The present invention is directed to a headspace gas sampling method and arrangements and filtering and sampling ports used therewith. More particularly, the present invention is directed to such method, arrangements and ports which are particularly suitable for sampling and filtering gases from waste material stored in containers, such as drums, wherein the material is a hazardous waste such as, but not limited to, transuranic waste.
Since 1970, transuranic waste material generated in the United States by the Department of Energy Operations has been packaged in unvented, 55-gallon steel drums, which drums have been stored with the intention of future retrieval. It is intended that the material in these drums will be disposed of permanently in the Department of Energy Waste Isolation Pilot Plant (WIIP) Facility. Currently, there are safety concerns regarding these stored drums because of the potential presence of combustible headspace gases. These gases can include hydrogen and methane, resulting from the radiolytic decomposition of hydrogenous waste materials, e.g. paper, plastics and moist materials and/or from the presence of small amounts of combustible volatile organic compounds (VOCs) that are co-contaminants of transuranic waste. Future transportation and storage of these wastes stored in drums such as 55-gallon drums must address what is to be done about these gases.
The WIPP facility has waste acceptance criteria that requires that all packages stored must be vented. Moreover, those packages which are to be shipped to the Waste Isolation Pilot Plant must be vented and demonstrated to meet combustible gas concentration limits before shipping.
In addition, it is necessary that these drums retain their integrity during shipment in case the drums are accidentally dropped or are involved in a road or railway accident during shipment. Since there are millions of these drums, it is assumed that there will be accidents or occurrences that may stress the drums and increase the risk of spills or leaks. It is therefore important that any sampling ports or filter ports not be dislodged so as compromise the integrity of the drums.
Moreover, since the drums must be sampled and filtered, it is desirable that the sampling and application of filters be performed in an expeditious and safe manner.
In view of the aforementioned considerations, the present invention is directed to a drum sampling and filtering arrangement wherein a sampling punch and a filtering punch are used for each drum, the sampling and filtering punches being inserted by remote control using a remotely activated drive.
In a more specific aspect, the remotely activated drive is a pneumatic gun which drives the filtering punch and then the sampling punch through the lid of the drum at spaced locations through the lid.
In a further aspect of the invention, a punch is configured for penetrating a wall to access a space behind the wall, wherein each punch comprises an annular body having first and second ends for passage therethrough, the passage having a first opening and a second opening. The punch point is coupled detachably the first end of annular body. The coupling releases the punch point upon inserting the punch point through the wall, whereby the first opening of the passage communicates with the space behind the wall. In accordance with a preferred arrangement, the coupling comprises a deformable element which releases the punch point upon the punch point being forced through the wall. In a more specific aspect of the invention, the coupling comprises a stud on the punch point which is received in the open end of the passage, the punch point being held in the passage by an element which releases the punch point after the punch point has penetrated the wall. In a still more particular aspect of the invention, the element which holds the stud of the punch point in the passage is a collar which disengages from the punch point as the punch point passes through the wall.
In accordance with one embodiment of the punch, the passage includes the septa seal therein adapted to permit the passage of a hollow needle therethrough to sample in the space behind the wall. In accordance with another embodiment of the punch, the passage has a filter element associated therewith, wherein any fluid which passes from the first opening in the body and through the second opening in the body must pass through the filter element.
Various other features and attendant advantages of the present invention will be more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
Referring now to
In accordance with the principles of the present invention, venting is accomplished by a filter port 20 disposed through the lid 12. It is also necessary to determine the composition of head gases accumulated in the headspace 18. In accordance with the present invention, this is accomplished by a sampling port 22, also inserted in the lid 12. In accordance with the present invention, the filter port 20 and sampling port 22 in combination with the drum 10 provide a method and arrangement for handling transuranic waste 16 having gases which may present an environmental hazard and which must be known, filtered and vented in order to minimize environmental risks.
While transuranic waste is a primary concern with respect to the present invention, the arrangement shown in
Referring now to
The pneumatic gun 30 has attached thereto a cylinder of compressed air 40 that has a pneumatic line 42 connected through a charging cylinder 44 to the gun 30. Charging cylinder 44 is connected to an actuator 50 which allows air in the charging cylinder 44 to enter the gun 30 so as to drive a piston downwardly. Since the ports 20 and 22 are configured as punches the piston engages and drives the ports through the lid 12 (as seen in FIGS. 5 and 10). It has been found that the filter and vent ports 20 and 22 can be installed using pneumatic gun pressures in the range of 80 to 120 psi in a fraction of a second so that the escape head gases during installation does not occur, or is so minimal as to be inconsequential.
In accordance with the present invention, the actuator 50 actuated remotely by a radio frequency from a transmitter 39 so that the technician installing the venting and sampling ports is remote from the installation process and thus is not exposed to hazardous material which may be dislodged or released during the pneumatic pulse which punches the ports 20 and 22 through the lid 12.
In accordance with the method of the present invention, the vent port 20 is installed first at a first location radially spaced from the axis 13 of the lid 12. The pneumatic gun 30 is shifted by loosening the toggle couplings 37 and moving pneumatic gun 30 to a location on the other side of the axis aligned with the vent punch 20. The toggle couplings 37 are then tightened to fix the pneumatic gun 30 at a second location and again the pneumatic gun 30 is fired, this time to drive the sampling port 22 through the lid 12. Pneumatic gun 30 is then removed so that the arrangement of filter port 20 and pneumatic port 22 as shown in
A sample of headspace gas is then obtained through the sampling port 22 and analyzed. The analysis is done at a laboratory which may be remote from the location of the 55-gallon steel drum 10 to determine the nature of the head space gas, and to determine whether or not materials in the drum must be repackaged or undergo further processing before shipping to a storage location. Typically, the headspace gas sample is placed in a canister and shipped by overnight express to a laboratory for analysis.
In order to facilitate the arrangement shown in
Referring now to
As is seen in
Positioned around the shank 51 in a groove 76 beneath the head 53 of the vent port 20 is an O-ring 80 made of a long lasting material such as neoprene. The O-ring 80 seats against a top curved portion 82 of the wall 72 that defines the opening 74 to seal the body member 20 with respect to the top surface 84 of the lid 12. The threads 70 bite into the surface of the wall 72 so as to firmly hold the vent head 20 in place with the O-ring 80 deformed. Thus the vent head 20 is permanently fixed to the lid 12. If for some reason, it is necessary to remove the vent head 20, a hex nut portion 88 is formed on the head 53 so that upon counter-clockwise rotation of the vent head 20, it may be backed out of the opening 74. This requires considerable torque since the lid 12 is made of steel and the threads 70 of the shank portion bite into the wall 72 of the opening 74 with considerable force.
In order to minimize the possibility of sparking, the body 50 of the vent port 20 made of an aluminum-bronze alloy, as is punch point 62.
The vent head 20 and the sampling head 22 are similarly configured with the exception of the passages 56 and 56′ respectively, the passage 56 in the vent head 20 of
Filter element 90 meets WIPP, WAC and TRUPACT-II SAR section 1.3.5 requirements, i.e.:
After the vent head 20 is inserted, any head gases which have accumulated in the headspace 18 under pressure pass through the filter 90. Consequently, pressure within the headspace is reduced to the surrounding atmospheric pressure.
Referring now more specifically to
Referring now to
Referring now to
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.
This application is a divisional application of U.S. patent application Ser. No. 09/922,943, filed Aug. 7, 2001, now U.S. Pat. No. 6,557,428.
Number | Name | Date | Kind |
---|---|---|---|
1930182 | Richardson | Oct 1933 | A |
3872730 | Ringrose et al. | Mar 1975 | A |
4545440 | Treadway | Oct 1985 | A |
4589185 | Schneider | May 1986 | A |
4756852 | Temus | Jul 1988 | A |
4766923 | Roper | Aug 1988 | A |
4820097 | Maeda et al. | Apr 1989 | A |
4969787 | Baars | Nov 1990 | A |
5080542 | Sheahan | Jan 1992 | A |
5131283 | Canfield | Jul 1992 | A |
5193709 | Brassell | Mar 1993 | A |
5634484 | Vodila et al. | Jun 1997 | A |
5635653 | Wittig et al. | Jun 1997 | A |
5727707 | Wickland et al. | Mar 1998 | A |
5891223 | Shaw et al. | Apr 1999 | A |
5928468 | Tolson | Jul 1999 | A |
6041669 | Brassell et al. | Mar 2000 | A |
6293163 | Johnston et al. | Sep 2001 | B1 |
6395050 | Wickland et al. | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20030101830 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09922943 | Aug 2001 | US |
Child | 10299911 | US |