin and a region which focuses light entering at said receiving region, the focus, when such element is in contact with the patient's skin being to an elongated astigmatic focus area at a selected skin depth. A mechanism is included which delivers light of a wavelength suitable for the dermatologic procedure to the light receiving region. The selected depth for some embodiments is the depth for a portion of a hair follicle responsible at least in part for hair growth, for example the hair bulge and/or hair bulb, and may be approximately 1 mm to 5 mm into the skin. A cooling mechanism for the patient's skin may also be provided, which mechanism is operated before the element makes contact with the skin and/or while the element is in contact therewith.


In accordance with still another embodiment of the invention, the head includes an optically transparent channel for delivering optical radiation of a wavelength appropriate for effecting the treatment in the area, a head portion of a thermally conductive material mounted relative to the channel so that it moves over each segment to be treated of such area before the channel, and a thermal component which controls the temperature of the head portion, and thus of each skin segment prior to treatment. In particular, the component may cool the portion, and thus each skin segment prior to treatment and/or the component may heat the portion, and thus heat each segment prior to treatment. The head may include a block formed of a material having good heat transfer properties, the block being adapted to move over the area during treatment, the channel being formed through the block and the portion being a portion of the block which is forward of the channel as the block is moved over the area. The head portion forward of the channel may be divided into a first thermally conductive portion which is heated and a second thermally conductive portion which is cooled, which portions are thermally insulated from each other, the first portion heating the patient's skin to the depth where treatment is to be performed and the second portion then cooling the patient's epidermis prior to irradiation. The head may also include a portion of a thermally conductive material mounted relative to the channel so that it moves over each segment to be treated of the area after the channel; and a thermal component which cools such rear head portion, and thus each skin segment after treatment.


While for preferred embodiments, preheating of the skin in the treatment area is accomplished in conjunction with the use of CW radiation and movement of the head over the treatment area, this is not a limitation on the invention, and preheating of the treatment area is also advantageous when employed with a pulsed radiation source. For such applications, preheating could be achieved by heating the waveguide or the portion of the head in contact with the segment under treatment prior to treatment to heat the skin down to at least to the depth where treatment is desired to a temperature which temperature is below that at which thermal damage occurs; and to then cool the surface in contact with the epidermis to cool the epidermis before irradiation begins. This results in the area under treatment having an elevated temperature when irradiation begins, thereby reducing the energy required from the radiation source. Alternatively, a low energy radiation source, which can be either the same or different than that used for treatment, can be used to perform the preheating operation.


The foregoing and other objects, features and advantages of the invention will be apparent in the following more particular description of preferred embodiments of the invention as illustrated in the accompanying drawings.





IN THE DRAWINGS


FIG. 1 is a semi-schematic perspective view of apparatus suitable for practicing the teachings of this invention;



FIG. 2 is a sectional view of a head useful for practicing the teachings of this invention in accordance with a first embodiment;



FIG. 3 is a sectional view of a head suitable for practicing the teachings of this invention in accordance with a second embodiment;



FIG. 4 is a sectional view of a head suitable for practicing the teachings of this invention in accordance with a third embodiment;



FIG. 5 is a perspective sectional view of a head suitable for practicing the teachings of this invention in accordance with a fourth embodiment;



FIGS. 6
a-6b illustrate two embodiments of astigmatic transparent channel suitable for use in a head of the various embodiments to deliver radiant energy;



FIG. 7 is a side view of a head in use which is suitable for practicing the teachings of this invention in accordance with a fifth embodiment;



FIG. 8 is a side sectional view of a head suitable for practicing the teachings of this invention in accordance with a sixth embodiment;



FIG. 9 is a top perspective view of a head suitable for practicing the teachings of this invention in accordance with a seventh embodiment;



FIGS. 10
a and 10b are a side sectional view and a front view, respectively, of a head suitable for practicing the teachings of this invention in accordance with an eighth embodiment;



FIGS. 11
a, 11b and 11c are a side view, a front view when not in contact with a patient's skin, and a front view in contact with the patient's skin, for a head suitable for practicing the teachings of this invention in accordance with a ninth embodiment;



FIGS. 12
a and 12b are perspective views of portions of a head illustrating various techniques for scanning a radiation source across an astigmatic radiation delivery channel;



FIG. 13 is a side sectional view of a head suitable for practicing one aspect of the invention in accordance with a tenth embodiment;



FIG. 14 is a graph illustrating the relationship between temperature at the basal layer and scanning velocity when practicing the teachings of this invention; and



FIG. 15 is a chart illustrating the relationship between scanning velocity of the head and the maximum temperature of a hair bulb located at a selected depth.



FIG. 16 is a chart illustrating the relationship between power per unit length and maximum temperature of the hair bulb at a selected depth for two different sizes of hair bulb.





DETAILED DESCRIPTION


FIG. 1 illustrates a general system suitable for practicing the teachings of this invention. In FIG. 1, an area 10 of a patient's skin is shown on which a selected dermatologic treatment is to be performed. As indicated earlier, the treatment may be for removal of unwanted hair, tattoos, port wine stains, spider veins or other vascular lesions, etc. The patient's skin has an epidermal layer 12 and a dermal layer 14, with a dermal-epidermal (D/E) junction or basal layer 16 therebetween. While some dermatologic treatments may involve heating the epidermis 17, such as for example skin resurfacing, most dermatologic treatments which involve the use of optical radiation treat a condition located at a selected volume (sometimes hereinafter referred to as the target volume or target) within dermal layer 14. For example, when the dermatological treatment is hair removal, it may be desired to heat and destroy the bulb 18 of a hair follicle 20. While epidermis 12 might for example be 0.01 cm deep, bulb 18 might, for example, be 3.0 to 5.0 millimeters into the skin. Utilizing the teachings of this invention, a plurality of hair follicles 20 may be simultaneously heated and destroyed.


The apparatus of this invention includes an applicator 22 which may be mechanically driven, but which, for purposes of the following discussion, will be assumed to be hand operated (i.e., translated over the skin surface by hand). Applicator 22 includes a head 24 in contact with the patient's skin in the treatment area and a handle 26 which may be grasped by an operator to move head 24 in for example direction 28 across the patient's skin while preferably maintaining contact between head 24 and the patient's skin. Such contact should be under sufficient pressure between the surface of the head and the skin surface so as to, for preferred embodiments, assure good thermal and optical contact therebetween. Such pressure can be achieved by pressing the head against the skin, by using negative pressure to press the skin against the head or some combination of the two.


For some embodiments of the invention, a source of optical radiation 30 is connected to a light pipe 32, which for the embodiment of FIG. 1 is shown as extending through handle 26, but may otherwise be connected to head 24, to selectively provide optical radiation to the head, radiation being applied through the head, in a manner to be discussed later, to the patient's skin. Source 30 may be a coherent light source such as a ruby, alexandrite, or other solid laser source, a gaseous laser source, or a diode laser source, or may be an incoherent light source such as a flashlamp, fluorescent lamp, halogen lamp, or other suitable lamp. Depending on the desired treatment, the radiant energy may be at a single wavelength, with incoherent light sources being filtered to provide the desired wavelength, or over a selected band of wavelengths. In the following discussion, when it is indicated that radiation is being applied at a selected wavelength, this will mean either a single wavelength or a wavelength band, as appropriate. Source 30 in accordance with preferred embodiments of this invention is also a CW source which, for purposes of this invention shall be defined as either a light source which is producing radiation continuously or a pulsed source with a high repetition rate/frequency, and in particular which has a delay between pulses which is less than the dwell time of the head on a given segment. CW radiation is defined as radiation from either such source.


While in FIG. 1 source 30 is shown as external to head 24, for some embodiments of the invention which involve the use of a diode laser, diode laser bar or other sufficiently compact radiation source, the source may be located in head 24, with wires for controlling and energizing the source being connected through handle 26 or otherwise to the head. Controls 34 are also provided which receive certain information from head 24 over lines 36, for example information relating to rate of movement of head 24 over the patient's skin, or temperature of the epidermis and which may send control signals to the head over lines 38 as required. Lines 36 and 38 may be part of a cable which is also connected to head 24 through handle 26 or may be otherwise connected to the head. Controls 34 may also generate outputs to control the operation of source 30 and may receive information from the source. Controls 34 may also control selected output devices 40, for example a buzzer, light, vibrator or other feedback control to an operator or, depending on application, may be of other types known in the art.


Before discussing specific embodiments for head 24 and the manner in which the system of FIG. 1 may be utilized to treat various dermatological conditions in accordance with such embodiments, it should be appreciated that maintaining head 24 in good thermal and optical contact with the surface of the patient's skin during treatment while applying CW radiation from source 30, whether located external to head 24 as shown in FIG. 1 or within the head, offers a number of significant advantages when performing various dermatological treatments. First, as indicated earlier, for the same radiation source operating at comparable energy levels, a CW source is almost always substantially less expensive than a comparable pulsed source. Therefore, the ability to use a CW source results in a significant reduction in system cost. Second, if head 24 is moved across the surface of the patient's skin at a substantially uniform rate, the radiation applied to the patient's skin at each point along the path of travel of head 24 is substantially the same, something which, as indicated above, cannot easily be achieved with a pulsed radiation source. The head being in good optical contact with the patient's skin improves the efficiencies of energy transfer into the skin, further reducing the size and cost of the required energy source. Further, the head 24 being in good thermal contact with the patient's skin permits the head to be used to heat the volume in the patient's dermis at which treatment is to occur, for example the area of bulb 18 for a hair removal procedure, so as to reduce the amount of energy required from the radiation source in order to perform the desired procedure at this volume, thus further reducing the cost of such source. Good thermal contact also permits the head to be utilized to cool the patient's epidermis 12 before irradiation, during irradiation, and after irradiation, to protect the epidermis from thermal damage. Applying pressure to head 24 as it is moved across the surface of treatment area 10 also stretches the skin in the treatment area which can provide a number of advantages, including reducing the physical distance between the head and the target volume, reducing the coefficient of scattering in the skin so that more of the applied radiation reaches the target volume and, for hair removal, flattening the hair follicle so as to increase the area of the follicle exposed to radiation. All of these effects reduce the amount of radiation required from the source, thereby further reducing the cost of the system. Various techniques are available for measuring/detecting good thermal contact between a head and the patient's skin including the temperature profile detecting technique of copending application Ser. No. 60/077,726 filed Mar. 12, 1998, which application is incorporated herein by reference. FIG. 2 illustrates one exemplary embodiment for a hand piece 24A suitable for use in practicing the teachings of this invention. In the discussion of this embodiment, and in the embodiments to follow, the same reference numerals will be used for common elements. Letter suffixes will be used for elements which are substantially the same, but differ in some particulars. Thus, the letters 24A, 24B, etc. are used for the various embodiments of handpiece 24.


Handpiece 24A has three sections, an optical channel 50 which is shown in FIG. 2 as a waveguide, a leading section 52 which passes over treatment area 10 before waveguide 50 and a trailing section 54 which passes over the treatment area after waveguide 50. Optical radiation is applied to waveguide 50 through optical fibers 32 (or fiber bundle) or other suitable optical transmission components or, as will be discussed later, laser diodes or other suitable components may be in contact with waveguide 50. Waveguide 50 may also be replaced with a lens or other suitable focusing or non-focusing optical transmission component (a waveguide, lens or other suitable focusing or non-focusing optical transmission component sometimes being collectively referred to hereinafter as an “optical channel”), which optical transmission component receives radiation from the radiation source utilized through a suitable optical transmission path. Other arrangements for getting radiation to optical channel 50 can also be employed.


Sections 52 and 54 are each formed of a metal or other material having good thermal conduction properties. Sections 52 and 54 may be formed as a single block of a single material, with optical channel 50 being formed in the block, or, where sections 52 and 54 are to have different temperature profiles, the sections may, as will be discussed later, be two separate sections of the same or different materials secured together with a layer of thermal insulation therebetween. In FIG. 2, a thermal component 56a, 56b, 56c is shown in contact with section 52, waveguide 50, and section 54, respectively. For a preferred embodiment, each of the thermal components 56 is a thermoelectric element such as a Peltier effect device; however, other mechanisms for controlling temperature known in the art, including flowing water, and flowing gas or spray at a desired temperature may be utilized for thermal components 56. In applications where sections 52 and 54 have the same temperature profile, the same thermal component may be used to control the temperature of both sections; however, particularly if thermoelectric components are used, it is preferable that a number of these components be utilized, distributed over sections 52 and 54 so as to achieve a substantially uniform temperature distribution in these sections.



FIG. 3 shows a head 24B which is substantially the same as the head 24A shown in FIG. 2 except that, in addition to sections 52 and 54, head 24B also has a section 58, ahead of section 52, with a thermal insulation layer 60 being provided between sections 52 and 58. Section 58 is also formed of a metal or other material having good thermal conduction characteristics and a thermal element 56d, for example one or more thermoelectric or thermal resistance elements, is provided in thermal contact with section 58. As will be discussed shortly, section 58 is intended to have a different temperature profile than section 52.


For the embodiment of FIG. 2, section 52 may be utilized to either pre-heat or pre-cool the patient's skin in the treatment area. For a head 24 moving at a velocity V in direction 28, V sometimes also being referred to as the “scanning velocity”, and for a length of section 52 in the direction of movement 28 equal to L1, the time T1 during which section 52 is over a segment of the patient's skin prior to treatment, and thus the time of pre-heating







T
1

=


L
1

V






or pre-cooling, is roughly directly proportional to L1 and inversely proportional to V. Thus,







T
z

=


z
2


4

α







Since the time it takes for a temperature wave to penetrate to a depth z in the skin is, where α is the skin thermal-diffusion coefficient (α≈1.5·10−3 cm2/s). Therefore if these two times (T1 and TZ) are roughly equal, then:






z
=



4


α
·

L
1




V






and the desired thermal effect will reach a desired depth z during the period that section 52 overlies the skin segment. Thus, L1 and V can be selected so as to achieve the desired thermal effect at a desired depth in the skin prior to irradiation. Since, as will be discussed shortly, V is also a factor in determining the duration of irradiation for achieving the desired therapeutic effect, L1 may be the prime factor in determining the depth for the desired thermal effect. For pre-heating, the depth z is the depth of the volume at which treatment is desired. For example, referring to FIG. 1, z might be the depth of bulb 18 of a hair follicle where the treatment is hair removal. For pre-cooling, it is generally desired to cool the entire epidermis 12 to DE junction 16. It is generally undesirable to cool significantly below the DE junction since this may interfere with treatment by having some cooling effect on the treatment or target volume. Depending on the function section 52 is to perform and the scanning rate V, L1 is selected so as to achieve the desired thermal effect to the desired depth z.



FIG. 3 differs from FIG. 2 in that there are two pre-temperature modifying sections 52 and 58. With this arrangement, section 58 is typically heated to pre-heat to the depth zc of the target volume. Section 52 is cooled and is intended to subsequently cool the epidermis to roughly DE junction 16. Since heating performed by section 58 is to a greater depth than the cooling performed by section 52, L4 is shown as being greater than L1 in FIG. 3. The combination of sections 52 and 58 permits the target to be heated and remain heated prior to irradiation while the epidermis is protected against thermal damage by being cooled prior to irradiation.


The temperature profile at the depth z is a function of the initial temperature of the skin and of the temperature of the section 52, 58 for head 24B. The length of the segment L1 and scanning velocity V are also factors in determining the final temperature at depth z. An estimate of skin temperature at depth z can be made using Thomson's equation as follows:







T


(

z
,
V
,

L
1


)


=

2
·



T
0

-

T
1



π


·



0

z

2




α






L
1


V










-

ξ
2







ξ_T
1










where T0 is the initial temperature of the skin, T1 is the initial temperature of the segment which is assumed for purposes of the equation to be segment 52. For scanning velocities in the range of approximately 0.05 to 10 cm/s, and length L of approximately 0.125 cm, desired pre-heating to a temperature in the range of +40° C. to +60° C. or pre-cooling of −30° C. to +20° C. can be achieved. Typically, the epidermis would be cooled to the DE junction to a temperature in the −5° C. to 0° C. range. Scanning velocities up to 10 cm/s should be achievable with contact scanning, but scanning velocities in excess of 10 cm/s may be more difficult to achieve.


The embodiment of FIG. 3 complicates the determination of appropriate parameters since scanning velocity V, which is the same for all sections, must be selected so that pre-heating can be achieved to a desired depth with an L4 of reasonable size, pre-cooling to the DE junction can be achieved with an L1 of reasonable size, and the desired therapeutic effect can be achieved, using the radiation source with a given fluence and for a reasonably achievable value of L2. This is somewhat complicated by the fact that in order to heat deep layers of the skin (i.e., greater than 3 mm) the scanning velocity should not exceed approximately 0.1 to 0.2 cm/s, while for heating of subsurface layers of the skin (less than 1 mm) the scanning velocity can be up to 2 cm/s. This assumes an L4 of approximately 5 cm or less.


Radiation passing through waveguide or other optically transparent component 50 is directed through the epidermis, which has preferably been pre-cooled to the target, which may have been pre-heated, in order to achieve the desired therapeutic effect. In determining the time during which the target is irradiated, account must be taken of the fact that, due to scattering in the patient's skin, the beam width at the target can be greater than L2, the width of radiation at the skin surface, by a value Δ. Value L2+Δ can be minimized by focusing of the beam. Thus, the exposure time T2 of the target to CW radiation is given as,







T
2

=



L
2

+
Δ

V






The target has a thermal relaxation time which is generally a function of its size and of its shape. It is generally desirable that the time T2 be roughly equal to the thermal relaxation time of the target, assuming destruction of the target is the desired therapeutic effect, since this results in maximum heating of the target with minimal heating of surrounding tissue. In applications such as hair removal, where it has been found that some damage to a small layer of tissue surrounding the follicle facilitates permanent, or at least more permanent, hair removal, it may be desirable for the time T2 to be slightly greater than the thermal relaxation time of the target. In any event, for a target having a size or diameter d, the critical velocity at which dwell time on the target is roughly equal to its thermal relaxation time is given by,







V
c

=



g


(


L
2

+
Δ

)



α


d
2







where g is shape factor (g=8, 16 and 24 for stratified, cylindrical and spherical targets, respectively). Thus, where bulb 18 of a follicle is the target, g would be approximately 24. Assuming a maximum scanning velocity of 10 cm/s, and also assuming a depth z≈3 mm and L2+Δ of about 3 mm, equation (6) suggests that the process works best for stratified targets like fat layer with a thickness greater than 190 μm, cylindrical targets like a blood vessel with a diameter greater than 270 μm, and spherical targets like a hair bulb with a diameter greater than 320 μm. However, since, as discussed earlier, lower velocities would typically be employed in order to achieve pre-heating and/or pre-cooling for section 52, 58, significantly larger minimum target volumes are required for the various shapes in a practical system. However, since Vc is only a guide, and times less than or greater than thermal relaxation time of the target may be appropriate in some treatments, treatable target sizes will also vary. Effective pre-heating of the target may also reduce the required dwell time to achieve a desired therapeutic effect.


Another concern when employing the teachings of this invention for dermatologic treatment is that the temperature rise at the target be sufficient to achieve the desired effect.


Where the treatment being performed is hair removal utilizing techniques similar to those described in U.S. Pat. No. 5,735,844 issued Apr. 7, 1998, it is necessary to heat the hair bulb to a temperature of approximately 65° C. to 75° C. The maximum temperature of a hair bulb undergoing irradiation is given by the following equation,







T
m

=




6


τ


(
d
)




(

1
-

exp


(

-

a


τ


(
d
)


·
V



)



)



c
·
ρ
·
d





k


(
λ
)


·

ψ


(

z
,
λ

)


·
P


+

T
0







where, z is the depth of the bulb 18 in the skin T0 is the initial temperature of the bulb before irradiation a is the size of the irradiate zone inside the skin along the scanning direction at the depth z (as previously indicated a=L2+Δ) c and p are the heat-capacity and density of the bulb respectively k(λ) is the absorbing ability of the hair bulb and shaft defined by a concentration and a type of melanin, and depends on wavelength (is greater for dark hair and less for lighter hair) ψ(z, λ) is the radiance inside the skin at the depth z, caused by a light flux of unit power per length. It depends on both scattering and absorption inside the skin P is the power per unit length (i.e., equal to the total power applied to the skin surface per width of the light beam in the direction perpendicular to the direction of scanning. P is in units of W/cm. τ(d)=d2/gα is a period of thermal relaxation, where d is a diameter of the bulb, g is as previously indicated equal to 24 for a hair bulb, and α is the thermal diffusion coefficient of the tissue around the bulb.


For the destruction of a hair bulb, λ is in a range of 600-1200 nm and is preferably in a range of 670-1100 nm. In this range, k(λ) varies from 1-0.1 and decreases with increasing wavelength. ψ(z, λ) in this range increases with wavelength because of the weakening of the skin scattering properties and decreases with depth. At a depth of 3-5 mm where a hair bulb in its anagen stage is typically locate, this value, which is sometimes referred to as radiance attenuation, is in the range of 0.1-0.5. This value may be significantly increased where focusing techniques to be described later are used. With focusing, the reflection coefficient of light from the skin can be 20%-70%. Further, reflection of light scattered from the skin back into it by various means to be described increases the radiance in the zone of the hair bulge or in a hair bulb 1.2-2.5 times. Thus, the devices of this invention can allow ψ(z, λ) to be increased to 0.5-1.


From the above, it can be seen that, once the geometry of the systems has been selected, the temperature at the bulb is directly proportional to the applied power P and is







T
m

=



6
·
P
·
d
·
k
·
ψ


g
·
α
·
c
·
ρ
·
a


+

T
0







inversely proportional to the velocity V in a more complex way. FIG. 15 illustrates the dependence of maximum temperature at a hair bulb on scanning velocity V for typical parameters. The curve of FIG. 15 is calculated assuming a=0.3 cm, k=0.5, ψ=0.5, P=40 W/cm2, d=0.03 cm. From FIG. 15, it is seen that at low scanning velocities, Tm does not depend on scanning velocity and is equal to







V
m

=


g
·
a
·
α


3
·

d
2








When the scanning velocity exceeds


temperature Tm starts to decrease.


When V is less than Vm, the average temperature of the hair bulb does not change with changing velocity, but selectivity of thermal damage decreases. Thus, by decreasing the velocity of scanning, it is possible to increase the diameter of the zone of thermal damage around the hair bulb. Maximum scanning velocity depends on the hair bulb dimension and decreases as the size of the follicle increases.



FIG. 16 shows the dependence of Tm for a hair bulb on the power per unit length P. For a treatment period of less than 1 second, denaturization of protein structures is observed at temperature exceeding 65° C. From FIG. 16, it is seen that maximum temperature Tm at a hair bulb is also a function of the power P per unit length. For a treatment of less than 1 second, denaturization of protein structures is observed to occur at temperatures exceeding 65° C. FIG. 16 also illustrates that the power required to cause thermal damage in a hair bulb is inversely proportional to the size of the hair bulb (i.e., thermal damage is caused at a lower power for a large bulb than for a small bulb).


Thus, for hair removal, and regardless of the embodiment utilized, the following parameters would apply:


1. Wavelength: 600-1200 nm;


2. average power per length unit: 5-150 W/cm;


3. width of beam along direction of scanning: 0.05-5 mm;


4. scanning velocity: 0.01-10 cm/s;


5. temperature of cooling: −20° C.-+30° C.


For preferred embodiments, optically transparent section 50 is also cooled by thermal element(s) 56b so as to prevent, or at least limit, heating of epidermis 12 in the treatment area during irradiation. This cooling effect is also a function of the scanning velocity and is particularly critical where irradiation used is of a wavelength which preferentially targets melanin, as is for example the case for certain hair removal treatments. Since there is a high concentration of melanin at DE junction 16, it is desirable that V be slow enough so as to permit heat produced at the DE junction to be removed through the cooled waveguide or other cooled optically transparent element 50. The maximum scanning velocity at which the cooling effect becomes noticeable for a given depth z is given by,







V
max

=


4
·

L
2

·
α


z
2







Where epidermis 12 to be cooled has a thickness of approximately 100 μm and the length L2 is approximately 1 mm, Vmax=6 cm/s.


Further, as indicated earlier, the pressure applied to the skin by head 24 in general, and by the skin-contacting surface of element 50 in particular, has a number of advantages, including improving the optical transmission (i.e., reducing scattering) for radiation passing through the skin. The head moving in the direction 28 over area 10 of the skin also stretches the skin in the direction of scanning resulting in an additional increase in skin transmission and thus the depth of electromagnetic wave penetration into the skin. Further, when the target is for example a hair follicle, the stretching of the skin turns the follicle to cause the radiation to impinge on a larger portion of the follicle and brings the follicle nearer to the skin surface.


Section 54 continues to cool the epidermis after irradiation to further guard against potential thermal damage to the skin. Unlike lengths L1, L2 and L4 which are fairly critical, the length L3 is not critical. The purpose of this section is to assure that the epidermis is not overheated and, if the prior sections are effective in keeping the epidermis temperature down, section 54 may not be required.


Since it is generally desirable to decrease the time element 50 is over the target, it is generally desirable that L2 be kept small. However, in order to achieve more rapid treatment, a significant beam aperture is desirable. This suggests that the dimension of the beam perpendicular to the direction of movement should be relatively large, resulting in an aperture for the skin contacting surface of element 50 which has an astigmatic shape, which shape may also be asymmetric. FIG. 6 illustrates two such shapes, namely an oval 66 (FIG. 6a), and a series of adjacent light pipes 76a, 76b as shown in FIG. 6b, the light pipes of FIG. 6b being discussed in greater detail in conjunction with FIG. 4. These shapes are just examples of astigmatic shapes for an optical aperture, and many other astigmatic shapes are within the contemplation of the invention.


Further, in order to deliver the radiation to a significant depth (i.e., greater than 1 mm) efficiently, large diameter beams are generally required to overcome the effect of scattering. With astigmatic beams of the type shown in FIG. 6, it is therefore desirable that focusing of the beam in a direction perpendicular to the direction of scanning be used. One way of achieving this is through use of a cylindrical lens 70 such as is shown in FIG. 9 which lens has a small radius of curvature (for example less than 10 mm). However, such focusing can perhaps be better achieved through use of a head 24C such as that shown in FIG. 4. This head has a section 52 which functions in the same way as section 52 of head 24A to pre-cool or pre-heat the area under treatment. Section 52 is separated from a section 72 of the head by a layer of thermal insulation material 74. Section 72 is also formed of a metal or other material having good thermal conduction properties. Two rows of micro-optic elements 76a and 76b are provided which extend through section 72 and are angled so that their focuses are combined along a common line located at the target depth. Microlenses may be included at the distal ends of elements 76 to enhance focusing. This technique allows the beams to be targeted into the skin at angles greater and can be achieved using optical systems and more effectively compensates for the scattering of radiation in the skin. Section 72 would be cooled, preferably by a number of thermoelectrical elements 56b, so as to provide both pre-cooling of the epidermis prior to irradiation, cooling of the epidermis during irradiation, and post-cooling of the epidermis. Section 72 can thus perform the cooling functions of sections 50, 52 and 54 of for example the embodiment of FIG. 2. Thus, for this embodiment of the invention, section 52 can be used as a pre-heater or can be eliminated.



FIG. 4 also illustrates some additional features. First, it shows an optical channel 78 which can be connected to a suitable detector in controls 34 for detecting the scan velocity of head 28. Other techniques which will be discussed in conjunction with FIG. 10 may also be used for performing this function. Detecting scan velocity permits controls 35 to operate output 40 if the scan velocity is detected to be outside of desired ranges so as to alert the operator so that the rate may be increased or decreased as appropriate. For example, the output may be a red or a green light on some portion of applicator 22 or a console associated therewith, might be a voice, or buzzer or other audio alert to the operator, might be a vibrator in the handle 26, or might be some other appropriate warning to the operator. In the event the rate is detected as being so slow (or even no movement at all) as to present a potential danger of injury to the patient, controls 34 might also deactivate source 30 so as to protect the patient.


One problem with radiation treatments is that a significant percentage of the radiation applied to the skin is reflected back or backscattered by the skin and lost. Various schemes have been proposed in the past for retroreflecting such radiation back into the skin, including for example putting some type of reflector in section 50. Sections 52 and 54 might also have a reflective coating on their skin contacting surfaces to reflect such radiation back into the skin. Section 72 is particularly useful for this purpose since the entire skin-contacting surface 80 of this section may be formed of highly reflective material, or have a highly reflective coating formed thereon. By redirecting most of the radiation back into the skin, the intensity of radiation inside the skin can be increased 1.2 to 2.5 times.



FIG. 5 shows a head 24D an embodiment of the invention which differs from that shown in FIG. 4 only in that there is a recessed channel 84 formed in skin-contacting surface 80 of section 72, and that optical channels 76a and 76b terminate on opposite sides of channel 84, with their focal point being at a point in the recess, for example at the substantial center thereof. A hose 86 is connected at one end to the top of channel 84 and at the other end to a source of negative pressure. As head 24D moves in direction 28 across the patient's skin, folds of the patient's skin are drawn into channel 84. The size of channel 84 is selected such that the target is included in the fold of skin drawn into channel 84 and is irradiated from both sides by radiation applied to optical channels 76. For example, if head 24D is being used for hair removal, channel 84 might be 1 to 6 millimeters wide and 1 to 6 millimeters deep, a size which would generally result in the fold having only a single hair follicle in the plane shown in the figure, although multiple hair follicles may be in the channel along its long dimension. The configuration of FIG. 5 has several advantages. First, it reduces the distance for radiation to reach the target and more effectively focuses radiation on the target. Second, if the channel is formed of an optically reflective material, the walls of channel 84 reflect substantially all of the radiation leaving the skin back into the fold, providing for very efficient irradiation.


While in FIG. 5 it is assumed that a line connected to a vacuum or other source of negative pressure is utilized to draw a fold of skin into channel 84, a bellows or other suitable mechanism could also be utilized for drawing the skin into channel 84 or, as shown in FIG. 7, a head 24E could be provided having a channel 84′ formed in a body 72′ of a thermal conductive material, which channel is shaped so that a fold of skin 90 which includes the target 92 is forced into channel 84′ as head 24E is moved in direction 28 over the patient's skin. Successive folds of the patient's skin would be pushed into channel 84′ as the head moves so as to provide substantially uniform irradiation of the skin in treatment area 10. Except that a pre-heater section 52 is not included, the embodiment of FIG. 7 would otherwise operate in substantially the same way as in the embodiment of FIG. 5 and would afford substantially the same advantages.



FIG. 8 shows a head 24F which differs from those previously described in that it has four sets of optical channels 76, channel 76a, 76b, 76c, and 76d, which for this embodiment are merely light paths through a transparent block or air, each of which is fed by a corresponding flexible waveguides 32a-32d, respectively. All of the optical channels 76 are angled so as to be substantially focused at target depth 92. Body 72″ is curved to facilitate the placement of channels 76 and also has a reflecting top surface 93. In addition to components previously mentioned, FIG. 8 also includes a line 94 leading from a thermocouple or other suitable temperature sensor mounted close to surface 80 or in surface 80. Temperature sensor line 94 connects to controls 34 and may be utilized to control epidermal temperatures or for other suitable purposes.



FIG. 9 shows still another embodiment of the invention which, as previously indicated, utilizes a cylindrical lens 70 having a transparent window 96 against which is mounted a radiation source 98, which may for example be a laser diode bar, a lamp with a reflector, or other radiation source which is small enough to be mounted in the handpiece. A reflection plate 100 is provided to perform the retroreflection function for back scattering light. FIG. 9 also shows a kinematic motion sensor 102 which may either supplement optical motion sensor 73 or may be used in lieu thereof. Kinematic motion sensor 102 may for example be a wheel which turns as cylindrical lens 70 is moved over the skin surface to provide a signal to controls 34 indicative of scan velocity. Temperature control element 56 is shown as being in contact with both lens 70 and reflection plate 100 so as to cool both elements, thereby providing both pre-cooling of the treatment area and cooling during irradiation. There is preferably a second element 56 on the opposite side of cylinder 70 in contact with plate 100 on the trailing side of the lens which is operative both to further cool the lens and to cool reflection plate 100 and the portion thereof trailing the lens to provide post-cooling. As indicated previously, cylindrical lens 70, particularly if it has a relatively small diameter, for example of less than 20 mm, is also operative to focus the radiation at target 92 and partly compensate the scattering effect of skin. Except as indicated above, the embodiment of FIG. 9 operates substantially the same as the prior embodiments to provide scanned CW dermatologic treatment. It should also be noted that, while FIG. 9 is the only embodiment showing the radiation source 98 located in head 24 as opposed to the radiation being applied to the head from an external source 30 through optical leads 32, an external source 30 or an internal source 98 for the head is interchangeable for all embodiments, so that any of the prior embodiments may have an internal radiation source 98 in lieu of the arrangement shown, and the embodiment of FIG. 9 may have an external radiation source with optical leads 32 impinging on transparent window 96. For an embodiment such as that shown in FIG. 8, a separate laser diode bar or bars 98 might for example be provided for each of the optical channels 76a-76d.



FIGS. 10A and 10B show still another handpiece 24H suitable for practicing the teachings of the invention. This handpiece differs from those previously shown in that rather than radiant energy being applied directly to the optical waveguide, lens or other transparent component through which radiant energy is applied to the patient's skin, optical lines 32 terminate in a cavity 106 formed in a body 108 of copper or of some other material having good thermal conduction properties. The walls of chamber 106 are polished, coated or otherwise treated to have highly reflective, and preferably totally reflective, surfaces. The advantage of the configuration shown in FIG. 10 with chamber 106 is that radiant energy enters cylindrical lens or astigmatic microobjective 70′ at a variety of angles which can be focused by the lens/microobjective to the desired depth in the skin, the focusing action being more efficient when the light enters the lens at a variety of angles than at a single angle. Cylindrical lens 70′ may be mounted in body 108 either rigidly, as for the embodiment of FIG. 9, or may be mounted for rotation in the body. Rotation of the lens facilitates movement of the head over the patient's skin, but prevents the desired stretching of the skin. However, a rotating lens is within the contemplation of the invention. Thermal elements 56 cool body 102, resulting in both pre-heating, cooling and post-cooling of the epidermis and also resulting in the cooling of cylindrical lens 70′ which cools the epidermis during irradiation. Body 108 a has reflective skin-contacting surfaces 80 to retroreflect back scattering light from the patient's skin. FIG. 10 also illustrates kinematic motion sensor 102 and a thermocouple or other suitable temperature sensor 94. Except for the differences discussed above, the embodiment of FIG. 10 functions substantially the same as the embodiments previously discussed.



FIGS. 11
a-11c illustrate still another embodiment 241 for the head. With this embodiment, cylindrical lens 112, which for example is formed of sapphire, is treated to normally have total internal reflection so that light or other radiation entering the lens through optical line 32 is reflected through the lens and exits through optical lines 32′. However, when lens 112 is in contact with the patient's skin as shown in FIG. 11c, the total internal reflection at the skin-contacting surface is broken due to the change of index of refraction at this surface so that light energy is emitted from the lens into the patient's skin. The use of the total internal reflection lens 112 of FIG. 11 is a safety feature which assures that radiation is not applied to a patient or other person unless handpiece 24 is in contact with a patient's skin in the area to be treated. Except for this difference, the embodiment of FIG. 11 functions in the manner described for previous embodiments and components such as a housing for pre- and post-cooling, a chiller for the lens, motion sensors, etc. of prior embodiments might also be used with this embodiment.


While for the embodiments of the invention described so far radiation energy is applied in parallel along the length of the head during irradiation, FIGS. 12a and 12b illustrate embodiments of the invention where light is rapidly scanned. In FIG. 12a, radiant energy applied to the head over a line 32 impinges on a deflector 120 which is oscillated at a rate such that the impinging radiation is scanned in the direction indicated by arrows 122 at the rate previously indicated across a cylindrical lens 70″. In FIG. 12b, the impinging radiation 32 is also applied to an oscillating deflector 120 which scans the beam into optical fibers 124. Each optical fiber terminates in a microlens 126 mounted in a plate 128 of a highly thermal conductive material. Plate 128 also preferably has a highly reflective skin-contacting surface 80. So long as the scan rate of deflector 120 is high enough, the radiation outputted from cylindrical lens 70″ or microlenses 126 is CW radiation as this term has been previously defined, and this system


operates substantially the same as for previous embodiments. Again, for purposes of simplifying the drawings, elements such as thermal elements 56, motion sensor 78 and 102, and temperature sensors 94, are not shown in FIGS. 12a and 12b.



FIG. 13 is included to illustrate that pre-heating of the treatment area, while more easily facilitated with the CW embodiments heretofore described, is not limited to such embodiments and may be utilized with a standard pulsed head of a type used in some prior art systems. In FIG. 13, radiation, which may be pulsed radiation from a source 30, is applied trough optical lead 32 to an optical waveguide 50 having thermal elements 56 in contact therewith. Waveguide 50, having a focusing skin-contacting end 132, is mounted in a suitable housing, a portion 130 of which is shown in the figure. Thermal elements 56, which are thermoelectric elements, for the embodiment shown, but may be other type of cooling, may be operated to heat waveguide 50 for a time interval sufficient to heat the skin to the depth z of the target. Either the same or a different set of thermoelectric elements 56 may then be operated to cool waveguide 56 for a duration sufficient to cool epidermis 12 to the DE junction 16, at which time source 30 is energized to apply radiation through waveguide 50 to the target. Cooling of waveguide 50 continues during this period to maintain the epidermis at a desired temperature during irradiation and the cooling of waveguide 50 may be contained for some period of time after irradiation terminates to further protect the patient's skin. Further, while preheating has been shown and described above followed by epidermal cooling, and for many applications this is clearly preferable, it is also within the contemplation of the invention to do preheating without subsequent cooling. Head designs such as those shown in FIGS. 2, 4, and 5 (either with or without portion 52, and generally without), 8-12, might also be used when operating in a pulsed mode. Operation with these heads in a pulsed mode could be similar to operation in a CW mode except that movement of the head would be stepped rather than continuous.


While a number of embodiments and variations thereon have been described above, it is apparent that these embodiments are for purposes of illustration only and that numerous other variations are possible while practicing the teachings of this invention. For example, while in the discussion above it has been assumed that head 24 is manually moved over the treatment area, this is not a limitation on the invention and various types of mechanical scanners could also be utilized, either alone or in conjunction with manual control. Further, while optical and kinematic movement measuring mechanisms have been shown, suitable thermal, electronic and magnetic


movement measure mechanisms could also be used. Controls 34 would function to maintain the required scan velocity for such scanner. Thus, while the invention has been particularly shown and described above with reference to preferred embodiments, the foregoing and other changes in form and detail may be made therein by one skilled in the art without departing from the spirit and scope of the invention which is to be defined only by the appended claims.

Claims
  • 1. A photocosmetic device comprising: a head adapted for applying radiation to skin, the head comprising an output aperture and a scanner configured to scan radiation over the output aperture as the head is moved over the skin,a motion sensor coupled to the head and adapted to generate one or more signals indicative of a rate of movement of the head as it is moved over the skin, andcontrols coupled to the head for receiving said one or more signals and for controlling the rate of scanning in response to said one or more signals.
  • 2. The photocosmetic device of claim 1, wherein the device further comprises an alert mechanism configured to provide an alert to an operator regarding the rate of head movement over the skin.
  • 3. The photocosmetic device of claim 2, wherein the alert mechanism is further configured to alert the operator of said device if the determined rate of movement is outside of a particular range of rates.
  • 4. The photocosmetic device of claim 3, wherein the alert mechanism comprises at least one of an audio output device, a visual output device, and a tactile output device.
  • 5. The photocosmetic device of claim 1, wherein the motion sensor further comprises a mechanism configured to determine the rate of movement of the head over the skin.
  • 6. The photocosmetic device of claim 5, wherein the mechanism is further configured to determine if the head is moving at a rate within a predetermined range of rates, and to provide a further signal to the controls based on said determination of the rate of movement.
  • 7. The photocosmetic device of claim 1, wherein the controls adjust the output of the device if the rate is outside a predetermined range of rates.
  • 8. The photocosmetic device of claim 1, wherein the controls are configured to terminate application of the radiation if the rate is outside a predetermined range of rates.
  • 9. The photocosmetic device of claim 1, wherein the motion sensor is selected from the group of a kinematic motion sensor, an optical motion sensor, an electrical motion sensor, a thermal motion sensor, and a magnetic motion sensor.
  • 10. The photocosmetic device of claim 1, wherein the head is configured to apply continuous wave radiation.
  • 11. The photocosmetic device of claim 1, wherein the scanner comprises an oscillated deflector.
  • 12. The photocosmetic device of claim 1, wherein the head comprises a skin contacting surface and the scanner scans radiation over the skin contacting surface.
RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 12/782,961, filed May 19, 2010, entitled “Heads for Dermatology Treatment now U.S. Pat. No. 7,935,107,” which is a continuation of U.S. application Ser. No. 11/437,434, filed May 19, 2006, entitled “Heads for Dermatology Treatment,” which is a continuation of U.S. application Ser. No. 10/274,582, filed Oct. 21, 2002, now issued as U.S. Pat. No. 7,077,840, entitled “Heads for Dermatology Treatment,” which is a continuation of U.S. application Ser. No. 09/634,981, filed Aug. 9, 2000, now issued as U.S. Pat. No. 6,511,475, entitled “Heads for Dermatology Treatment,” which is a continuation of U.S. application Ser. No. 09/078,055, filed May 13, 1998, now issued as U.S. Pat. No. 6,273,884, entitled “Method and Apparatus for Dermatology Treatment,” which claims the benefit of U.S. Provisional Application Nos. 60/046,542 filed May 15, 1997 and 60/077,726 filed Mar. 12, 1998. The entire contents of all above-listed applications are incorporated herein by reference in their entirety.

US Referenced Citations (715)
Number Name Date Kind
853033 Roberts May 1907 A
1590283 Catlin Jun 1926 A
1706161 Hollnagen Mar 1929 A
2472385 Rollman Jun 1949 A
2669771 Burge et al. Feb 1954 A
3261978 Brenman Jul 1966 A
3327712 Kaufmann Jun 1967 A
3486070 Engel Dec 1969 A
3527932 Thomas Sep 1970 A
3538919 Meyer Nov 1970 A
3597652 Gates, Jr. Aug 1971 A
3622743 Muncheryan Nov 1971 A
3653778 Freiling Apr 1972 A
3667454 Prince Jun 1972 A
3693623 Harte et al. Sep 1972 A
3818914 Bender Jun 1974 A
3834391 Block Sep 1974 A
3846811 Nakamura et al. Nov 1974 A
3857015 Clark et al. Dec 1974 A
3890537 Park et al. Jun 1975 A
3900034 Katz et al. Aug 1975 A
3909649 Arsena Sep 1975 A
3939560 Lyall Feb 1976 A
3977083 Leslie et al. Aug 1976 A
4047106 Robinson Sep 1977 A
4213462 Sato Jul 1980 A
4233493 Nath et al. Nov 1980 A
4269067 Tynan et al. May 1981 A
4273109 Enderby Jun 1981 A
4275335 Ishida et al. Jun 1981 A
4298005 Mutzhas Nov 1981 A
4316467 Muckerheide Feb 1982 A
4333197 Kuris Jun 1982 A
4335726 Kolstedt Jun 1982 A
4388924 Weissman et al. Jun 1983 A
4409479 Sprague et al. Oct 1983 A
4452081 Seppi Jun 1984 A
4456872 Froeschle Jun 1984 A
4461294 Baron Jul 1984 A
4504727 Melcher et al. Mar 1985 A
4512197 von Gutfeld et al. Apr 1985 A
4524289 Hammond et al. Jun 1985 A
4539987 Nath et al. Sep 1985 A
4553546 Javelle Nov 1985 A
4561440 Kubo et al. Dec 1985 A
4566271 French et al. Jan 1986 A
4591762 Nakamura May 1986 A
4601753 Soileau et al. Jul 1986 A
4608978 Rohr Sep 1986 A
4608979 Breidenthal et al. Sep 1986 A
4617926 Sutton Oct 1986 A
4623929 Johnson et al. Nov 1986 A
4653495 Nanaumi Mar 1987 A
4677347 Nakamura et al. Jun 1987 A
4686986 Fenyo et al. Aug 1987 A
4695697 Kosa Sep 1987 A
4710677 Halberstadt et al. Dec 1987 A
4718416 Nanaumi Jan 1988 A
4733660 Itzkan Mar 1988 A
4736745 Gluckman Apr 1988 A
4745909 Pelton et al. May 1988 A
4747660 Nishioka et al. May 1988 A
4749913 Stuermer et al. Jun 1988 A
4775361 Jacques et al. Oct 1988 A
4779173 Carr et al. Oct 1988 A
4784135 Blum et al. Nov 1988 A
4799479 Spears Jan 1989 A
4819669 Politzer Apr 1989 A
4826431 Fujimura et al. May 1989 A
4832024 Boussignac et al. May 1989 A
4840174 Gluckman Jun 1989 A
4845608 Gdula Jul 1989 A
4852549 Mori et al. Aug 1989 A
4860172 Schlager et al. Aug 1989 A
4860744 Johnson et al. Aug 1989 A
4862903 Campbell Sep 1989 A
4871479 Bachelard et al. Oct 1989 A
4884560 Kuracina Dec 1989 A
4898438 Mori Feb 1990 A
4905690 Ohshiro et al. Mar 1990 A
4914298 Quad et al. Apr 1990 A
4917084 Sinofsky Apr 1990 A
4926227 Jensen May 1990 A
4928038 Nerone May 1990 A
4930504 Diamantopoulos et al. Jun 1990 A
4932954 Wondrazek et al. Jun 1990 A
4945239 Wist et al. Jul 1990 A
4973848 Kolobanov et al. Nov 1990 A
4976308 Faghri Dec 1990 A
4992256 Skaggs et al. Feb 1991 A
5000752 Hoskin et al. Mar 1991 A
5030090 Maeda et al. Jul 1991 A
5032178 Cornell Jul 1991 A
5046494 Searfoss et al. Sep 1991 A
5050597 Daikuzono Sep 1991 A
5057104 Chess Oct 1991 A
5059192 Zaias Oct 1991 A
5065515 Iderosa Nov 1991 A
5066293 Furumoto Nov 1991 A
5071417 Sinofsky Dec 1991 A
5108388 Trokel Apr 1992 A
5127395 Bontemps Jul 1992 A
5133102 Sakuma et al. Jul 1992 A
5137530 Sand Aug 1992 A
5140984 Dew et al. Aug 1992 A
5159601 Huber Oct 1992 A
5160194 Feldman Nov 1992 A
5171564 Nathoo et al. Dec 1992 A
5178617 Kuizenga et al. Jan 1993 A
5182557 Lang Jan 1993 A
5182857 Simon Feb 1993 A
5192278 Hayes et al. Mar 1993 A
5196004 Sinofsky Mar 1993 A
5207671 Franken et al. May 1993 A
5222907 Katabuchi et al. Jun 1993 A
5225926 Cuomo et al. Jul 1993 A
5226907 Tankovich Jul 1993 A
5267399 Johnston Dec 1993 A
5281211 Parel et al. Jan 1994 A
5282797 Chess Feb 1994 A
5287372 Ortiz Feb 1994 A
5287380 Hsia Feb 1994 A
5293880 Levitt Mar 1994 A
5300097 Lerner et al. Apr 1994 A
5303585 Lichte Apr 1994 A
5304170 Green Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306143 Levy Apr 1994 A
5306274 Long Apr 1994 A
5320618 Gustafsson Jun 1994 A
5334191 Poppas et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5336217 Buys et al. Aug 1994 A
5342358 Daikuzono et al. Aug 1994 A
5344418 Ghaffari Sep 1994 A
5344434 Talmore Sep 1994 A
5348551 Spears et al. Sep 1994 A
5350376 Brown Sep 1994 A
5353020 Schurmann Oct 1994 A
5353790 Jacques et al. Oct 1994 A
5356081 Sellar Oct 1994 A
5358503 Bertwell et al. Oct 1994 A
5360426 Muller et al. Nov 1994 A
5369831 Bock Dec 1994 A
5380317 Everett et al. Jan 1995 A
5386427 Zayhowski Jan 1995 A
5403306 Edwards et al. Apr 1995 A
5405368 Eckhouse Apr 1995 A
5409446 Rattner Apr 1995 A
5415654 Daikuzono May 1995 A
5425728 Tankovich Jun 1995 A
5425735 Rosen et al. Jun 1995 A
5425754 Braun et al. Jun 1995 A
5445608 Chen et al. Aug 1995 A
5445611 Eppstein et al. Aug 1995 A
5454807 Lennox et al. Oct 1995 A
5458140 Eppstein et al. Oct 1995 A
5474549 Ortiz et al. Dec 1995 A
5486170 Winston et al. Jan 1996 A
5486172 Chess Jan 1996 A
5501680 Kurtz et al. Mar 1996 A
5502582 Larson et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505727 Keller Apr 1996 A
5519534 Smith et al. May 1996 A
5522813 Trelles Jun 1996 A
5527368 Supkis et al. Jun 1996 A
5531739 Trelles Jul 1996 A
5531740 Black Jul 1996 A
5536168 Bourke et al. Jul 1996 A
5549660 Mendes et al. Aug 1996 A
5558667 Yarborough et al. Sep 1996 A
5561881 Klinger et al. Oct 1996 A
5571098 Domankevitz et al. Nov 1996 A
5578866 DePoorter et al. Nov 1996 A
5595568 Anderson et al. Jan 1997 A
5611793 Wilson et al. Mar 1997 A
5616140 Prescott Apr 1997 A
5618284 Sand Apr 1997 A
5620478 Eckhouse et al. Apr 1997 A
5626631 Eckhouse et al. May 1997 A
5628744 Coleman et al. May 1997 A
5630811 Miller May 1997 A
5634711 Kennedy et al. Jun 1997 A
5649972 Hochstein Jul 1997 A
5652481 Johnson et al. Jul 1997 A
5653706 Zavislan et al. Aug 1997 A
5655547 Karni Aug 1997 A
5657760 Ying et al. Aug 1997 A
5658148 Neuberger et al. Aug 1997 A
5658323 Miller Aug 1997 A
5660836 Knowlton Aug 1997 A
5661744 Murakami et al. Aug 1997 A
5662643 Kung et al. Sep 1997 A
5662644 Swor Sep 1997 A
5673451 Moore et al. Oct 1997 A
5679113 Caisey et al. Oct 1997 A
5683380 Eckhouse et al. Nov 1997 A
5692509 Voss et al. Dec 1997 A
5698866 Doiron et al. Dec 1997 A
5707401 Martin et al. Jan 1998 A
5707403 Grove et al. Jan 1998 A
5713738 Yarborough Feb 1998 A
5714119 Kawagoe et al. Feb 1998 A
5720772 Eckhouse Feb 1998 A
5722397 Eppstein Mar 1998 A
5725522 Sinofsky Mar 1998 A
5728090 Martin et al. Mar 1998 A
5735844 Anderson et al. Apr 1998 A
5735884 Thompson et al. Apr 1998 A
5738678 Patel Apr 1998 A
5742392 Anderson et al. Apr 1998 A
5743901 Grove et al. Apr 1998 A
5743902 Trost Apr 1998 A
5746735 Furumoto et al. May 1998 A
5755751 Eckhouse May 1998 A
5759200 Azar Jun 1998 A
5760362 Eloy Jun 1998 A
5769076 Maekawa et al. Jun 1998 A
5782249 Weber et al. Jul 1998 A
5802136 Carol Sep 1998 A
5810801 Anderson et al. Sep 1998 A
5812567 Jeon et al. Sep 1998 A
5813855 Crisio, Jr. Sep 1998 A
5814008 Chen et al. Sep 1998 A
5814040 Nelson et al. Sep 1998 A
5814041 Anderson et al. Sep 1998 A
5817089 Tankovich et al. Oct 1998 A
5820625 Izawa et al. Oct 1998 A
5820626 Baumgardner Oct 1998 A
5824023 Anderson Oct 1998 A
5827264 Hohla Oct 1998 A
5828803 Eckhouse Oct 1998 A
5830208 Muller Nov 1998 A
5835648 Narciso, Jr. et al. Nov 1998 A
5836877 Zavislan Nov 1998 A
5836999 Eckhouse et al. Nov 1998 A
5840048 Cheng Nov 1998 A
5849029 Eckhouse et al. Dec 1998 A
5851181 Talmor Dec 1998 A
5853407 Miller Dec 1998 A
5860967 Zavislan et al. Jan 1999 A
5868731 Budnik et al. Feb 1999 A
5871480 Tankovich Feb 1999 A
5879159 Cipolla Mar 1999 A
5883471 Rodman et al. Mar 1999 A
5885211 Eppstein et al. Mar 1999 A
5885273 Eckhouse et al. Mar 1999 A
5885274 Fullmer et al. Mar 1999 A
5891063 Vigil Apr 1999 A
5893828 Uram Apr 1999 A
5895350 Hori Apr 1999 A
5897549 Tankovich Apr 1999 A
5906609 Assa et al. May 1999 A
5908418 Dority et al. Jun 1999 A
5913883 Alexander et al. Jun 1999 A
5916211 Quon et al. Jun 1999 A
5920374 Vaphiades et al. Jul 1999 A
5921926 Rolland et al. Jul 1999 A
5928222 Kleinerman Jul 1999 A
5944687 Benett et al. Aug 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton Sep 1999 A
5949222 Buono Sep 1999 A
5954710 Paolini et al. Sep 1999 A
5955490 Kennedy et al. Sep 1999 A
5957915 Trost Sep 1999 A
5964749 Eckhouse et al. Oct 1999 A
5968033 Fuller et al. Oct 1999 A
5968034 Fullmer et al. Oct 1999 A
5974059 Dawson Oct 1999 A
5974616 Dreyfus Nov 1999 A
5977723 Yoon Nov 1999 A
5979454 Anvari et al. Nov 1999 A
5984915 Loeb et al. Nov 1999 A
6007219 O'Meara Dec 1999 A
6015404 Altshuler et al. Jan 2000 A
6022316 Eppstein et al. Feb 2000 A
6026828 Altshuler Feb 2000 A
6027495 Miller Feb 2000 A
6029303 Dewan Feb 2000 A
6029304 Hulke et al. Feb 2000 A
6030378 Stewart Feb 2000 A
6030399 Ignotz et al. Feb 2000 A
6032071 Binder Feb 2000 A
RE36634 Ghaffari Mar 2000 E
6036684 Tankovich et al. Mar 2000 A
6044514 Kaneda et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
D424197 Sydlowski et al. May 2000 S
6056548 Neuberger et al. May 2000 A
6056738 Marchitto et al. May 2000 A
6058937 Doiron et al. May 2000 A
6059820 Baronov May 2000 A
6063108 Salansky et al. May 2000 A
6070092 Kazama et al. May 2000 A
6071239 Cribbs et al. Jun 2000 A
6074382 Asah et al. Jun 2000 A
6080146 Altshuler et al. Jun 2000 A
6080147 Tobinick Jun 2000 A
6083217 Tankovich Jul 2000 A
6086363 Moran et al. Jul 2000 A
6086580 Mordon et al. Jul 2000 A
6094767 Iimura Aug 2000 A
6096029 O'Donnell, Jr. Aug 2000 A
6096209 O'Brien et al. Aug 2000 A
6099521 Shadduck Aug 2000 A
6104959 Spertell Aug 2000 A
6106293 Wiesel Aug 2000 A
6106294 Daniel Aug 2000 A
6110195 Xie et al. Aug 2000 A
6113559 Klopotek Sep 2000 A
6117129 Mukai Sep 2000 A
6120497 Anderson et al. Sep 2000 A
6126655 Domankevitz et al. Oct 2000 A
6129723 Anderson et al. Oct 2000 A
6135774 Hack et al. Oct 2000 A
6142650 Brown et al. Nov 2000 A
6142939 Eppstein et al. Nov 2000 A
6149644 Xie Nov 2000 A
6149895 Kutsch Nov 2000 A
6159236 Biel Dec 2000 A
6162055 Montgomery et al. Dec 2000 A
6162211 Tankovich et al. Dec 2000 A
6162212 Kreindel et al. Dec 2000 A
6171300 Adams Jan 2001 B1
6171301 Nelson Jan 2001 B1
6171302 Talpalriu et al. Jan 2001 B1
6171332 Whitehurst Jan 2001 B1
6173202 Eppstein Jan 2001 B1
6174325 Eckhouse Jan 2001 B1
6176854 Cone Jan 2001 B1
6183434 Eppstein Feb 2001 B1
6183500 Kohler Feb 2001 B1
6183773 Anderson Feb 2001 B1
6187001 Azar et al. Feb 2001 B1
6187029 Shapiro et al. Feb 2001 B1
6197020 O'Donnell, Jr. Mar 2001 B1
6200134 Kovac et al. Mar 2001 B1
6200309 Rice et al. Mar 2001 B1
6202242 Salmon et al. Mar 2001 B1
6203540 Weber Mar 2001 B1
6210425 Chen Apr 2001 B1
6214034 Azar Apr 2001 B1
6221095 Van Zuylen et al. Apr 2001 B1
6228075 Furumoto May 2001 B1
6229831 Nightingale et al. May 2001 B1
6235015 Mead et al. May 2001 B1
6235016 Stewart May 2001 B1
6236891 Ingle et al. May 2001 B1
6239442 Iimura et al. May 2001 B1
6240306 Rohrscheib et al. May 2001 B1
6245093 Li et al. Jun 2001 B1
6251127 Biel Jun 2001 B1
6254388 Yarborough Jul 2001 B1
6263233 Zavislan et al. Jul 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6267779 Gerdes Jul 2001 B1
6267780 Streeter Jul 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6273885 Koop et al. Aug 2001 B1
6280438 Eckhouse et al. Aug 2001 B1
6283956 McDaniel Sep 2001 B1
6287549 Sumian et al. Sep 2001 B1
6290496 Azar et al. Sep 2001 B1
6290713 Russell Sep 2001 B1
6306130 Anderson et al. Oct 2001 B1
6306160 Nidetzky Oct 2001 B1
6315772 Marchitto et al. Nov 2001 B1
6317624 Kollias et al. Nov 2001 B1
6319274 Shadduck Nov 2001 B1
6325769 Klopotek Dec 2001 B1
6328733 Trost Dec 2001 B1
6331111 Cao Dec 2001 B1
6340495 Sumian et al. Jan 2002 B1
6343400 Massholder et al. Feb 2002 B1
6343933 Montgomery et al. Feb 2002 B1
6350261 Domankevitz et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6354370 Miller et al. Mar 2002 B1
6355054 Neuberger et al. Mar 2002 B1
6358242 Cecchetti Mar 2002 B1
6358272 Wilden Mar 2002 B1
6383176 Connors et al. May 2002 B1
6383177 Balle-Petersen et al. May 2002 B1
6387089 Kreindel et al. May 2002 B1
6387353 Jensen et al. May 2002 B1
6395016 Oron et al. May 2002 B1
6402739 Neev Jun 2002 B1
6406474 Neuberger et al. Jun 2002 B1
6409665 Scott et al. Jun 2002 B1
6413267 Dumoulin-White et al. Jul 2002 B1
6416319 Cipolla Jul 2002 B1
6419389 Fuchs et al. Jul 2002 B1
6424852 Zavislan Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6435873 Burgio Aug 2002 B1
6436094 Reuter Aug 2002 B1
6439888 Boutoussov et al. Aug 2002 B1
6440155 Matsumae et al. Aug 2002 B1
6443978 Zharov Sep 2002 B1
6451007 Koop et al. Sep 2002 B1
6461296 Desai Oct 2002 B1
6464694 Massengill Oct 2002 B1
6471712 Burres Oct 2002 B2
6471716 Pecukonis Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6484052 Visuri et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6491685 Visuri et al. Dec 2002 B2
6494900 Salansky et al. Dec 2002 B1
6497702 Bernaz Dec 2002 B1
6503486 Xu et al. Jan 2003 B2
6508785 Eppstein Jan 2003 B1
6508813 Altshuler Jan 2003 B1
6511475 Altshuler et al. Jan 2003 B1
6514243 Eckhouse et al. Feb 2003 B1
6517532 Altshuler et al. Feb 2003 B1
6519376 Biagi et al. Feb 2003 B2
6525819 Delawter et al. Feb 2003 B1
6527764 Neuberger et al. Mar 2003 B1
6530915 Eppstein et al. Mar 2003 B1
6537270 Elbrecht et al. Mar 2003 B1
6547780 Sinofsky Apr 2003 B1
6551346 Crossley Apr 2003 B2
6554439 Teicher et al. Apr 2003 B1
6556596 Kim et al. Apr 2003 B1
6558372 Altshuler May 2003 B1
6561808 Neuberger et al. May 2003 B2
6569155 Connors et al. May 2003 B1
6570892 Lin et al. May 2003 B1
6570893 Libatique et al. May 2003 B1
6572634 Koo Jun 2003 B2
6572637 Yamazaki et al. Jun 2003 B1
6595934 Hissong et al. Jul 2003 B1
6600951 Anderson Jul 2003 B1
6602245 Thiberg Aug 2003 B1
6605080 Altshuler et al. Aug 2003 B1
6605083 Clement et al. Aug 2003 B2
6606755 Robinson et al. Aug 2003 B1
6616447 Rizoiu et al. Sep 2003 B1
6616451 Rizolu et al. Sep 2003 B1
6618531 Goto et al. Sep 2003 B1
6623272 Clemans Sep 2003 B2
6623513 Biel Sep 2003 B2
6629971 McDaniel Oct 2003 B2
6629989 Akita Oct 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635075 Li et al. Oct 2003 B2
6641578 Mukai Nov 2003 B2
6641600 Kohler Nov 2003 B1
6648904 Altshuler et al. Nov 2003 B2
6652459 Payne et al. Nov 2003 B2
6653618 Zenzie Nov 2003 B2
6659999 Anderson et al. Dec 2003 B1
6660000 Neuberger et al. Dec 2003 B2
6663620 Altshuler et al. Dec 2003 B2
6663658 Kollias et al. Dec 2003 B1
6663659 McDaniel Dec 2003 B2
6675425 Iimura Jan 2004 B1
6676654 Balle-Petersen et al. Jan 2004 B1
6679837 Daikuzono Jan 2004 B2
6685639 Wang et al. Feb 2004 B1
6685699 Eppstein et al. Feb 2004 B1
6689124 Thiberg Feb 2004 B1
6699040 Hahn et al. Mar 2004 B1
6706035 Cense et al. Mar 2004 B2
6709269 Altshuler Mar 2004 B1
6709446 Lundahl et al. Mar 2004 B2
6723090 Altshuler et al. Apr 2004 B2
6743222 Durkin et al. Jun 2004 B2
6746444 Key Jun 2004 B2
6749623 Hsi et al. Jun 2004 B1
6770069 Hobart et al. Aug 2004 B1
6790205 Yamazaki et al. Sep 2004 B1
6801595 Grodzins et al. Oct 2004 B2
6808331 Hall et al. Oct 2004 B2
6808532 Andersen et al. Oct 2004 B2
RE38670 Asah et al. Dec 2004 E
6858009 Kawata et al. Feb 2005 B2
6860879 Irion et al. Mar 2005 B2
6862771 Muller Mar 2005 B1
6863781 Nocera et al. Mar 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6881212 Clement et al. Apr 2005 B1
6887260 McDaniel May 2005 B1
6888319 Inochkin et al. May 2005 B2
6893259 Reizenson May 2005 B1
6902397 Farrell et al. Jun 2005 B2
6902563 Wilkens et al. Jun 2005 B2
6936046 Hissong et al. Aug 2005 B2
6942658 Rizoiu et al. Sep 2005 B1
6953341 Black Oct 2005 B2
6974451 Altshuler et al. Dec 2005 B2
6976985 Altshuler et al. Dec 2005 B2
6989023 Black Jan 2006 B2
6991644 Spooner et al. Jan 2006 B2
6997923 Anderson et al. Feb 2006 B2
7001413 Butler Feb 2006 B2
7006223 Mullani Feb 2006 B2
7029469 Vasily Apr 2006 B2
7033349 Key Apr 2006 B2
7041100 Kreindel May 2006 B2
7044959 Anderson et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7066733 Logan et al. Jun 2006 B2
7070611 Biel Jul 2006 B2
7077840 Altshuler et al. Jul 2006 B2
7081128 Hart et al. Jul 2006 B2
7097639 Almeida Aug 2006 B1
7097656 Akopov et al. Aug 2006 B1
7144247 Black Dec 2006 B2
7144248 Irwin Dec 2006 B2
7145105 Gaulard Dec 2006 B2
7145108 Kanel et al. Dec 2006 B2
7160289 Cohen Jan 2007 B2
7182760 Kubota Feb 2007 B2
7198634 Harth et al. Apr 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7220254 Altshuler et al. May 2007 B2
7223270 Altshuler et al. May 2007 B2
7223281 Altshuler et al. May 2007 B2
7255691 Tolkoff et al. Aug 2007 B2
7274155 Inochkin et al. Sep 2007 B2
7291140 MacFarland et al. Nov 2007 B2
7309335 Altshuler et al. Dec 2007 B2
7311722 Larsen Dec 2007 B2
7322972 Viator et al. Jan 2008 B2
7329273 Altshuler et al. Feb 2008 B2
7329274 Altshuler et al. Feb 2008 B2
7331964 Maricle et al. Feb 2008 B2
7333698 Israel Feb 2008 B2
7351252 Altshuler et al. Apr 2008 B2
7422598 Altshuler et al. Sep 2008 B2
7423767 Steinsiek et al. Sep 2008 B2
7431419 Turner et al. Oct 2008 B2
7431719 Altshuler et al. Oct 2008 B2
7540869 Altshuler et al. Jun 2009 B2
7624640 Maris et al. Dec 2009 B2
7647092 Motz et al. Jan 2010 B2
20010007068 Ota et al. Jul 2001 A1
20010008973 Van Zuylen et al. Jul 2001 A1
20010023363 Harth et al. Sep 2001 A1
20010024777 Azar et al. Sep 2001 A1
20010041886 Durkin et al. Nov 2001 A1
20010046652 Ostler et al. Nov 2001 A1
20010048077 Afanassieva Dec 2001 A1
20020004066 Stanley et al. Jan 2002 A1
20020005475 Zenzie Jan 2002 A1
20020013572 Berlin Jan 2002 A1
20020016587 Furumoto Feb 2002 A1
20020018754 Sagel et al. Feb 2002 A1
20020019624 Clement et al. Feb 2002 A1
20020026225 Segal Feb 2002 A1
20020029071 Whitehurst Mar 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058890 Visuri et al. May 2002 A1
20020071287 Haase Jun 2002 A1
20020071827 Petersen et al. Jun 2002 A1
20020072676 Afanassieva Jun 2002 A1
20020081555 Wiesel Jun 2002 A1
20020091377 Anderson et al. Jul 2002 A1
20020108193 Gruber Aug 2002 A1
20020111610 Nordquist Aug 2002 A1
20020120256 Furuno et al. Aug 2002 A1
20020123745 Svaasand et al. Sep 2002 A1
20020127224 Chen Sep 2002 A1
20020128635 Altshuler et al. Sep 2002 A1
20020128695 Harth et al. Sep 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020161418 Wilkens et al. Oct 2002 A1
20020173780 Altshuler et al. Nov 2002 A1
20020182563 Boutoussov et al. Dec 2002 A1
20020183808 Biel Dec 2002 A1
20020198517 Alfano et al. Dec 2002 A1
20030004499 McDaniel Jan 2003 A1
20030009158 Perricone Jan 2003 A1
20030009205 Biel Jan 2003 A1
20030018373 Eckhardt et al. Jan 2003 A1
20030023235 Cense et al. Jan 2003 A1
20030023283 McDaniel Jan 2003 A1
20030023284 Gartstein et al. Jan 2003 A1
20030028227 Neuberger et al. Feb 2003 A1
20030032900 Ella Feb 2003 A1
20030032950 Altshuler et al. Feb 2003 A1
20030036680 Black Feb 2003 A1
20030040739 Koop Feb 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030057875 Inochkin et al. Mar 2003 A1
20030059738 Neuberger Mar 2003 A1
20030065314 Altshuler et al. Apr 2003 A1
20030083649 Margaron et al. May 2003 A1
20030084534 Kaizuka May 2003 A1
20030097122 Ganz et al. May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030104340 Clemans Jun 2003 A1
20030109787 Black Jun 2003 A1
20030109860 Black Jun 2003 A1
20030113684 Scott Jun 2003 A1
20030129154 McDaniel Jul 2003 A1
20030130709 D.C. et al. Jul 2003 A1
20030152528 Singh et al. Aug 2003 A1
20030163884 Weihrauch Sep 2003 A1
20030167080 Hart et al. Sep 2003 A1
20030169433 Koele et al. Sep 2003 A1
20030181896 Zvuloni et al. Sep 2003 A1
20030187486 Savage et al. Oct 2003 A1
20030195494 Altshuler et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030216795 Harth et al. Nov 2003 A1
20030232303 Black Dec 2003 A1
20040006332 Black Jan 2004 A1
20040010298 Altshuler et al. Jan 2004 A1
20040015156 Vasily Jan 2004 A1
20040015158 Chen et al. Jan 2004 A1
20040019990 Farrell et al. Feb 2004 A1
20040024388 Altshuler Feb 2004 A1
20040030326 Altshuler et al. Feb 2004 A1
20040034319 Anderson et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040082940 Black et al. Apr 2004 A1
20040085026 Inochkin et al. May 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040093043 Edel et al. May 2004 A1
20040111132 Shenderova et al. Jun 2004 A1
20040116984 Spooner et al. Jun 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040143920 Nanda Jul 2004 A1
20040147984 Altshuler et al. Jul 2004 A1
20040156626 Thoms Aug 2004 A1
20040161213 Lee Aug 2004 A1
20040162549 Altshuler Aug 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040176764 Island et al. Sep 2004 A1
20040191729 Altshuler et al. Sep 2004 A1
20040193234 Butler Sep 2004 A1
20040193235 Altshuler et al. Sep 2004 A1
20040193236 Altshuler et al. Sep 2004 A1
20040199227 Altshuler et al. Oct 2004 A1
20040204745 Altshuler et al. Oct 2004 A1
20040210276 Altshuler et al. Oct 2004 A1
20040214132 Altshuler Oct 2004 A1
20040225339 Yaroslavsky et al. Nov 2004 A1
20040230258 Altshuler et al. Nov 2004 A1
20040230260 MacFarland et al. Nov 2004 A1
20040234460 Tarver et al. Nov 2004 A1
20050038418 Altshuler et al. Feb 2005 A1
20050049467 Stamatas et al. Mar 2005 A1
20050049582 DeBenedictis et al. Mar 2005 A1
20050049658 Connors et al. Mar 2005 A1
20050063931 Paus et al. Mar 2005 A1
20050065531 Cohen Mar 2005 A1
20050085875 Van Zuylen Apr 2005 A1
20050107849 Altshuler et al. May 2005 A1
20050168158 Inochkin et al. Aug 2005 A1
20050171517 Altshuler et al. Aug 2005 A1
20050171581 Connors et al. Aug 2005 A1
20050177026 Hoeg et al. Aug 2005 A1
20050182389 LaPorte et al. Aug 2005 A1
20050197681 Barolet et al. Sep 2005 A1
20050215988 Altshuler et al. Sep 2005 A1
20050220726 Pauly et al. Oct 2005 A1
20050251118 Anderson et al. Nov 2005 A1
20060004306 Altshuler et al. Jan 2006 A1
20060004347 Altshuler et al. Jan 2006 A1
20060009750 Altshuler et al. Jan 2006 A1
20060020309 Altshuler et al. Jan 2006 A1
20060047281 Kreindel Mar 2006 A1
20060058712 Altshuler et al. Mar 2006 A1
20060079947 Tankovich et al. Apr 2006 A1
20060089687 Spooner et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060122668 Anderson et al. Jun 2006 A1
20060149343 Altshuler et al. Jul 2006 A1
20060161143 Altshuler et al. Jul 2006 A1
20060194164 Altshuler et al. Aug 2006 A1
20060206103 Altshuler et al. Sep 2006 A1
20060253176 Caruso et al. Nov 2006 A1
20060271028 Altshuler et al. Nov 2006 A1
20060287646 Altshuler et al. Dec 2006 A1
20070027440 Altshuler et al. Feb 2007 A1
20070038206 Altshuler et al. Feb 2007 A1
20070049910 Altshuler et al. Mar 2007 A1
20070060819 Altshuler et al. Mar 2007 A1
20070067006 Altshuler et al. Mar 2007 A1
20070073308 Anderson et al. Mar 2007 A1
20070078501 Altshuler et al. Apr 2007 A1
20070159592 Rylander et al. Jul 2007 A1
20070185552 Masotti et al. Aug 2007 A1
20070194717 Belikov et al. Aug 2007 A1
20070198004 Altshuler et al. Aug 2007 A1
20070213696 Altshuler et al. Sep 2007 A1
20070213698 Altshuler et al. Sep 2007 A1
20070213792 Yaroslavsky et al. Sep 2007 A1
20070219604 Yaroslavsky et al. Sep 2007 A1
20070219605 Yaroslavsky et al. Sep 2007 A1
20070239142 Altshuler et al. Oct 2007 A1
20070239143 Altshuler et al. Oct 2007 A1
20070255355 Altshuler et al. Nov 2007 A1
20070288071 Rogers Dec 2007 A1
20080009842 Manstein et al. Jan 2008 A1
20080058783 Altshuler et al. Mar 2008 A1
20080132886 Cohen et al. Jun 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140164 Oberreiter et al. Jun 2008 A1
20080172047 Altshuler et al. Jul 2008 A1
20080183162 Altshuler et al. Jul 2008 A1
20080183250 Tanojo et al. Jul 2008 A1
20080195183 Botchkareva et al. Aug 2008 A1
20080214988 Altshuler et al. Sep 2008 A1
20080294150 Altshuler et al. Nov 2008 A1
20080306471 Altshuler et al. Dec 2008 A1
20090048557 Yeshurun et al. Feb 2009 A1
20090069741 Altshuler et al. Mar 2009 A1
Foreign Referenced Citations (201)
Number Date Country
400305 Apr 1995 AT
1851583 Mar 1984 AU
2053926 Mar 1990 CN
1073607 Jun 1993 CN
1182572 May 1998 CN
1351483 May 2002 CN
1535126 Oct 2004 CN
3304230 Aug 1984 DE
3719561 Jan 1988 DE
3837248 May 1990 DE
9102407 Jul 1991 DE
19803460 Aug 1999 DE
19944401 Mar 2001 DE
10140715 Mar 2002 DE
10112289 Sep 2002 DE
10120787 Jan 2003 DE
0593 Feb 1979 EP
0142671 May 1985 EP
0172490 Feb 1986 EP
0320080 Jun 1989 EP
0324120 Jul 1989 EP
0563953 Oct 1993 EP
0565331 Oct 1993 EP
0593375 Apr 1994 EP
0598984 Jun 1994 EP
0709941 May 1996 EP
0724894 Aug 1996 EP
0726083 Aug 1996 EP
0736308 Oct 1996 EP
0743029 Nov 1996 EP
0755698 Jan 1997 EP
0763371 Mar 1997 EP
0765673 Apr 1997 EP
0765674 Apr 1997 EP
0783904 Jul 1997 EP
0884066 Dec 1998 EP
0885629 Dec 1998 EP
0920840 Jun 1999 EP
0927544 Jul 1999 EP
1038505 Sep 2000 EP
1075854 Feb 2001 EP
1138349 Oct 2001 EP
1147785 Oct 2001 EP
1219258 Jul 2002 EP
1226787 Jul 2002 EP
1250893 Oct 2002 EP
1057454 Nov 2003 EP
1457234 Sep 2004 EP
1495735 Jan 2005 EP
1512373 Mar 2005 EP
1535582 Jun 2005 EP
1627662 Feb 2006 EP
1839705 Oct 2007 EP
1854505 Nov 2007 EP
2199453 Apr 1974 FR
2591902 Jun 1987 FR
1546625 May 1979 GB
2044908 Oct 1980 GB
2059053 Apr 1981 GB
2059054 Apr 1981 GB
2123287 Feb 1984 GB
2239675 Jul 1991 GB
2270159 Mar 1994 GB
2356570 May 2001 GB
2360461 Sep 2001 GB
2360946 Oct 2001 GB
2364376 Jan 2002 GB
2368020 Apr 2002 GB
2390021 Dec 2003 GB
2397528 Jul 2004 GB
54129791 Oct 1979 JP
1099574 Apr 1989 JP
2174804 Jul 1990 JP
3066387 Mar 1991 JP
199013014 Sep 1991 JP
6022871 Feb 1994 JP
9084803 Mar 1997 JP
9141869 Jun 1997 JP
10014661 Jan 1998 JP
10165410 Jun 1998 JP
11047146 Feb 1999 JP
11081877 Mar 1999 JP
2000037400 Feb 2000 JP
2000300684 Oct 2000 JP
2001029124 Feb 2001 JP
2001145520 May 2001 JP
2002506362 Feb 2002 JP
2002272861 Sep 2002 JP
2005027702 Feb 2005 JP
2082337 Jun 1997 RU
2089126 Sep 1997 RU
2089127 Sep 1997 RU
2096051 Nov 1997 RU
2122848 Dec 1998 RU
WO-8602783 May 1986 WO
WO-8804592 Jun 1988 WO
WO-9000420 Jan 1990 WO
WO-9102562 Mar 1991 WO
WO-9113652 Sep 1991 WO
WO-9216338 Jan 1992 WO
WO-9219165 Nov 1992 WO
WO-9305920 Apr 1993 WO
WO-9510243 Apr 1995 WO
WO-9515725 Jun 1995 WO
WO-9532441 Nov 1995 WO
9622741 Aug 1996 WO
WO-9623447 Aug 1996 WO
WO-9625979 Aug 1996 WO
WO-9628212 Sep 1996 WO
WO-9636396 Nov 1996 WO
WO-9641579 Dec 1996 WO
WO-9713458 Apr 1997 WO
WO-9713552 Apr 1997 WO
9722384 Jun 1997 WO
WO 9722384 Jun 1997 WO
9807379 Feb 1998 WO
WO-9804317 Feb 1998 WO
WO-9805286 Feb 1998 WO
WO-9805380 Feb 1998 WO
WO-9806456 Feb 1998 WO
9820937 May 1998 WO
WO-9824507 Jun 1998 WO
9841158 Sep 1998 WO
WO-9851235 Nov 1998 WO
WO-9852481 Nov 1998 WO
WO-9858595 Dec 1998 WO
WO-9910046 Mar 1999 WO
9917668 Apr 1999 WO
WO-9917666 Apr 1999 WO
WO-9917667 Apr 1999 WO
WO-9927997 Jun 1999 WO
WO-9929243 Jun 1999 WO
WO-9934867 Jul 1999 WO
WO-9938569 Aug 1999 WO
WO-9943387 Sep 1999 WO
WO-9944638 Sep 1999 WO
WO-9946005 Sep 1999 WO
WO-9949937 Oct 1999 WO
WO-9962472 Dec 1999 WO
WO-9966988 Dec 1999 WO
WO-0002491 Jan 2000 WO
WO-0003257 Jan 2000 WO
WO-0007514 Feb 2000 WO
WO-0030714 Jun 2000 WO
WO-0032272 Jun 2000 WO
WO-0040266 Jul 2000 WO
WO-0041278 Jul 2000 WO
WO-0043070 Jul 2000 WO
WO-0044294 Aug 2000 WO
WO-0054649 Sep 2000 WO
WO-0054685 Sep 2000 WO
WO-0062700 Oct 2000 WO
WO-0064537 Nov 2000 WO
WO-0066226 Nov 2000 WO
WO-0071045 Nov 2000 WO
WO-0074583 Dec 2000 WO
WO-0074781 Dec 2000 WO
WO-0078242 Dec 2000 WO
WO-0103257 Jan 2001 WO
WO-0114012 Mar 2001 WO
WO-0126573 Apr 2001 WO
WO-0134048 May 2001 WO
WO-0142671 Jun 2001 WO
WO-0154606 Aug 2001 WO
WO-0154770 Aug 2001 WO
WO-0178830 Oct 2001 WO
WO-0209813 Feb 2002 WO
WO-0226147 Apr 2002 WO
WO-02053050 Jul 2002 WO
WO-02069825 Sep 2002 WO
WO-02078559 Oct 2002 WO
WO-02094116 Nov 2002 WO
WO-03005883 Jan 2003 WO
WO-03049633 Jun 2003 WO
WO-04000150 Dec 2003 WO
2004011848 Feb 2004 WO
WO-2004033040 Apr 2004 WO
WO-2004037068 May 2004 WO
WO-2004037287 May 2004 WO
WO-2004073537 Sep 2004 WO
WO-2004080279 Sep 2004 WO
WO-2004084752 Oct 2004 WO
WO-2004086947 Oct 2004 WO
WO-2005007003 Jan 2005 WO
WO-2005009266 Feb 2005 WO
WO-2005030317 Apr 2005 WO
WO-2005046793 May 2005 WO
WO-2005065288 Jul 2005 WO
WO-2005092438 Oct 2005 WO
WO-2005096981 Oct 2005 WO
WO-2005099369 Oct 2005 WO
WO-2005112815 Dec 2005 WO
WO-2006006123 Jan 2006 WO
WO-2006036968 Apr 2006 WO
WO-2006066226 Jun 2006 WO
WO-2006089227 Aug 2006 WO
WO-2006101735 Sep 2006 WO
WO-2006116141 Nov 2006 WO
WO-2007035444 Mar 2007 WO
WO-2007122611 Nov 2007 WO
WO-2008070747 Jun 2008 WO
Related Publications (1)
Number Date Country
20110172651 A1 Jul 2011 US
Provisional Applications (2)
Number Date Country
60046542 May 1997 US
60077726 Mar 1998 US
Continuations (5)
Number Date Country
Parent 12782961 May 2010 US
Child 13071075 US
Parent 11437434 May 2006 US
Child 12782961 US
Parent 10274582 Oct 2002 US
Child 11437434 US
Parent 09634981 Aug 2000 US
Child 10274582 US
Parent 09078055 May 1998 US
Child 09634981 US