The present invention relates to arrangements for housing microphones used in communication headsets and, more particularly, to a headset case and microphone arrangement configured for eliminating or reducing wind noise.
Hands-free headsets for use with cellular phones and traditional land-line phones are known. One major problem with traditional communication headsets is ambient noise associated with the environment that can be picked up by the headset's microphone and transmitted along with the user's voice. It has long been desired to provide improved microphone performance in devices such as communication headsets that operate under a variety of different ambient noise conditions. It is well-known that wind flow over a microphone will induce significant amounts of low frequency noise. Wind-induced noise is a particular problem for communication headsets, such as those used in connection with cellular phones, when used, for example, outdoors or near an open window in a vehicle.
Although there are several devices in the prior art that attempt to eliminate or reduce wind-induced noise in microphone arrangements, they generally are not acceptable for applications such as communication headsets. As communication headsets become increasingly compact and the parts contained therein more miniaturized, there is less and less space available to accommodate prior art solutions.
The present invention overcomes the disadvantages of the prior art by providing a wireless communication headset which reduces wind-induced noise and provides improved microphone performance under a variety of different ambient noise conditions. The communication headset includes a housing defining a cavity and first and second apertures in communication with the cavity. A microphone disposed within the cavity has a transducer oriented along an axis, whereby the first and second apertures are located on opposite sides of the axis. A baffle surrounds the transducer and is oriented along the axial direction. Further still, a liner disposed within the cavity provides a diffuse acoustic path between the first and second apertures and the transducer so as to prevent wind flow from directly impinging upon the microphone.
In accordance with one aspect of the invention, the housing is free of any aperture which is oriented along the axial direction of the transducer and in communication with the cavity. That is to say, there is no opening in the case which directly faces the transducer of the microphone. Additionally, the apertures have an elongated length which is longer than the elongated baffle.
In accordance with yet another aspect of the invention, the liner can comprise a foam layer that extends substantially between the first and second apertures and provides the diffuse acoustic path for substantially all air paths therebetween. The foam layer has an acoustic resistivity of at least 2 acoustic Ω/cm2. Furthermore, air paths between the first and second apertures flow in a direction that is perpendicular to the transducer. Alternatively, the liner can comprise one or more fabric swatches, or layers of swatches that overlie the first and second apertures to diffuse air flowing into the cavity.
A communication headset in accordance with further aspects of the present invention includes the foregoing headset components as well as a communication circuit for processing acoustic signals coupled by the transducer.
These and further aspects, features and advantages of the present invention will become more apparent from the following description when taken in connection with the accompanying drawings which show, for purposes of illustration only, a preferred embodiment of the present invention.
With reference to
Communication headset 10 can be used with any land-line or cellular telephone and with a conventional cellular service provided by a cellular service provider. Headset 10 can also be used with a cellular telephone employing Bluetooth, Wifi, or other wireless technology and, in this case, headset 10 communicates directly with the wireless communication chip in the phone. Bluetooth wireless technology is presently the preferred protocol for wireless communication between the cellular phone and the headset 10. Alternatively, the headset 10 can be used with cellular phones that are not equipped with Bluetooth circuitry by interposing an adapter between the phone and the headset, as described in the aforementioned, co-pending application.
Referring to
To provide the headset 10 assembly with an improved acoustic response, a liner disposed on an inside surface of the headset housing within a cavity is provided. The liner can comprise an acoustic foam layer 20 that encases the shroud of the baffle, and preferably the entire microphone 16. The liner can alternatively comprise a fabric such as a cloth or an expanded PTFE material (e.g., GOR-TEX brand fabric swatch), and preferably overlies aperture pairs 41 in the housing to thereby diffuse air that flows into the cavity and prevent wind flow from directly impinging upon the microphone, but can be otherwise disposed within the cavity so as to prevent wind flow from directly impinging upon the transducer of the microphone, such as around the transducer and upon the shroud so that a “dead” space of air is available forward of the transducer element. In either arrangement, the impact of wind is buffered more effectively than in conventional case arrangements in which the microphone's transducer is oriented in a direct line of sight with an aperture that couples sound waves from the exterior of the case to an interior region.
Referring to
As illustrated in
As illustrated, the liner comprises an acoustic foam layer 20 (20a and 20b), here provided from polyester urethane, a hydrophobic material or any other similar material selected to improve the acoustic properties of the microphone 16 and to match the acoustic properties of baffle 14 to the microphone 16 is disposed in the space created by the housings 24, 26. Referring to
In an alternative arrangement, a diffuse air flow path is achieved by disposing a fabric swatch over the aperture pairs 41. A presently preferred fabric includes an expanded PTFE membrane, such as 100% expanded PTFE, and is available from W. L. Gore & Associates, Inc. in a variety of different forms, but all of their fabrics rated for outerwear are suitable for use as the liner, including their line of WINDSTOPPER(R) fabric. The fabric is selected in thickness and material so as to permit acoustic waves to enter into the housing, yet provide a controlled air-space cavity in front of the microphone's transducer. The fabric liner need not engage or contact the baffle or the shroud, yet will still provide a diffuse acoustic path between the first and second apertures 41 and the shroud so as to prevent wind flow from directly impinging upon the microphone 16. Preferably, the fabric liner, if used, provides a diffuse acoustic path for substantially all of the air paths between the aperture pairs 41.
According to a salient aspect of the present invention housing 80 is free of any aperture which is orientated along the axial direction (C) and in communication with the cavity. Additionally, air paths between the first and second apertures flow in a direction that is perpendicular to the transducer.
Baffle 14, as shown in
Referring to
The effect of the liner (e.g., the fabric or acoustic foam layer 20) and the baffle 14 in the communication headset 10 is to alter the polar patterns that can be plotted as compared to plots for a headset assembly without the foam 20 and baffle 14. Specifically, a rear lobe that would be present when the liner and baffle are not provided is effectively eliminated by adding the liner and baffle.
While it has been typical in conventional microphone assemblies to minimize the acoustic resistivity of acoustic foam layers in conventional wind screens by increasing the porosity of the foam layer, the microphone assembly of the present invention advantageously can utilize a foam layer with a higher acoustic resistivity by decreasing the porosity of foam layer and yet obtaining not only better wind-isolation properties, but also improved acoustic characteristics for the microphone assembly. The reduction of the rear lobe of the polar pattern of the microphone assembly is particularly advantageous when communication headset 10 is used outdoors in particular windy environments with substantially no direct air path along the axis of the microphone's transducer.
While the invention has been described with reference to several embodiments thereof, the invention is more broadly defined and limited only by the recitations in the claims appended hereto and their legal equivalents.