This application claims the priority of German Patent Application No. 10 2005 029 701.3, filed on Jun. 24, 2005, the subject matter of which, in its entirety, is incorporated herein by reference.
The invention relates to a heald shaft having a releasable end binder.
As a rule, heald shafts comprise two shaft rods which are held parallel to, and spaced from, one another by end binders. The shaft rods and the end binders together define a rectangle. To the shaft rods shaft staves are secured which support the healds. The healds have to be occasionally replaced. For such an operation at least one of the two end binders is removed, whereby the healds may be slid off the shaft staves by shifting them therealong. For effecting removal of the end binders, they are releasably coupled with the shaft rods.
German Patent Document DE 37 39 870 A1 illustrates a coupling device for connecting an end binder with a shaft rod in a web shaft. The coupling device comprises a prolongation which extends laterally away from the end binder and which extends into a cavity of the shaft rod formed as a hollow section. The prolongation is, for example, a component which has two legs which may be spread apart by an externally accessible clamping screw. The latter presses the legs against an upper and a lower web of the cavity for firmly clamping the coupling device in the cavity. In the alternative, for spreading the legs apart, a dual cam may be provided which is in engagement with respective curved follower surfaces arranged on facing sides of the legs. Upon turning the cam disposed between the legs, it spreads the legs apart for clamping the coupling device in the cavity.
Swiss Patent No. 446 221 discloses a coupling device which serves for connecting an end binder with a shaft rod and which is likewise based on cam operation. The coupling device comprises a spring element which is accommodated in the cavity and which has at least one wedge face extending at an inclination to the length direction of the shaft rod. A wedge, also disposed in the cavity, is clamped with one inclined face against the wedge face of the spring element, and is clamped with its back, for example, against a web of the shaft rod. The wedge element wedges upon imparting thereto a pulling force directed outward of the cavity. The wedge element passes through an aperture of the end binder with a prolongation acted upon by a cam provided with a lever, for generating the desired tensile force by a pivotal motion.
The two above-outlined devices are tolerance-sensitive. In case of an excess, the cam causes an excessive clamping of the coupling device. Such an occurrence is incompatible with the tendency to build shaft rods of light-weight structure. Deformations may occur if coupling devices are excessively clamped, particularly in case of light-weight shaft rods.
Further, European Published Application No. EP 0 314 181 A1 and U.S. Pat. No. 4,022,252 disclose coupling devices for interconnecting a shaft rod and an end binder, where the axially displaceable wedge of the coupling device is tightened by a tension screw. In case of sensitive heald shafts, it is necessary to tighten the screw with a torque wrench for preventing the coupling device from being excessively tightened. This requirement is occasionally neglected in practice which may result in damages.
It is therefore the object of the invention to provide an improved heald shaft.
The above object generally is achieved with the heald shaft according to the invention which includes a shaft rod and an end binder which are connected to one another by a coupling device. The coupling device comprises a clamping member supported for displacement between a clamping position and a releasing position for clamping a coupling element which is connected with the end binder. The force to be applied for moving the clamping member into, and holding it in, its clamping position, is generated by a spring element which acts on the clamping member and biases it toward its clamping position. As a result, the force which clamps down the clamping member is essentially constant or, in any event, well controlled. In this manner, on the one hand, a secure seating of the coupling device is obtained and, on the other hand, it is ensured that a maximum force imparted to the shaft rod by the coupling device is not exceeded. Particularly in case of shaft rods having very thin walls, damage to the shaft rod can thus be prevented. Neither is an excessively loose seating and thus a separation between shaft rod and end binder to be feared, nor is a torque wrench or other force or torque controlling tool required for operating the coupling device.
The clamping member is preferably a wedge element, whose displacement path is, for example, linear and which is supported for displacement preferably transversely to the end binder. In this manner, the wedge element spreads apart two elements in a direction parallel to the end binder for effecting a firm clamping of the coupling device in the receiving cavity of the shaft rod. The noted elements may be, for example, the parallel-arranged legs of a frame which accommodates the clamping member. The legs of the frame may be spread apart from one another. The spreading motion is preferably transverse to the direction of motion of the clamping elements, that is, approximately perpendicular to the pressing surfaces of the clamping elements. The frame is, for example, a plastic body which has a certain elastic deformability. The frame may further have a receiving cavity for a coupling element which is preferably unreleasibly connected to the end binder. The connection is preferably formed by a joint which allows at least a slight pivotal motion of the coupling element relative to the end binder. In about the middle of the pivotal range, the coupling element is oriented approximately perpendicularly to the end binder. The pivot axis of the joint provided between the coupling element and the end binder lies preferably within the end binder. As a result, a generation of bending moments acting on the end binder are substantially prevented. The end binder is essentially stressed for tension and pressure.
In a preferred embodiment of the coupling device several clamping members are used which are constituted, for example, by wedge elements. The clamping members are moved preferably in opposite directions for displacing them from the clamping position into the releasing position and conversely. Preferably, the clamping members are biased by one and the same spring element, such as a flexure spring. It is to be understood, however, that several, separate and differently structured spring elements may be provided for biasing the clamping members into their clamping position.
In the preferred embodiment the clamping member (or clamping members, as the case may be) is associated with a releasing device which is capable of overcoming the biasing force applied by the spring element to thus move the clamping member (or members) into the releasing position. As a releasing device, preferably a rotatably supported cam is used which is in engagement with the clamping members. By means of recesses, which are provided in the clamping elements and into which the cam locks after the cam has overcome the biasing force of the spring element, it is ensured that the position in which the coupling element can be released is maintained stable. For such a purpose a perceptible indication of such a position is obtained. The arrangement is preferably such that the spring element biases the clamping members toward one another, while, upon suitable rotation, the cam positioned between the two clamping members drives them away from one another. Such an arrangement is, however also reversible in principle.
Preferably, a detent device is arranged between the coupling element and the frame which, when the coupling element is pushed into a corresponding opening of the frame, sets a defined locked-in location. This arrangement has the advantage that a correct positioning of the end binder and the shaft rod with respect to one another may be established before the coupling device is moved into the clamping position. Then, upon clamping the coupling device, the desired correct relative position is preserved. The operating person receives a perceptible signal when the correct relative position is reached during the insertion of the coupling element into the frame disposed inside the shaft rod.
The frame, the clamping element (or elements) and, on occasion, also the coupling element may be made of plastic and, if desired, may be made in a joint manufacturing step as an interconnected component. The connection between the frame and the clamping member (or members) may be constituted by one or more, preferably flexible connecting webs.
Further details of advantageous embodiments of the invention form subject of the drawing, the description or the claims.
In the drawing which shows embodiments of the invention,
Coupling devices are provided at all four corners as connections. In
The coupling device 8 has a frame 12 constituted by a plastic body. The frame 12 includes two legs 13, 14 which lie against the webs 10, 11 in use and which are interconnected slightly resiliently by a connecting portion 15.
The legs 13, 14 have, at their side facing the webs 10, 11, throughgoing or interrupted strip-shaped engagement surfaces 16, 17, by means of which they lie face-to-face on the webs 10, 11. The legs between themselves leave free an intermediate space for receiving at least one, but in the present embodiment two clamping members 18, 19, a coupling element 20 and a releasing device 21.
The clamping members 18, 19, as shown in
The wedge elements have a respective pressing surface 26, 27 facing the leg 13. In this manner, between the leg 13 and the wedge elements 22, 23 an intermediate space is obtained in which the coupling element 20 extends. The latter is constituted, for example, by a metal bar having a rectangular cross section that is essentially constant along its length.
The wedge elements 22, 23 are preferably of a plastic or a metal. As shown in
The wedge elements 22, 23 are biased into their clamping position, that is, toward one another in the present embodiment, by a spring means which comprises at least one spring element 30. The spring element 30 is constituted by a flexion spring formed by a yoke of spring wire and has a portion 31 held in the leg 14. From the spring portion 31 extend arms 32, 33 into respective recesses of the wedge elements 22, 23 for pressing together the wedge elements 22, 23. The recesses which receive the arms 32, 33 of the spring element 30, are situated approximately on the diagonals of the wedge elements 22, 23. This recess preferably forms with the inclined surface 24, 25 an acute angle which is open toward the narrow end face of the respective wedge element 22, 23. The force with which a wedge element 22, 23 is tensioned is oriented approximately in the direction of the angle-halving line between the end face of the wedge element 22, 23 and the inclined surface 24, 25 of the leg 14, that is, in the direction of the diagonal of a wedge element 22, 23. In this manner not only is the motion of the wedge elements 22, 23 initiated, but also a holding function is generated which maintains the wedging elements 22, 23 on the inclined surfaces 24, 25 of the leg 14 in case no coupling element 20 is present in the intermediate space between the leg 13 and the pressing surfaces 26, 27.
In the alternative one or more flexion spring elements may be tensioned between the wedge elements 22, 23. Or instead, compression spring elements may be provided which, with a respective one end, are in engagement with the wedge elements 22, 23 and, with their respective other end, are in engagement with the frame 12.
A releasing device 21 is associated with the wedge elements 22, 23 for moving them into the disengaging position against the force of the spring element 30. In the present embodiment, the releasing device 21 is constituted by a cam 34 which is rotatably supported between the facing end surfaces of the wedge elements 22, 23. The cam 34 may be rotatably supported on a projection which forms part of the leg 14 and which is hidden and therefore not seen in
The coupling element 20 forms part of a joint which provides for an articulated connection between the end binder 4 and the shaft rod 3. The coupling element 20 has a portion 36 which extends into the end binder 4 and which has a bearing opening 37. The latter receives a bearing pin 38 which is preferably fixedly attached to the end binder 4 and which only slightly pivotally supports the coupling member 20. The bearing pin 38 defines a pivot axis for the thus-formed hinge. The pivot axis lies within the end binder 4.
As seen particularly in
The leg 13 of the frame 12 may further be provided with a detent device 42 which cooperates with the coupling element 20. The detent device 42 ensures an axial position of the coupling element 20 desired for the assembly. For example, the detent device 42 is formed by a bridge 44 which is held at both ends on the leg 13 and which is undercut by a cavity 43. The bridge 44 may carry a cam-like projection 45 which extends into a corresponding recess of the coupling element 20. Instead of a bridge, a tongue may be provided.
The coupling device described up to this point operates as follows:
A pulling or pressing force acting on the coupling element 20 along the shaft rod 3 cannot draw out the coupling element 20 from the frame 12, because in both directions either the wedge element 22 or the wedge element 23 is further tightened if there is a danger that such an axial motion could occur. Preferably, the clamping forces are, however, so dimensioned that the possibility of an axial motion of the coupling element 20 by forces generated during the operation of the heald shaft 1 is excluded in any event.
For releasing the coupling-device 8, the cam 34 is turned to a suitable extent, such as 90°, for example, through an opening 46 (
The frame 12 may be optionally releasably connected with the shaft rod 3 by a connecting means 52 for ensuring that upon disassembling the end binder, the coupling element 20 is removed from the frame 12, while the latter remains in the receiving cavity 9. The frame 12 may be connected with the shaft rod 3, for example by a tensioning pin or other known types of connection.
For reconnecting the end binder 4 with the shaft rod 3, the coupling element 20 is introduced into the frame 12 disposed in the receiving cavity 9. During this occurrence the operating person feels a perceptible detent effect as the projection 45 of the detent device 42 locks into the associated recess of the coupling element 20. In this manner the operator knows that the end binder 4 and the shaft rod 3 assumed the correct position with respect to one another. Thereafter the operator inserts a suitable tool into the opening 35 and turns the cam 34 approximately 90°, whereby the wedge elements 22, 23 are set free which are then moved to one another under the effect of the spring element 30 and firmly clamp the coupling element 20 in the frame 12 and, at the same time, the frame 12 in the receiving cavity 9.
The cam 34 does not have to form part of the coupling device 8. For releasing the coupling element 20, it is also feasible to spread the wedging elements 22, 23 apart by a suitable tool. For example, a cam may be formed directly on the tool or may be a part thereof. Such an arrangement has the advantage that the coupling element 20 is securely tightened if no tool is introduced into the coupling device 8.
The coupling element 20 of
For operating the wedge element 22, that is, for placing it into its releasing position, the opening 46 of the shaft rod 3 is shaped a slot. A tool may be introduced through the slot into an opening 49 provided in the wedge element 22 for moving the wedge element 22 into its releasing position. During such an occurrence, the wedge element 22 abuts the leg 14 and slightly pushes it out of the shaft rod 3. At the same time, a lug 54 formed on the leg 14 locks behind a projection 55 of the coupling element. The wedge element 22 is movable only to a limited extent toward the leg 14. Consequently, the wedge element 22, disposed in a pocket of the leg 14 and thus situated in the frame 12, may no longer slide back into its clamping position; rather, it remains in its releasing position. In case the wedge element is to clamp anew, the detent connection between the lug 54 and the projection 55 is unlocked by actuating the prolongation 56 against the force of a flexible connecting web 57 situated between the lug 54 or the prolongation 56 and the leg 14.
The locking member 60 is, for example, a plastic part and has, as shown in
The cam 34 is preferably divided in two parts, wherein the respective cam half is associated with a respective side of the central web.
The locking member 60 has, at its side oriented toward the cam 34, an arcuate contour which follows the circle described by the cam. In its relaxed state the locking member 60 engages the wedge elements 22, 23 with both legs 58, 59 and projects with its lug 62 into the path of the coupling element 20. In case the cam 34 is in its releasing position, and the coupling element 20 is shifted into the coupling device 8, the coupling element 20 first pushes the lug 62 aside. Then the lug 62 perceptively locks into the detent recess 63 when the coupling element 20 is shifted into its coupling position. The operating person feels and hears the lock-in engagement of the lug 62.
Thereafter the cam 34 is moved into its clamping position. It releases the wedge elements 22, 23 which are then moved toward one another under the effect of the spring element 30 and frictionally tighten the coupling element 20. At the same time, the cam 34 assumes its position under the lug 62 and secures the latter in its detent position so that it cannot be forced out of the detent recess 63. In this manner the coupling element 20 is secured with a form fit in its coupling position.
If the cam 34 is rotated through 90°, it spreads the wedges and releases the locking member 60. The coupling element 20 may then be moved out of its coupling position, while the lug 62 of the locking member 60 moves resiliently out of the detent recess 63.
In the heald shaft 1 according to the invention, a coupling device 8 is provided which serves for connecting the end binder 4 with the shaft rod 3 and which has a spring-biased clamping member 18 for frictionally holding a coupling element 20 in the shaft rod 3. When required, the clamping member 18 may be moved into its releasing position against the force of the spring element 30 for releasing the coupling element 20, so that the latter may be pulled out of the shaft rod 3 alone, or possibly together with other components of the coupling device 8. Operating such a coupling device is particularly simple and requires neither particular skill nor particular attention. The coupling device 8 is adapted for shaft rods of lightweight construction.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 029 701 | Jun 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3016925 | Graf | Jan 1962 | A |
4022252 | Ogura | May 1977 | A |
4832088 | Palau | May 1989 | A |
4883095 | Maruyama et al. | Nov 1989 | A |
5005607 | Shimizu | Apr 1991 | A |
5411061 | Faase | May 1995 | A |
Number | Date | Country |
---|---|---|
446 221 | Oct 1967 | CH |
37 39 870 | Jun 1988 | DE |
0 314 181 | May 1989 | EP |
79420 | Oct 1995 | NL |
Number | Date | Country | |
---|---|---|---|
20070009319 A1 | Jan 2007 | US |