The present disclosure relates generally to computer user interfaces, and more specifically to techniques and user interfaces for logging health-related events and for health-related coaching.
Users perform certain actions, or forgo from performing certain actions, that can have an impact on their health (e.g., on one or more physiological parameters relevant to their health). Electronic devices can collect relevant physiological data and also log data that can be relevant to understanding the health of users.
Some techniques for logging health-related events and for health-related coaching using electronic devices, however, are generally cumbersome and inefficient. For example, some existing techniques use a complex and time-consuming user interface, which may include multiple key presses or keystrokes. Existing techniques require more time than necessary, wasting user time and device energy. This latter consideration is particularly important in battery-operated devices.
Accordingly, the present technique provides electronic devices with faster, more efficient methods and interfaces for logging health-related events and for health-related coaching. Such methods and interfaces optionally complement or replace other methods for logging health-related events and for health-related coaching. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges. Such methods and interfaces can also assist users and professionals working with users to improve their health with viewing health-related events and assist users with modifying their behavior in ways that improve their health.
In accordance with some embodiments, a method is described. The method is performed at a first electronic device having a display device and one or more input devices. The method comprises: receiving, via a first input device of the one or more input devices, a first set of one or more inputs including: a first input that identifies a first action that was performed; and a second input that identifies a first user sentiment associated with the first action; in response to the first set of one or more inputs, generating a first log entry that includes the first action and the first user sentiment, wherein the first log entry is associated with a first time point.
In accordance with some embodiments, a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a first electronic device having a display device and one or more input devices is described. The one or more programs include instructions for: receiving, via a first input device of the one or more input devices, a first set of one or more inputs including: a first input that identifies a first action that was performed; and a second input that identifies a first user sentiment associated with the first action; in response to the first set of one or more inputs, generating a first log entry that includes the first action and the first user sentiment, wherein the first log entry is associated with a first time point.
In accordance with some embodiments, a transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a first electronic device having a display device and one or more input devices is described. The one or more programs include instructions for: receiving, via a first input device of the one or more input devices, a first set of one or more inputs including: a first input that identifies a first action that was performed; and a second input that identifies a first user sentiment associated with the first action; in response to the first set of one or more inputs, generating a first log entry that includes the first action and the first user sentiment, wherein the first log entry is associated with a first time point.
In some accordance with some embodiments, an electronic device is described. The electronic device comprises a display device; one or more input devices; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors. The one or more programs include instructions for: receiving, via a first input device of the one or more input devices, a first set of one or more inputs including: a first input that identifies a first action that was performed; and a second input that identifies a first user sentiment associated with the first action; in response to the first set of one or more inputs, generating a first log entry that includes the first action and the first user sentiment, wherein the first log entry is associated with a first time point.
In accordance with some an electronic device is described. The electronic device comprises: a display device; one or more input devices; means for receiving, via a first input device of the one or more input devices, a first set of one or more inputs including: a first input that identifies a first action that was performed; and a second input that identifies a first user sentiment associated with the first action; and means for, in response to the first set of one or more inputs, generating a first log entry that includes the first action and the first user sentiment, wherein the first log entry is associated with a first time point.
In accordance with some embodiments, a method is described. The method is performed at a first electronic device having a display device and one or more input devices. The method comprises: displaying, via the display device, a first log entry corresponding to a first event associated with a user of a second electronic device; while displaying the first log entry corresponding to the first event, receiving, via a first input device of the one or more input devices, a first set of one or more inputs corresponding to a request to transmit a first event challenge to the user associated with the second electronic device, wherein the first set of one or more inputs includes a first input corresponding to a set of one or more event conditions; and in response to the first set of one or more inputs, transmitting, to the second electronic device, data representing the first event challenge; wherein the data representing the first event challenge includes a prompt to the user of the second electronic device to log a challenge response event based on the set of one or more event conditions.
In accordance with some embodiments, a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a first electronic device having a display device and one or more input devices is described. The one or more programs include instructions for: displaying, via the display device, a first log entry corresponding to a first event associated with a user of a second electronic device; while displaying the first log entry corresponding to the first event, receiving, via a first input device of the one or more input devices, a first set of one or more inputs corresponding to a request to transmit a first event challenge to the user associated with the second electronic device, wherein the first set of one or more inputs includes a first input corresponding to a set of one or more event conditions; and in response to the first set of one or more inputs, transmitting, to the second electronic device, data representing the first event challenge; wherein the data representing the first event challenge includes a prompt to the user of the second electronic device to log a challenge response event based on the set of one or more event conditions.
In accordance with some embodiments, a transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a first electronic device having a display device and one or more input devices is described. The one or more programs include instructions for: displaying, via the display device, a first log entry corresponding to a first event associated with a user of a second electronic device; while displaying the first log entry corresponding to the first event, receiving, via a first input device of the one or more input devices, a first set of one or more inputs corresponding to a request to transmit a first event challenge to the user associated with the second electronic device, wherein the first set of one or more inputs includes a first input corresponding to a set of one or more event conditions; and in response to the first set of one or more inputs, transmitting, to the second electronic device, data representing the first event challenge; wherein the data representing the first event challenge includes a prompt to the user of the second electronic device to log a challenge response event based on the set of one or more event conditions.
In accordance with some embodiments, a first electronic device is described. The first electronic device comprises: a display device; one or more input devices; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors. The one or more programs include instructions for: displaying, via the display device, a first log entry corresponding to a first event associated with a user of a second electronic device; while displaying the first log entry corresponding to the first event, receiving, via a first input device of the one or more input devices, a first set of one or more inputs corresponding to a request to transmit a first event challenge to the user associated with the second electronic device, wherein the first set of one or more inputs includes a first input corresponding to a set of one or more event conditions; and in response to the first set of one or more inputs, transmitting, to the second electronic device, data representing the first event challenge; wherein the data representing the first event challenge includes a prompt to the user of the second electronic device to log a challenge response event based on the set of one or more event conditions.
In accordance with some embodiments, a first electronic is described. The first electronic device comprises: a display device; one or more input devices; means for displaying, via the display device, a first log entry corresponding to a first event associated with a user of a second electronic device; means for, while displaying the first log entry corresponding to the first event, receiving, via a first input device of the one or more input devices, a first set of one or more inputs corresponding to a request to transmit a first event challenge to the user associated with the second electronic device, wherein the first set of one or more inputs includes a first input corresponding to a set of one or more event conditions; and means for, in response to the first set of one or more inputs, transmitting, to the second electronic device, data representing the first event challenge; wherein the data representing the first event challenge includes a prompt to the user of the second electronic device to log a challenge response event based on the set of one or more event conditions.
Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.
Thus, devices are provided with faster, more efficient methods and interfaces for logging health-related events and for health-related coaching, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace other methods for logging health-related events and for health-related coaching.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
There is a need for electronic devices that provide efficient methods and interfaces for logging health-related events and for health-related coaching. Such techniques can reduce the cognitive burden on a user who log health-related events and/or who provide health-related coaching, thereby enhancing productivity. Further, such techniques can reduce processor and battery power otherwise wasted on redundant user inputs.
Below,
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad).
In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
Attention is now directed toward embodiments of portable devices with touch-sensitive displays.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 122 optionally controls access to memory 102 by other components of device 100.
Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data. In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.
RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 108 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212,
I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, depth camera controller 169, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208,
A quick press of the push button optionally disengages a lock of touch screen 112 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) optionally turns power to device 100 on or off. The functionality of one or more of the buttons are, optionally, user-customizable. Touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.
Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.
Touch screen 112 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.
Touch screen 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.
A touch-sensitive display in some embodiments of touch screen 112 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from device 100, whereas touch-sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 112 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 100 optionally also includes one or more optical sensors 164.
Device 100 optionally also includes one or more depth camera sensors 175.
Device 100 optionally also includes one or more contact intensity sensors 165.
Device 100 optionally also includes one or more proximity sensors 166.
Device 100 optionally also includes one or more tactile output generators 167.
Device 100 optionally also includes one or more accelerometers 168.
In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments, memory 102 (
Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.
Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing; to camera 143 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference module 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, telephone module 138 are optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact/motion module 130, graphics module 132, text input module 134, contacts module 137, and telephone module 138, video conference module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact/motion module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. For example, video player module is, optionally, combined with music player module into a single module (e.g., video and music player module 152,
In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch-sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.
In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripherals interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 172, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver 182.
In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177, or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 include one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170 and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).
Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event (187) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.
In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event (187) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.
In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 100 optionally also include one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally, executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.
In some embodiments, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, subscriber identity module (SIM) card slot 210, headset jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.
Each of the above-identified elements in
Attention is now directed towards embodiments of user interfaces that are, optionally, implemented on, for example, portable multifunction device 100.
It should be noted that the icon labels illustrated in
Although some of the examples that follow will be given with reference to inputs on touch screen display 112 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, published as WIPO Publication No. WO/2013/169849, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, published as WIPO Publication No. WO/2014/105276, each of which is hereby incorporated by reference in their entirety.
In some embodiments, device 500 has one or more input mechanisms 506 and 508. Input mechanisms 506 and 508, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 500 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 500 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 500 to be worn by a user.
Input mechanism 508 is, optionally, a microphone, in some examples. Personal electronic device 500 optionally includes various sensors, such as GPS sensor 532, accelerometer 534, directional sensor 540 (e.g., compass), gyroscope 536, motion sensor 538, and/or a combination thereof, all of which can be operatively connected to I/O section 514.
Memory 518 of personal electronic device 500 can include one or more non-transitory computer-readable storage mediums, for storing computer-executable instructions, which, when executed by one or more computer processors 516, for example, can cause the computer processors to perform the techniques described below, including processes 800 and 1000 (
As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 100, 300, and/or 500 (
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in
As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally, based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation), rather than being used to determine whether to perform a first operation or a second operation.
In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
The intensity of a contact on the touch-sensitive surface is, optionally, characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
As used herein, an “installed application” refers to a software application that has been downloaded onto an electronic device (e.g., devices 100, 300, and/or 500) and is ready to be launched (e.g., become opened) on the device. In some embodiments, a downloaded application becomes an installed application by way of an installation program that extracts program portions from a downloaded package and integrates the extracted portions with the operating system of the computer system.
As used herein, the terms “open application” or “executing application” refer to a software application with retained state information (e.g., as part of device/global internal state 157 and/or application internal state 192). An open or executing application is, optionally, any one of the following types of applications:
As used herein, the term “closed application” refers to software applications without retained state information (e.g., state information for closed applications is not stored in a memory of the device). Accordingly, closing an application includes stopping and/or removing application processes for the application and removing state information for the application from the memory of the device. Generally, opening a second application while in a first application does not close the first application. When the second application is displayed and the first application ceases to be displayed, the first application becomes a background application. Attention is now directed towards embodiments of user interfaces (“UI”) and associated processes that are implemented on an electronic device, such as portable multifunction device 100, device 300, or device 500.
As shown in
Device 606-1 of Participant 1 is in communication with devices 608-1 and 610-1. In some embodiments, device 608-1 and 610-1 are also in direct communication. Similarly, the devices of Participant 2 and Participant N, respectively, are in communication.
Coach 604 is a user of device 612 (e.g., a tablet computer) which is configured to receive from, and transmit data to, one or more devices of Participants 1-N, via internet 602. In some embodiments, a coach can work with one or more participants over a series of sessions (e.g., a set of days (e.g., 10 days)) to monitor health-related events and data, such as diet and blood glucose data, to assist the one or more participants with better understanding their physiological reaction to health-related events and, potentially, to assist the one or more participants with modifying their behavior to improve their health. For example, a coach can work with a pre-diabetic participant to, in a first session, first understand the impact of various events, that the participant would log, on their blood glucose. The coach can then work with the pre-diabetic participant, in subsequent sessions, to modify their behavior, through the use of issued event challenges, so as to positively affect their blood glucose levels and/or general health.
In
Interface 704 also includes logged event region 704-6 that displays affordance(s) corresponding to any logged events for the currently displayed day. As shown in
Interface 704 further includes a navigation region 704-7 that includes affordances 704-7A, 704-7B, and 704-7C for navigating to various views, as discussed in more detail below. Affordance 704-7A, corresponding to the daily view of user interface 704 is currently visually highlighted, to indicate that the daily view is currently active.
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In 7I, device 700 displays challenges user interface 736. Interface 736 displays active challenges, if any, that have been received at device 700. The creation of challenges is discussed in more detail, below, with reference to
As seen in
In
In
In
In
In
As described below, method 800 provides an intuitive way for logging health-related events. The method reduces the cognitive burden on a user for logging health-related events, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to log health-related events faster and more efficiently conserves power and increases the time between battery charges.
The first electronic device (e.g., 700) receives (802), via a first input device (e.g., 702) of the one or more input devices, a first set of one or more inputs. The first set of one or more inputs includes a first input (e.g., input entering text at 712-1 or 726-1) that identifies a first action (e.g., consumption of food or drink, performance of exercise) that was performed (e.g., performed by a user of the first electronic device), and a second input (e.g., input selecting 712-3B; input 728)) that identifies a first user sentiment associated with the first action (e.g., current sense of physical well-being of the user (e.g., when the first action is the performance of exercise) or prediction of future result (e.g., a prediction of future impact of the first action on a physiological parameter (e.g., blood glucose or heart rate) of the first action (e.g., when the first action is consumption of food or drink)).
The first electronic device, in response to the first set of one or more inputs, generates (804) a first log entry (e.g., event 704-6A or 704-6B) that includes the first action and the first user sentiment, wherein the first log entry is associated with a first time point (e.g., a time at which the first set of one or more inputs was received). Generating a log entry that includes an inputted action and sentiment provides the user with an improved input method for creating log entries with desired information which enhances the operability of the first electronic device. Enhancing the operability of the device makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first log entry includes an indication (e.g., icon of 704-6A) that the first log entry is associated with the consumption of food or drink and the first user sentiment (e.g., 726-3A or 726-3B) includes a prediction of the impact (e.g., effect of; prediction that it will increase the physiological parameter by a first amount or a second amount) of the consumption of the food or drink on a first physiological parameter (e.g., blood glucose, heart rate, cholesterol) of the user of the first electronic device. Generating a log entry that is associated with the consumption of food or drink and a user prediction of the impact of the consumption provides the user with memorialized feedback as to a sentiment of predicted impact of a consumption event for later reference and review. Providing improved feedback enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first set of one or more inputs includes a third input (e.g., 704-8) and the first electronic device displays (806) (e.g., prior to receiving the first set of one or more inputs), via the display device a first affordance (e.g., 708-1) corresponding to a log entry of a first type (e.g., a log entry corresponding to the consumption of food or drink), and a second affordance (e.g., 708-2) corresponding to a log entry of a second type (e.g., performance of a past activity (e.g., performance of exercise)) different from the first type. In accordance with a determination that the third input corresponds to selection of the first affordance, the first log entry includes an indication the first log entry is of the first type. In accordance with a determination that the third input corresponds to the first affordance, the first log entry includes an indication that the first log entry is of the second type. Including, in the log entry, an indication of whether the log entry is of the first type or the second type based on user input reduces the number of inputs required to designate a characteristic of the log entry. Reducing the number of inputs needed to perform this operation enhances the operability of the first electronic device. Enhancing the operability of the device makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, after generating the first log entry, the first electronic device displays (808), via the display device, a first user interface (e.g., 704) including a representation (e.g., 704-1) (e.g., a graph with time as a first axis and the value of a physiological parameter as a second axis) of a first period of time (e.g., 24-hour day, January 1st) that includes the first time point, a representation of the first log entry (e.g., 705-6A), and a representation of a second log entry (e.g., 704-6B) that is associated with a second time point, different from the first time point, within the first period of time.
In some embodiments, the first user interface includes a representation (e.g., a line graph) of the value of a second physiological parameter (e.g., blood glucose, heart rate, cholesterol) of the user of the first electronic device over the first period of time.
In some embodiments, the value of the second physiological parameter over the first period of time is received from a second electronic device (e.g., 610-1 or 608-1) (e.g., an external electronic device; a heart rate monitor, a continuous blood glucose monitor).
In some embodiments, the first user interface includes a representation (e.g., 704-5) of a current value (e.g., present value, a real-time value) of a third physiological parameter (e.g., blood glucose, heart rate, cholesterol) of the user of the first electronic device.
In some embodiments, the first user interface includes a representation of a third log entry (e.g., a log entry entered using interface 754) that was generated at a third electronic device (e.g., 750) (e.g., a personal computer, a laptop computer, a smartphone, a tablet computer) and transmitted to the first electronic device. In some embodiments, the third log entry can be edited (e.g., via set of one or more inputs received at the first electronic device) to added additional details corresponding to the log entry.
In some embodiments, the first set of one or more inputs includes fourth input (e.g., 738) that corresponds to a first event challenge (e.g., 736-2A) (e.g., a set of one or more actions to be performed or to not be performed (e.g., to forgo)) that was generated at a fourth electronic device (e.g., 612 or 900) (e.g., a personal computer, a laptop computer, a smartphone, a tablet computer) and transmitted to the first electronic device, and the first long entry includes an indication of the first event challenge. Generating a log entry that includes in indication of a relevant event challenge received from a fourth electronic device memorializes a relationship between an action performed by the user and a received event challenge, thereby providing enhanced feedback. Providing improved feedback enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first electronic device displays (710), via the display device, a second user interface (e.g., 736) that includes a representation (e.g., 736-1A) (e.g., an affordance) of a second event challenge (e.g., a set of one or more actions to be performed or to not be performed (e.g., to forgo)) that was generated at the fourth electronic device and transmitted to the first electronic device, and a representation (e.g., an affordance) of a third event challenge, different from the second event challenge, that was generated at the fourth electronic device and transmitted to the first electronic device.
In some embodiments, the second event challenge (e.g., 736-1A) is an event challenge of a first type (e.g., a food/drink consumption challenge) and the third event challenge (e.g., 736-2A) is an event challenge of a second type (e.g., a habit challenge) different from the first type The first electronic device, while displaying the second user interface (e.g., 736), receives a second set of one or more inputs (e.g., set of inputs including input 738). The first electronic device, in accordance with a determination that the second set of one or more inputs includes selection of the representation of the second event challenge, displays a third user interface (e.g., 726) configured to generate an event challenge response associated with a third time point (a specific point in time within a day/date (e.g., 12:00 PM on January 1st)). The first electronic device, in accordance with a determination that the second set of one or more inputs includes selection of the representation of the third event challenge, displaying a fourth user interface (e.g., 740) configured to generate an event challenge response associated with a first date (e.g., January 1st (e.g., but not associated with any specific time point of the date)). Displaying challenge response interfaces that are different based on the type of event challenge reduces the number of inputs required for a user to memorialize data relevant to the specific challenge event type. Reducing the number of inputs needed to perform this operation enhances the operability of the first electronic device. Enhancing the operability of the device makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first electronic device, after generating the first log entry, transmits the first log entry to a fifth electronic device (e.g., 612 or 900) (e.g., a personal computer, a laptop computer, a smartphone, a tablet computer) (e.g., an electronic device that receives log entries generated by the first electronic device and that transmits one or more event challenges to the first electronic device).
Note that details of the processes described above with respect to method 800 (e.g.,
In
In
In
Interface 908 also includes a graph 908-2 depicting blood glucose data for Participant 1. In some embodiments, the blood glucose data is transmitted to device 900 by one or more of devices 606-1, 608-1, and 610-1 of
Interface 908 also includes a high response region 908-3 that includes affordances for subsets of glucose data that meet reporting criteria (also referred to as excursions). In some embodiments, device 900 identifies and surfaces glucose data that indicates a notable rate of increase in blood glucose or a notable absolute value of blood glucose that exceeds a threshold. In
In
In
In
In
In
In
Interface 928 includes region 928-2 with affordance(s) for the logged days of the currently selected session. In
In
In
As shown in
In
In
In
In
Interface 946 also includes region 946-2 that includes affordance(s) for any challenges that have received at least one response. In
In
In
In
In
As described below, method 1000 provides an intuitive way for logging health-related events. The method reduces the cognitive burden on a user for health-related coaching, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to log health-related events faster and more efficiently conserves power and increases the time between battery charges.
The first electronic device displays (1002), via the display device (e.g., 902), a first log entry (e.g., 912-3A) corresponding to a first event (e.g., a food-related event, an activity or exercise related event) associated with a user of a second electronic device (e.g., 606-1 or 700) (e.g., a personal computer, a laptop computer, a smartphone, a tablet computer that has transmitted data to the first electronic device).
In some embodiments, displaying the first log entry (e.g., 912-3A) includes displaying a first time point (e.g., 12 PM on January 1st) associated with (e.g., displayed in conjunction with, adjacent to) the first log entry, and first physiological data (e.g., 912-1) (e.g., a blood glucose value, a heart rate, physiological data specifically associated with the first time point) associated with the user of the second electronic device, the first physiological data associated with (e.g., displayed in conjunction with, adjacent to) the first log entry.
In some embodiments, the first physiological data includes blood glucose data (e.g., as seen in 912).
In some embodiments, displaying the first physiological data includes displaying a plurality of values of the first physiological that is associated with a continuous range of time points over a first period of time (e.g., a day) (e.g., as seen in 912). The first electronic device displays, via the display device and concurrently with displaying the first physiological data, second physiological data (e.g., heart rate data 912-2B) associated with the user of the second electronic device, different from the first physiological data (e.g., the first physiological data is blood glucose and the second physiological data is heart rate), wherein the second physiological data is associated with a subset of time points (e.g., time points associated with 912-2B) within the continuous range of time points (e.g., a subset of a day during which heart rate was greater than threshold amount (e.g., greater than 50% of max heart rate for the day)). Displaying the first and second physiological data, concurrently, provides the user with feedback regarding the relationship between the first and second physiological data. Providing improved feedback enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first event (e.g., 912-3A) is associated with the consumption of food or drink by the user of the second electronic device.
The first electronic device, while displaying the first log entry corresponding to the first event (e.g., a food-related event, an activity or exercise related event), receives (1004), via a first input device (e.g., 902) of the one or more input devices, a first set of one or more inputs (e.g., including input 914) (e.g., a series or sequence of inputs) corresponding to a request to transmit a first event challenge (e.g., the challenge created in
The first electronic device, in response to the first set of one or more inputs, transmits (1006), to the second electronic device, data representing the first event challenge. The data representing the first event challenge includes a prompt (e.g., prompt seen in 736) to the user of the second electronic device (e.g., the transmitted challenge data include instructions that, when executed on the second electronic device, cause the device to issue a prompt) to log a challenge response event (e.g., an event that is logged in response to the challenge) based on the set of one or more event conditions (e.g., the issued prompt includes an indication of the set of one or more event conditions). In some embodiments, the data representing the event challenge includes data associating (e.g., linking and/or identifying) the event challenge with the first event. Transmitting data representing the first event challenge that includes a prompt to the second device to log a challenge response event reduces the number of inputs required to affect coordination between the first and second electronic devices thereby enhancing the operability of both devices. Enhancing the operability of the devices makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first electronic device, subsequent to displaying the first log entry, displays (1008), via the display device, a first affordance (e.g., 912-3A1) corresponding to an event challenge of a first type (e.g., a challenge relating to a specific point in time (e.g., a challenge relating to the consumption of food or drink at a specific point in time or time within a day)), and a second affordance (e.g., 912-3B) corresponding to an event challenge of a second type (e.g., a challenge relating to a day, but not relating to a specific time within that day), different than the first type, wherein the first set of one or more inputs includes a second input (e.g., 914) received while displaying the first affordance and the second affordance. The first electronic device, in response to the second input of the first set of one or more inputs and in accordance with a determination that the second input of the first set of one or more inputs corresponds to the first affordance, includes, in the data transmitted to the second electronic device, an indication that the first event challenge is of the first type. The first electronic device, in response to the second input of the first set of one or more inputs and in accordance with a determination that the second input of the first set of one or more inputs corresponds to the first affordance, includes, in the data transmitted to the second electronic device, an indication that the first event challenge is of the second type. In some embodiments, the transmitted data causes the second electronic device to issue differing prompts, depending on whether the challenge is of the first type or the second type. Including, in the transmitted challenge data an indication of whether the event challenge is of the first type or the second type based on user input reduces the number of inputs required to designate a characteristic of the event challenge. Reducing the number of inputs needed to perform this operation enhances the operability of the first electronic device. Enhancing the operability of the device makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first event challenge is a challenge of the first type, the prompt includes a prompt to the user to log the second event (e.g., at a specific time (e.g., a specific time of day, a specific time within a day, a time that is more precise than the day)) based on (e.g., based on satisfaction of) the set of one or event conditions, and the transmitted data representing the set of one or more event conditions of the first event challenge includes an indication (e.g., as seen in 736) of a first set of one or more actions (e.g., actions related to the consumption of food or drink at a specific point in time or time within a day) to the to be performed.
In some embodiments, the first event challenge is a challenge of the second type and the prompt includes a prompt to the user to log the challenge response event (e.g., at a specific date (e.g., a date that does not include a specific time within the day of that date)) based on the set of one or event conditions. The transmitted data representing the set of one or more event conditions of the first event challenge includes an indication (e.g., as seen in 736) of a second set of one or more actions (e.g., actions related to the consumption of food or drink or actions related to the performance of physical activity (e.g., exercise)), and an indication of whether the second set of one or more actions are to be performed or are not to be performed.
In some embodiments, the first electronic device displays, via the display device and concurrently with displaying the first log entry, a second log entry (e.g., 932-2B) corresponding to a second event associated with the user of the second electronic device (e.g., a second event logged on the same day as the first event), a third affordance (e.g., food challenge affordance associated with 932-2B) associated with the second log entry that, when selected, initiates a process for transmitting a second event challenge (e.g., a challenge of the first or second type) to the user associated with the second electronic device, a third log entry corresponding to a third event associated with the user of the second electronic device, and a fourth affordance (e.g., habit challenge affordance associated with 932-2B) associated with the third log entry that, when selected, initiates a process for transmitting a third event challenge to the user associated with the second electronic device. In some embodiments, the first electronic device displays a plurality of log entries corresponding to the same time period (e.g., to the same day). Each of the log entries includes one or more affordances for issuing event challenges associated with the respective log entry. Displaying the first log entry in conjunction with the second log entry, with its associated affordances, provides improved feedback as to what log entries have been received by the first electronic device and improved options for performing related functions with less inputs. Providing improved feedback enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first electronic device, after transmitting the data representing the first event challenge, displays, via the display device, a first user interface (e.g., 946) (e.g., a transmitted challenges user interface). The first user interface includes a first region (e.g., 946-1) (e.g., a pending challenges region) that includes a representation (e.g., 946-1A) (e.g., an affordance (e.g., a selectable representation); a representation that includes one or more details (e.g., details regarding the set of one or more event conditions; details regarding the first event) of the first event challenge) of the first event challenge, and a second region (e.g., 946-2) (e.g., a completed/responded challenge region). The second region, in accordance with a determination that data representing a first challenge response event has been received (e.g., received in response to the first event challenge or in response to a second event challenge different from the first event challenge) from the second electronic device, includes a representation (e.g., 946-2A) of the first challenge response event. The second region, in accordance with a determination that data representing the first challenge response event has not been received the second electronic device, does not include the representation of the first challenge response event (In some embodiments, the second region only includes representations associated with issued/transmitted event challenges for which at least one challenge response event has been received).
In some embodiments, the first challenge response event is responsive to the first event challenge. The first electronic device, while displaying the representation of the first challenge response event, receives a second set of one or more inputs (e.g., 948) corresponding to a request to display a response event user interface (e.g., 950) corresponding to the first challenge response event. The first electronic device, in response to the second set of one or more inputs, displays, via the display device, the response event user interface. The response event user interface includes third physiological data (e.g., 950-1B) (e.g., as a line graph) associated with the user of the second electronic device that corresponds to the first event (e.g., physiological data associated with the first event (e.g., physiological data at the time the first event was logged at the second electronic device)), and fourth physiological data (e.g., 950-1A) (e.g., as a line graph), different from the second physiological data, associated with the user of the second electronic device that corresponds to the first challenge response event (e.g., physiological data associated with the first challenge event response (e.g., physiological data at the time the first challenge event response was logged at the second electronic device)). Displaying the third and fourth physiological data, concurrently, provides the user with feedback regarding the relationship between the second and third physiological data. Providing improved feedback enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first electronic device displays, via the display device, a second user interface (e.g., 908) (e.g., an overview user interface that includes physiological data for multiple days for the same range of time of a day). The second user interface includes a plurality of representations (e.g., 908-2A, 908-2B, 908-2C) (e.g., a plurality of lines on a graph) of physiological data associated with the user of the second electronic device, including a first representation (e.g., a first line of a graph) of physiological data for a first occurrence (e.g., a first day (e.g., January 1st)) of a first recurring time period (e.g., morning, 12 AM to 11:9 PM, a 24-hour day) and a second representation of physiological data for a second occurrence (e.g., a first day (e.g., January 1st)) of the first recurring time period, and a fifth affordance (e.g., 908-3A) (e.g., a tile affordance that includes a representation of the subset of physiological data) corresponding to a subset of the physiological data for the first occurrence that meets a set of reporting criteria (e.g., criteria based on one or more factors selected from a rate of change (e.g., specifically a rate of increase) of the physiological parameter of the data and an absolute value of the physiological data that exceeds a threshold). Displaying a fifth affordance that corresponds to a subset of data that meets a set of reporting criteria provides the user with feedback as to portions of data that are potentially significant and reduces the number of inputs required to identify and display potentially significant data. Providing improved feedback enhances the operability of the device and makes the user-device interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the device) which, additionally, reduces power usage and improves battery life of the device by enabling the user to use the device more quickly and efficiently.
In some embodiments, the first electronic device receives a third set of one or more inputs (e.g., 910) corresponding to selection of the fifth affordance. The first electronic device, in response to receiving the third set of one or more inputs, displays, via the display device, a third user interface (e.g., 912) (e.g., an interface associated with first occurrence (e.g., the day)). The third user interface includes a third representation (e.g., 912-1) (a graph line) of physiological data for the first occurrence of the first recurring time period. The third user interface, in accordance with a determination that the first occurrence of the recurring time period is associated with a third log entry corresponding to a fourth event, includes a representation (e.g., 912-3A) of the third log entry (e.g., representation on the graph of a time at which the fourth event was logged). The third user interface, in accordance with a determination that the first occurrence of the first recurring time period is not associated with the third log entry corresponding to the fourth event, does not include the representation of the third log entry.
In some embodiments, the first electronic device displays, via the display device, a fourth user interface (e.g., 928) (e.g., an overview user interface that includes physiological data for multiple days for the same range of time of a day). The fourth user interface includes a fourth representation (e.g., 928-1A) of physiological data (e.g., a line of graph that spans multiple days) for a first occurrence (e.g., a first day, January 1st) of a second recurring time period (e.g., 24-hour day) and a second occurrence (e.g., a second day, January 2nd) of the second recurring time period associated with the user of the second electronic device, and a sixth affordance corresponding to the first occurrence of the second recurring time period (e.g., and not associated with the second occurrence). In some embodiments, selection of the sixth affordance causes display of physiological data associated with the first occurrence of the recurring time period without display of physiological data corresponding the second occurrence of the second recurring time period.
In some embodiments, the first electronic device, displays, via the display device, a fourth log entry corresponding to a fifth event (e.g., a food-related event, an activity or exercise related event) associated with a user of a third electronic device (e.g., 606-2) (e.g., a personal computer, a laptop computer, a smartphone, a tablet computer that has transmitted data to the first electronic device) different from the first electronic device and the second electronic device.
Note that details of the processes described above with respect to method 1000 (e.g.,
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
As described above, one aspect of the present technology is the gathering and use of data available from various sources to improve the delivery to users of invitational content or any other content that may be of interest to them. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.
The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to record and deliver personalized health information to a user. Accordingly, use of such personal information data enables users to improve logging and viewing of health information. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.
Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of health monitoring services, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In another example, users can select not to provide health-associated data for targeted content delivery services. In yet another example, users can select to limit the length of time health-associated data is maintained or entirely prohibit the development of a baseline health profile. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.
Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publicly available information.
This application claims priority to U.S. Provisional Application No. 62/875,448 titled “HEALTH EVENT LOGGING AND COACHING USER INTERFACES”, filed Jul. 17, 2019, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5515344 | Ng | May 1996 | A |
5642731 | Kehr | Jul 1997 | A |
6416471 | Kumar et al. | Jul 2002 | B1 |
6600696 | Lynn | Jul 2003 | B1 |
6705972 | Takano et al. | Mar 2004 | B1 |
6950839 | Green et al. | Sep 2005 | B1 |
7020514 | Wiesel | Mar 2006 | B1 |
7111157 | Hooper | Sep 2006 | B1 |
7128693 | Brown et al. | Oct 2006 | B2 |
7166078 | Saini et al. | Jan 2007 | B2 |
7313435 | Nakada et al. | Dec 2007 | B2 |
7739148 | Suzuki et al. | Jun 2010 | B2 |
7771320 | Riley et al. | Aug 2010 | B2 |
8152694 | Srinivasan et al. | Apr 2012 | B2 |
8200323 | Dibenedetto et al. | Jun 2012 | B2 |
8321006 | Snyder et al. | Nov 2012 | B1 |
8475339 | Hwang et al. | Jul 2013 | B2 |
8676170 | Porrati et al. | Mar 2014 | B2 |
8725527 | Kahn et al. | May 2014 | B1 |
8758262 | Rhee et al. | Jun 2014 | B2 |
8784115 | Chuang | Jul 2014 | B1 |
8888707 | Shirasaki et al. | Nov 2014 | B2 |
9011292 | Weast et al. | Apr 2015 | B2 |
9026927 | Brumback et al. | May 2015 | B2 |
9148483 | Molettiere et al. | Sep 2015 | B1 |
9224291 | Moll-carrillo et al. | Dec 2015 | B2 |
9490763 | Taniguchi et al. | Nov 2016 | B2 |
9557881 | Jain et al. | Jan 2017 | B1 |
9579060 | Lisy et al. | Feb 2017 | B1 |
9589445 | White et al. | Mar 2017 | B2 |
9606695 | Matas | Mar 2017 | B2 |
9672715 | Roberts et al. | Jun 2017 | B2 |
9712629 | Molettiere et al. | Jul 2017 | B2 |
9721066 | Funaro et al. | Aug 2017 | B1 |
9730621 | Cohen et al. | Aug 2017 | B2 |
9740825 | Sansale et al. | Aug 2017 | B2 |
9801562 | Host-madsen | Oct 2017 | B1 |
9808206 | Zhao et al. | Nov 2017 | B1 |
9813642 | Chen et al. | Nov 2017 | B1 |
9940682 | Hoffman et al. | Apr 2018 | B2 |
10004451 | Proud | Jun 2018 | B1 |
10150002 | Kass et al. | Dec 2018 | B2 |
10175781 | Karagozler et al. | Jan 2019 | B2 |
10226195 | Briante et al. | Mar 2019 | B2 |
10254911 | Yang | Apr 2019 | B2 |
10275262 | Bull et al. | Apr 2019 | B1 |
10339830 | Han et al. | Jul 2019 | B2 |
10365811 | Robinson et al. | Jul 2019 | B2 |
10437962 | Soni et al. | Oct 2019 | B2 |
10467029 | Lin et al. | Nov 2019 | B1 |
10568533 | Soll et al. | Feb 2020 | B2 |
10576327 | Kim et al. | Mar 2020 | B2 |
10592088 | Robinson et al. | Mar 2020 | B2 |
10602964 | Kerber | Mar 2020 | B2 |
10635267 | Williams | Apr 2020 | B2 |
10674942 | Williams et al. | Jun 2020 | B2 |
10685090 | Petterson et al. | Jun 2020 | B2 |
10692593 | Young et al. | Jun 2020 | B1 |
10762990 | Schilling et al. | Sep 2020 | B1 |
10764700 | Felton | Sep 2020 | B1 |
10796549 | Roberts et al. | Oct 2020 | B2 |
11073942 | Lee et al. | Jul 2021 | B2 |
11103161 | Williams | Aug 2021 | B2 |
11107580 | Felton et al. | Aug 2021 | B1 |
11209957 | Dryer et al. | Dec 2021 | B2 |
20010039503 | Chan et al. | Nov 2001 | A1 |
20020095292 | Mittal et al. | Jul 2002 | A1 |
20030126114 | Tedesco | Jul 2003 | A1 |
20030130867 | Coelho et al. | Jul 2003 | A1 |
20030181291 | Ogawa | Sep 2003 | A1 |
20030191609 | Bernardi et al. | Oct 2003 | A1 |
20030200483 | Sutton | Oct 2003 | A1 |
20030216971 | Sick et al. | Nov 2003 | A1 |
20030226695 | Mault | Dec 2003 | A1 |
20040017300 | Kotzin et al. | Jan 2004 | A1 |
20040034288 | Hennessy et al. | Feb 2004 | A1 |
20040077958 | Kato et al. | Apr 2004 | A1 |
20040190729 | Yonovitz et al. | Sep 2004 | A1 |
20040193069 | Takehara | Sep 2004 | A1 |
20040210117 | Ueno et al. | Oct 2004 | A1 |
20040236189 | Hawthorne et al. | Nov 2004 | A1 |
20050010117 | Agutter et al. | Jan 2005 | A1 |
20050027208 | Shiraishi et al. | Feb 2005 | A1 |
20050075214 | Brown et al. | Apr 2005 | A1 |
20050079905 | Martens | Apr 2005 | A1 |
20050149362 | Peterson et al. | Jul 2005 | A1 |
20050165627 | Fotsch et al. | Jul 2005 | A1 |
20050187794 | Kimak | Aug 2005 | A1 |
20050228735 | Duquette | Oct 2005 | A1 |
20050244013 | Battenberg et al. | Nov 2005 | A1 |
20050272564 | Pyles et al. | Dec 2005 | A1 |
20060074863 | Kishore et al. | Apr 2006 | A1 |
20060094969 | Nissila | May 2006 | A1 |
20060098109 | Ooki | May 2006 | A1 |
20060106741 | Janarthanan | May 2006 | A1 |
20060136173 | Case, Jr. et al. | Jun 2006 | A1 |
20060149144 | Lynn et al. | Jul 2006 | A1 |
20060152372 | Stout | Jul 2006 | A1 |
20060182287 | Schulein et al. | Aug 2006 | A1 |
20060205564 | Peterson | Sep 2006 | A1 |
20060235319 | Belohlavek et al. | Oct 2006 | A1 |
20060274908 | Choi | Dec 2006 | A1 |
20070016440 | Stroup | Jan 2007 | A1 |
20070033066 | Ammer et al. | Feb 2007 | A1 |
20070056727 | Newman | Mar 2007 | A1 |
20070179434 | Weinert | Aug 2007 | A1 |
20070250505 | Yang et al. | Oct 2007 | A1 |
20070250613 | Gulledge | Oct 2007 | A1 |
20070274531 | Camp | Nov 2007 | A1 |
20080005106 | Schumacher et al. | Jan 2008 | A1 |
20080012701 | Kass et al. | Jan 2008 | A1 |
20080021884 | Jones et al. | Jan 2008 | A1 |
20080058626 | Miyata et al. | Mar 2008 | A1 |
20080133742 | Southiere et al. | Jun 2008 | A1 |
20080146892 | Leboeuf et al. | Jun 2008 | A1 |
20080159547 | Schuler et al. | Jul 2008 | A1 |
20080172361 | Wong et al. | Jul 2008 | A1 |
20080200312 | Tagliabue | Aug 2008 | A1 |
20080205660 | Goldstein | Aug 2008 | A1 |
20080228045 | Gao et al. | Sep 2008 | A1 |
20080240519 | Nagamitsu | Oct 2008 | A1 |
20080243885 | Harger et al. | Oct 2008 | A1 |
20080300110 | Smith et al. | Dec 2008 | A1 |
20090007596 | Goldstein et al. | Jan 2009 | A1 |
20090052677 | Smith | Feb 2009 | A1 |
20090065578 | Peterson et al. | Mar 2009 | A1 |
20090105552 | Nishiyama et al. | Apr 2009 | A1 |
20090118100 | Oliver et al. | May 2009 | A1 |
20090172773 | Moore | Jul 2009 | A1 |
20090180631 | Michael et al. | Jul 2009 | A1 |
20090210078 | Crowley | Aug 2009 | A1 |
20090216556 | Martin et al. | Aug 2009 | A1 |
20090235253 | Hope | Sep 2009 | A1 |
20090240521 | Simons et al. | Sep 2009 | A1 |
20090245537 | Morin | Oct 2009 | A1 |
20090259134 | Levine | Oct 2009 | A1 |
20090262088 | Moll-carrillo et al. | Oct 2009 | A1 |
20090267776 | Glenn et al. | Oct 2009 | A1 |
20090287103 | Pillai | Nov 2009 | A1 |
20090287327 | Hsu et al. | Nov 2009 | A1 |
20090290721 | Goldstein et al. | Nov 2009 | A1 |
20090307105 | Lemay et al. | Dec 2009 | A1 |
20100003951 | Ray et al. | Jan 2010 | A1 |
20100010832 | Boute et al. | Jan 2010 | A1 |
20100017489 | Birnbaum et al. | Jan 2010 | A1 |
20100027807 | Jeon | Feb 2010 | A1 |
20100046767 | Bayley et al. | Feb 2010 | A1 |
20100048358 | Tchao et al. | Feb 2010 | A1 |
20100060586 | Pisula et al. | Mar 2010 | A1 |
20100062905 | Rottler et al. | Mar 2010 | A1 |
20100064255 | Rottler et al. | Mar 2010 | A1 |
20100073162 | Johnson et al. | Mar 2010 | A1 |
20100076331 | Chan et al. | Mar 2010 | A1 |
20100094658 | Mok et al. | Apr 2010 | A1 |
20100099539 | Haataja | Apr 2010 | A1 |
20100119093 | Uzuanis et al. | May 2010 | A1 |
20100121700 | Wigder et al. | May 2010 | A1 |
20100131298 | Buttner et al. | May 2010 | A1 |
20100132044 | Kogan et al. | May 2010 | A1 |
20100145220 | Van Vliet | Jun 2010 | A1 |
20100150378 | Lee et al. | Jun 2010 | A1 |
20100161353 | Mayaud | Jun 2010 | A1 |
20100179833 | Roizen et al. | Jul 2010 | A1 |
20100222645 | Nadler et al. | Sep 2010 | A1 |
20100273610 | Johnson | Oct 2010 | A1 |
20100292600 | Dibenedetto et al. | Nov 2010 | A1 |
20100312138 | Regas | Dec 2010 | A1 |
20110010195 | Cohn | Jan 2011 | A1 |
20110057799 | Taneff | Mar 2011 | A1 |
20110066051 | Moon et al. | Mar 2011 | A1 |
20110071765 | Yodfat | Mar 2011 | A1 |
20110087076 | Brynelsen et al. | Apr 2011 | A1 |
20110093481 | Hussam | Apr 2011 | A1 |
20110098928 | Hoffman et al. | Apr 2011 | A1 |
20110119088 | Gunn et al. | May 2011 | A1 |
20110137678 | Williams | Jun 2011 | A1 |
20110152656 | Weinert et al. | Jun 2011 | A1 |
20110166631 | Breining | Jul 2011 | A1 |
20110195383 | Weiss | Aug 2011 | A1 |
20110214162 | Brakensiek et al. | Sep 2011 | A1 |
20110218407 | Haberman | Sep 2011 | A1 |
20110245623 | Chutani et al. | Oct 2011 | A1 |
20110275940 | Nims et al. | Nov 2011 | A1 |
20110307821 | Martens | Dec 2011 | A1 |
20120002510 | Berman, Jr. | Jan 2012 | A1 |
20120023586 | Flickner et al. | Jan 2012 | A1 |
20120029303 | Shaya | Feb 2012 | A1 |
20120038651 | Case et al. | Feb 2012 | A1 |
20120041767 | Hoffman et al. | Feb 2012 | A1 |
20120059664 | Georgiev et al. | Mar 2012 | A1 |
20120065480 | Badilini et al. | Mar 2012 | A1 |
20120071770 | Grey et al. | Mar 2012 | A1 |
20120112908 | Prykaeri et al. | May 2012 | A1 |
20120116550 | Hoffman et al. | May 2012 | A1 |
20120185267 | Kamen et al. | Jul 2012 | A1 |
20120203124 | Lim | Aug 2012 | A1 |
20120215115 | Takahashi | Aug 2012 | A1 |
20120232929 | Experton | Sep 2012 | A1 |
20120245447 | Karan et al. | Sep 2012 | A1 |
20120253485 | Weast et al. | Oct 2012 | A1 |
20120253488 | Shaw et al. | Oct 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20120283587 | Gosh et al. | Nov 2012 | A1 |
20120283855 | Hoffman et al. | Nov 2012 | A1 |
20120311585 | Gruber et al. | Dec 2012 | A1 |
20120316455 | Rahman | Dec 2012 | A1 |
20120317167 | Rahman et al. | Dec 2012 | A1 |
20120321094 | Schiller et al. | Dec 2012 | A1 |
20130002425 | Hatch et al. | Jan 2013 | A1 |
20130011819 | Horseman | Jan 2013 | A1 |
20130012788 | Horseman | Jan 2013 | A1 |
20130013331 | Horseman | Jan 2013 | A1 |
20130033376 | Seyed et al. | Feb 2013 | A1 |
20130065569 | Leipzig et al. | Mar 2013 | A1 |
20130072765 | Kahn et al. | Mar 2013 | A1 |
20130073933 | Eppolito | Mar 2013 | A1 |
20130073960 | Eppolito et al. | Mar 2013 | A1 |
20130095459 | Tran | Apr 2013 | A1 |
20130110264 | Weast et al. | May 2013 | A1 |
20130114100 | Torii et al. | May 2013 | A1 |
20130115583 | Gordon et al. | May 2013 | A1 |
20130132028 | Crankson et al. | May 2013 | A1 |
20130144653 | Poe et al. | Jun 2013 | A1 |
20130151285 | Mclaren et al. | Jun 2013 | A1 |
20130158416 | Hatlestad et al. | Jun 2013 | A1 |
20130191647 | Ferrara, Jr. et al. | Jul 2013 | A1 |
20130197679 | Balakrishnan et al. | Aug 2013 | A1 |
20130202121 | Georgiou et al. | Aug 2013 | A1 |
20130215042 | Messerschmidt et al. | Aug 2013 | A1 |
20130231575 | Erkkila et al. | Sep 2013 | A1 |
20130231947 | Shusterman | Sep 2013 | A1 |
20130238287 | Hoffman et al. | Sep 2013 | A1 |
20130245966 | Burroughs et al. | Sep 2013 | A1 |
20130262155 | Hinkamp | Oct 2013 | A1 |
20130268398 | Agami et al. | Oct 2013 | A1 |
20130274628 | Fausti et al. | Oct 2013 | A1 |
20130304510 | Chen et al. | Nov 2013 | A1 |
20130304616 | Raleigh et al. | Nov 2013 | A1 |
20130317380 | Liley et al. | Nov 2013 | A1 |
20130325396 | Yuen et al. | Dec 2013 | A1 |
20130325493 | Wong et al. | Dec 2013 | A1 |
20130325511 | Neagle et al. | Dec 2013 | A1 |
20130332286 | Medelius et al. | Dec 2013 | A1 |
20140005947 | Jeon et al. | Jan 2014 | A1 |
20140019162 | Skowronski et al. | Jan 2014 | A1 |
20140037107 | Marino et al. | Feb 2014 | A1 |
20140038781 | Foley et al. | Feb 2014 | A1 |
20140046926 | Walton | Feb 2014 | A1 |
20140067096 | Aibara | Mar 2014 | A1 |
20140073486 | Ahmed et al. | Mar 2014 | A1 |
20140081118 | Reinhold et al. | Mar 2014 | A1 |
20140088995 | Damani | Mar 2014 | A1 |
20140100885 | Stern | Apr 2014 | A1 |
20140127996 | Park et al. | May 2014 | A1 |
20140129007 | Utter, II | May 2014 | A1 |
20140129243 | Utter | May 2014 | A1 |
20140135592 | Ohnemus et al. | May 2014 | A1 |
20140135955 | Burroughs | May 2014 | A1 |
20140142403 | Brumback et al. | May 2014 | A1 |
20140143678 | Mistry et al. | May 2014 | A1 |
20140164611 | Molettiere et al. | Jun 2014 | A1 |
20140173521 | Mayor | Jun 2014 | A1 |
20140176335 | Brumback et al. | Jun 2014 | A1 |
20140176475 | Myers et al. | Jun 2014 | A1 |
20140180595 | Brumback et al. | Jun 2014 | A1 |
20140184422 | Mensinger et al. | Jul 2014 | A1 |
20140189510 | Ozcan | Jul 2014 | A1 |
20140197946 | Park et al. | Jul 2014 | A1 |
20140200426 | Taub et al. | Jul 2014 | A1 |
20140221790 | Pacione et al. | Aug 2014 | A1 |
20140240122 | Roberts et al. | Aug 2014 | A1 |
20140240349 | Tuukkanen | Aug 2014 | A1 |
20140244009 | Mestas | Aug 2014 | A1 |
20140266776 | Miller et al. | Sep 2014 | A1 |
20140275852 | Hong et al. | Sep 2014 | A1 |
20140275856 | Kohlrausch et al. | Sep 2014 | A1 |
20140278220 | Yuen | Sep 2014 | A1 |
20140288390 | Hong et al. | Sep 2014 | A1 |
20140297217 | Yuen | Oct 2014 | A1 |
20140327527 | Goldstein et al. | Nov 2014 | A1 |
20140336796 | Agnew | Nov 2014 | A1 |
20140337451 | Choudhary et al. | Nov 2014 | A1 |
20140344687 | Durham et al. | Nov 2014 | A1 |
20140354494 | Katz | Dec 2014 | A1 |
20140358012 | Richards et al. | Dec 2014 | A1 |
20140371887 | Hoffman et al. | Dec 2014 | A1 |
20150057942 | Self et al. | Feb 2015 | A1 |
20150067811 | Agnew et al. | Mar 2015 | A1 |
20150073285 | Albert et al. | Mar 2015 | A1 |
20150081210 | Yeh et al. | Mar 2015 | A1 |
20150089536 | Byerley | Mar 2015 | A1 |
20150099991 | Yamaguchi et al. | Apr 2015 | A1 |
20150100348 | Connery et al. | Apr 2015 | A1 |
20150106025 | Keller et al. | Apr 2015 | A1 |
20150110277 | Pidgeon et al. | Apr 2015 | A1 |
20150110279 | Tejerina | Apr 2015 | A1 |
20150120633 | Norlander et al. | Apr 2015 | A1 |
20150124067 | Bala et al. | May 2015 | A1 |
20150125832 | Tran | May 2015 | A1 |
20150127365 | Rizvi et al. | May 2015 | A1 |
20150130830 | Nagasaki et al. | May 2015 | A1 |
20150142689 | Squires | May 2015 | A1 |
20150164349 | Gopalakrishnan et al. | Jun 2015 | A1 |
20150173686 | Furuta et al. | Jun 2015 | A1 |
20150179186 | Swierk et al. | Jun 2015 | A1 |
20150181314 | Swanson | Jun 2015 | A1 |
20150182843 | Esposito et al. | Jul 2015 | A1 |
20150185967 | Ly et al. | Jul 2015 | A1 |
20150193217 | Xiang et al. | Jul 2015 | A1 |
20150196804 | Koduri et al. | Jul 2015 | A1 |
20150196805 | Koduri et al. | Jul 2015 | A1 |
20150205947 | Berman et al. | Jul 2015 | A1 |
20150216448 | Lotan et al. | Aug 2015 | A1 |
20150217163 | Amis et al. | Aug 2015 | A1 |
20150220883 | Bfar et al. | Aug 2015 | A1 |
20150230717 | Wan | Aug 2015 | A1 |
20150261918 | Thornbury, Jr. | Sep 2015 | A1 |
20150262499 | Wicka et al. | Sep 2015 | A1 |
20150286800 | Kanagala et al. | Oct 2015 | A1 |
20150287421 | Benway et al. | Oct 2015 | A1 |
20150288797 | Vincent | Oct 2015 | A1 |
20150288944 | Nistico et al. | Oct 2015 | A1 |
20150289823 | Rack-Gomer et al. | Oct 2015 | A1 |
20150297134 | Albert et al. | Oct 2015 | A1 |
20150324751 | Orenstein et al. | Nov 2015 | A1 |
20150347690 | Keen et al. | Dec 2015 | A1 |
20150347711 | Soli et al. | Dec 2015 | A1 |
20150350799 | Schnaare et al. | Dec 2015 | A1 |
20150350861 | Soli et al. | Dec 2015 | A1 |
20150364057 | Catani et al. | Dec 2015 | A1 |
20150379198 | Tambasco, Jr. | Dec 2015 | A1 |
20160000379 | Pougatchev et al. | Jan 2016 | A1 |
20160019360 | Pahwa et al. | Jan 2016 | A1 |
20160055420 | Karanam et al. | Feb 2016 | A1 |
20160058313 | Sato | Mar 2016 | A1 |
20160058331 | Keen et al. | Mar 2016 | A1 |
20160058336 | Blahnik et al. | Mar 2016 | A1 |
20160058337 | Blahnik et al. | Mar 2016 | A1 |
20160062464 | Moussette et al. | Mar 2016 | A1 |
20160062540 | Yang et al. | Mar 2016 | A1 |
20160062582 | Wilson et al. | Mar 2016 | A1 |
20160063215 | Zamer | Mar 2016 | A1 |
20160066842 | Kokkoneva et al. | Mar 2016 | A1 |
20160085937 | Dettinger et al. | Mar 2016 | A1 |
20160086500 | Kaleal, III | Mar 2016 | A1 |
20160089569 | Blahnik | Mar 2016 | A1 |
20160098522 | Weinstein | Apr 2016 | A1 |
20160103985 | Shim et al. | Apr 2016 | A1 |
20160106398 | Kuppuswami | Apr 2016 | A1 |
20160109961 | Parshionikar | Apr 2016 | A1 |
20160110523 | Francois | Apr 2016 | A1 |
20160132046 | Beoughter et al. | May 2016 | A1 |
20160132645 | Charpentier et al. | May 2016 | A1 |
20160135719 | Von Kraus et al. | May 2016 | A1 |
20160135731 | Drennan | May 2016 | A1 |
20160150978 | Yuen et al. | Jun 2016 | A1 |
20160166181 | Shennib | Jun 2016 | A1 |
20160166195 | Radecka | Jun 2016 | A1 |
20160174857 | Eggers et al. | Jun 2016 | A1 |
20160180026 | Kim et al. | Jun 2016 | A1 |
20160189051 | Mahmood | Jun 2016 | A1 |
20160196635 | Cho et al. | Jul 2016 | A1 |
20160210099 | Hampapuram et al. | Jul 2016 | A1 |
20160210434 | Al-sharif | Jul 2016 | A1 |
20160235325 | Chou | Aug 2016 | A1 |
20160235374 | Miller et al. | Aug 2016 | A1 |
20160249857 | Choi et al. | Sep 2016 | A1 |
20160250517 | Tilvis et al. | Sep 2016 | A1 |
20160256082 | Ely et al. | Sep 2016 | A1 |
20160256741 | Holma et al. | Sep 2016 | A1 |
20160263435 | Venkatraman et al. | Sep 2016 | A1 |
20160270717 | Luna et al. | Sep 2016 | A1 |
20160270740 | Raisoni et al. | Sep 2016 | A1 |
20160275310 | Edwards et al. | Sep 2016 | A1 |
20160275990 | Vassort | Sep 2016 | A1 |
20160285985 | Molettiere et al. | Sep 2016 | A1 |
20160287177 | Huppert et al. | Oct 2016 | A1 |
20160292373 | Spors et al. | Oct 2016 | A1 |
20160299769 | Hunter et al. | Oct 2016 | A1 |
20160301761 | Sanchez-sandoval et al. | Oct 2016 | A1 |
20160301794 | Schlakman et al. | Oct 2016 | A1 |
20160302666 | Shaya | Oct 2016 | A1 |
20160313869 | Jang et al. | Oct 2016 | A1 |
20160314670 | Roberts et al. | Oct 2016 | A1 |
20160314683 | Felch et al. | Oct 2016 | A1 |
20160317341 | Galvan | Nov 2016 | A1 |
20160324457 | Dagum | Nov 2016 | A1 |
20160324488 | Olsen | Nov 2016 | A1 |
20160328991 | Simpson et al. | Nov 2016 | A1 |
20160332025 | Repka | Nov 2016 | A1 |
20160346607 | Rapfogel | Dec 2016 | A1 |
20160357616 | Yu et al. | Dec 2016 | A1 |
20160360100 | Kim et al. | Dec 2016 | A1 |
20160360972 | Kusakabe et al. | Dec 2016 | A1 |
20160367138 | Kim et al. | Dec 2016 | A1 |
20160373631 | Titi et al. | Dec 2016 | A1 |
20170000348 | Karsten et al. | Jan 2017 | A1 |
20170000359 | Kohli et al. | Jan 2017 | A1 |
20170007159 | Dieffenderfer et al. | Jan 2017 | A1 |
20170007167 | Kostic et al. | Jan 2017 | A1 |
20170032168 | Kim | Feb 2017 | A1 |
20170039327 | Bitran et al. | Feb 2017 | A1 |
20170042485 | Chung et al. | Feb 2017 | A1 |
20170043214 | Higashi | Feb 2017 | A1 |
20170046024 | Dascola et al. | Feb 2017 | A1 |
20170046052 | Lee et al. | Feb 2017 | A1 |
20170053542 | Wilson et al. | Feb 2017 | A1 |
20170070833 | Shennib | Mar 2017 | A1 |
20170071551 | Jain et al. | Mar 2017 | A1 |
20170075551 | Robinson et al. | Mar 2017 | A1 |
20170075737 | Kim et al. | Mar 2017 | A1 |
20170084196 | Nusbaum | Mar 2017 | A1 |
20170086693 | Peterson et al. | Mar 2017 | A1 |
20170091567 | Wang et al. | Mar 2017 | A1 |
20170124276 | Tee | May 2017 | A1 |
20170127997 | Hyde et al. | May 2017 | A1 |
20170132395 | Futch | May 2017 | A1 |
20170136297 | Penie | May 2017 | A1 |
20170147197 | Yang et al. | May 2017 | A1 |
20170150917 | Brief et al. | Jun 2017 | A1 |
20170156593 | Ferber et al. | Jun 2017 | A1 |
20170161014 | Kikugawa et al. | Jun 2017 | A1 |
20170172522 | Insler et al. | Jun 2017 | A1 |
20170177797 | Kurniawan et al. | Jun 2017 | A1 |
20170181645 | Mahalingam et al. | Jun 2017 | A1 |
20170181678 | Newberry | Jun 2017 | A1 |
20170188841 | Ma et al. | Jul 2017 | A1 |
20170188893 | Venkatraman et al. | Jul 2017 | A1 |
20170188979 | Volpe | Jul 2017 | A1 |
20170202496 | Ramanathan | Jul 2017 | A1 |
20170215811 | Newberry | Aug 2017 | A1 |
20170225034 | Kass et al. | Aug 2017 | A1 |
20170235443 | Suzuki | Aug 2017 | A1 |
20170237694 | Choudhary et al. | Aug 2017 | A1 |
20170243508 | Cheng et al. | Aug 2017 | A1 |
20170249417 | Gosieski et al. | Aug 2017 | A1 |
20170258455 | Qi | Sep 2017 | A1 |
20170266531 | Elford et al. | Sep 2017 | A1 |
20170274149 | Aeschlimann | Sep 2017 | A1 |
20170274267 | Blahnik | Sep 2017 | A1 |
20170281057 | Blahnik et al. | Oct 2017 | A1 |
20170287313 | Park et al. | Oct 2017 | A1 |
20170293727 | Klaassen et al. | Oct 2017 | A1 |
20170294174 | Albadawi et al. | Oct 2017 | A1 |
20170300186 | Kuhar et al. | Oct 2017 | A1 |
20170300643 | Bezark et al. | Oct 2017 | A1 |
20170303844 | Baker et al. | Oct 2017 | A1 |
20170319184 | Sano | Nov 2017 | A1 |
20170329933 | Brust | Nov 2017 | A1 |
20170330297 | Cronin et al. | Nov 2017 | A1 |
20170332980 | Fifield et al. | Nov 2017 | A1 |
20170348562 | Jung et al. | Dec 2017 | A1 |
20170354845 | Williams et al. | Dec 2017 | A1 |
20170357329 | Park et al. | Dec 2017 | A1 |
20170357520 | De Vries et al. | Dec 2017 | A1 |
20170364637 | Kshepakaran et al. | Dec 2017 | A1 |
20180000426 | Li | Jan 2018 | A1 |
20180001184 | Tran et al. | Jan 2018 | A1 |
20180011686 | Zhao et al. | Jan 2018 | A1 |
20180032234 | Michalske | Feb 2018 | A1 |
20180039410 | Kim et al. | Feb 2018 | A1 |
20180042559 | Cabrera et al. | Feb 2018 | A1 |
20180047277 | Thyroff | Feb 2018 | A1 |
20180049659 | Briante et al. | Feb 2018 | A1 |
20180049696 | Eom et al. | Feb 2018 | A1 |
20180053200 | Cronin et al. | Feb 2018 | A1 |
20180055490 | Lee et al. | Mar 2018 | A1 |
20180056130 | Bitran et al. | Mar 2018 | A1 |
20180060522 | Petterson et al. | Mar 2018 | A1 |
20180064356 | Mendenhall et al. | Mar 2018 | A1 |
20180064388 | Heneghan et al. | Mar 2018 | A1 |
20180065025 | Toda et al. | Mar 2018 | A1 |
20180070861 | Eastman et al. | Mar 2018 | A1 |
20180074462 | Helder et al. | Mar 2018 | A1 |
20180074464 | Essery et al. | Mar 2018 | A1 |
20180078182 | Chen et al. | Mar 2018 | A1 |
20180081918 | Gravenites et al. | Mar 2018 | A1 |
20180096739 | Sano | Apr 2018 | A1 |
20180107962 | Lundin et al. | Apr 2018 | A1 |
20180117414 | Miyasaka et al. | May 2018 | A1 |
20180120985 | Wallace et al. | May 2018 | A1 |
20180132768 | Sasahara et al. | May 2018 | A1 |
20180137937 | Gass et al. | May 2018 | A1 |
20180140211 | Nakazawa et al. | May 2018 | A1 |
20180140927 | Kito et al. | May 2018 | A1 |
20180154212 | Park et al. | Jun 2018 | A1 |
20180157864 | Tribble et al. | Jun 2018 | A1 |
20180189077 | Gupta et al. | Jul 2018 | A1 |
20180189343 | Embiricos et al. | Jul 2018 | A1 |
20180211020 | Fukuda | Jul 2018 | A1 |
20180226150 | Hayter | Aug 2018 | A1 |
20180239869 | Laing et al. | Aug 2018 | A1 |
20180255159 | Cohen et al. | Sep 2018 | A1 |
20180256036 | Kogure et al. | Sep 2018 | A1 |
20180256078 | Vaterlaus | Sep 2018 | A1 |
20180256095 | Arnold et al. | Sep 2018 | A1 |
20180263510 | Cronin et al. | Sep 2018 | A1 |
20180263517 | Kubo | Sep 2018 | A1 |
20180279885 | Bulut | Oct 2018 | A1 |
20180329584 | Williams et al. | Nov 2018 | A1 |
20180336530 | Johnson et al. | Nov 2018 | A1 |
20180350451 | Ohnemus et al. | Dec 2018 | A1 |
20180368814 | R. Kudtarkar | Dec 2018 | A1 |
20180376107 | Shibaev et al. | Dec 2018 | A1 |
20190012898 | Wittrup | Jan 2019 | A1 |
20190014205 | Miloseski et al. | Jan 2019 | A1 |
20190018588 | Debates et al. | Jan 2019 | A1 |
20190034050 | Williams et al. | Jan 2019 | A1 |
20190034494 | Bradley et al. | Jan 2019 | A1 |
20190043337 | Liu et al. | Feb 2019 | A1 |
20190073618 | Kanukurthy et al. | Mar 2019 | A1 |
20190090800 | Bosworth et al. | Mar 2019 | A1 |
20190090816 | Horseman | Mar 2019 | A1 |
20190104951 | Valys et al. | Apr 2019 | A1 |
20190108908 | Faulks et al. | Apr 2019 | A1 |
20190122523 | Roberts et al. | Apr 2019 | A1 |
20190138696 | Carpenter et al. | May 2019 | A1 |
20190150854 | Chung et al. | May 2019 | A1 |
20190192086 | Menon et al. | Jun 2019 | A1 |
20190206538 | Xing et al. | Jul 2019 | A1 |
20190223843 | Vitti | Jul 2019 | A1 |
20190228179 | Rakshit et al. | Jul 2019 | A1 |
20190228640 | Freedman et al. | Jul 2019 | A1 |
20190228847 | Soli | Jul 2019 | A1 |
20190240534 | Black | Aug 2019 | A1 |
20190252054 | Dirani et al. | Aug 2019 | A1 |
20190274562 | Soli et al. | Sep 2019 | A1 |
20190274563 | Soli et al. | Sep 2019 | A1 |
20190274564 | Soli et al. | Sep 2019 | A1 |
20190274565 | Soli et al. | Sep 2019 | A1 |
20190278556 | Usher et al. | Sep 2019 | A1 |
20190298230 | Nicholson et al. | Oct 2019 | A1 |
20190302995 | Robinson et al. | Oct 2019 | A1 |
20190333614 | Burger | Oct 2019 | A1 |
20190336044 | Williams et al. | Nov 2019 | A1 |
20190336045 | Williams et al. | Nov 2019 | A1 |
20190339849 | Williams et al. | Nov 2019 | A1 |
20190341027 | Vescovi | Nov 2019 | A1 |
20190365332 | Fedichev et al. | Dec 2019 | A1 |
20190380624 | Ota et al. | Dec 2019 | A1 |
20190385708 | Hong et al. | Dec 2019 | A1 |
20200000441 | Lafon et al. | Jan 2020 | A1 |
20200054931 | Martin et al. | Feb 2020 | A1 |
20200069258 | Grinberg | Mar 2020 | A1 |
20200100693 | Velo | Apr 2020 | A1 |
20200126673 | Tanabe et al. | Apr 2020 | A1 |
20200143258 | Kanner et al. | May 2020 | A1 |
20200203012 | Kamath | Jun 2020 | A1 |
20200214650 | Lee et al. | Jul 2020 | A1 |
20200245928 | Kang et al. | Aug 2020 | A1 |
20200261011 | Seppänen et al. | Aug 2020 | A1 |
20200261763 | Park et al. | Aug 2020 | A1 |
20200273566 | Bhowmik et al. | Aug 2020 | A1 |
20200297249 | Williams et al. | Sep 2020 | A1 |
20200315544 | Levine | Oct 2020 | A1 |
20200323441 | Deno et al. | Oct 2020 | A1 |
20200350052 | Saint | Nov 2020 | A1 |
20200356687 | Salzman et al. | Nov 2020 | A1 |
20200374682 | Newman et al. | Nov 2020 | A1 |
20200379611 | Dryer et al. | Dec 2020 | A1 |
20200381099 | Crowley et al. | Dec 2020 | A1 |
20200381123 | Dryer et al. | Dec 2020 | A1 |
20200382866 | Felton | Dec 2020 | A1 |
20200382867 | Felton | Dec 2020 | A1 |
20200384314 | Lee et al. | Dec 2020 | A1 |
20210019713 | Vangala et al. | Jan 2021 | A1 |
20210068714 | Crowley et al. | Mar 2021 | A1 |
20210113137 | Soli et al. | Apr 2021 | A1 |
20210204815 | Koskela et al. | Jul 2021 | A1 |
20210225482 | Crowley et al. | Jul 2021 | A1 |
20210369130 | Felton et al. | Dec 2021 | A1 |
20210373746 | Felton et al. | Dec 2021 | A1 |
20210373747 | Felton et al. | Dec 2021 | A1 |
20210373748 | Felton et al. | Dec 2021 | A1 |
20210375157 | Sundstrom et al. | Dec 2021 | A1 |
20210375450 | Felton et al. | Dec 2021 | A1 |
20220016482 | Bissonnette et al. | Jan 2022 | A1 |
20220047250 | Clements et al. | Feb 2022 | A1 |
20220066902 | Narra et al. | Mar 2022 | A1 |
20220109932 | Felton et al. | Apr 2022 | A1 |
20220142515 | Crowley | May 2022 | A1 |
20220157143 | Panneer Selvam et al. | May 2022 | A1 |
20220160258 | Williams et al. | May 2022 | A1 |
20220262485 | Meschter et al. | Aug 2022 | A1 |
20220273204 | Kamath | Sep 2022 | A1 |
20220392588 | Crowley et al. | Dec 2022 | A1 |
20220406422 | Crowley et al. | Dec 2022 | A1 |
20230016144 | Dryer et al. | Jan 2023 | A1 |
20230017793 | Williams et al. | Jan 2023 | A1 |
20230020517 | Narra et al. | Jan 2023 | A1 |
20230101625 | Soli et al. | Mar 2023 | A1 |
20230114054 | Crowley et al. | Apr 2023 | A1 |
Number | Date | Country |
---|---|---|
2815518 | May 2012 | CA |
1752973 | Mar 2006 | CN |
101107619 | Jan 2008 | CN |
102448555 | May 2012 | CN |
102790761 | Nov 2012 | CN |
103191557 | Jul 2013 | CN |
103250158 | Aug 2013 | CN |
103403627 | Nov 2013 | CN |
103474080 | Dec 2013 | CN |
103561640 | Feb 2014 | CN |
103927175 | Jul 2014 | CN |
103986813 | Aug 2014 | CN |
104720765 | Jun 2015 | CN |
105260078 | Jan 2016 | CN |
105388998 | Mar 2016 | CN |
105632508 | Jun 2016 | CN |
105721667 | Jun 2016 | CN |
105980008 | Sep 2016 | CN |
106164808 | Nov 2016 | CN |
106371816 | Feb 2017 | CN |
106415559 | Feb 2017 | CN |
106510719 | Mar 2017 | CN |
106537397 | Mar 2017 | CN |
106709235 | May 2017 | CN |
106725384 | May 2017 | CN |
106901720 | Jun 2017 | CN |
107278138 | Oct 2017 | CN |
107361755 | Nov 2017 | CN |
107454831 | Dec 2017 | CN |
107469327 | Dec 2017 | CN |
107508995 | Dec 2017 | CN |
107591211 | Jan 2018 | CN |
107713981 | Feb 2018 | CN |
108604327 | Sep 2018 | CN |
109287140 | Jan 2019 | CN |
111344796 | Jun 2020 | CN |
202017002874 | Sep 2017 | DE |
2391004 | Nov 2011 | EP |
2568409 | Mar 2013 | EP |
2921899 | Sep 2015 | EP |
3042606 | Jul 2016 | EP |
3096235 | Nov 2016 | EP |
3101882 | Dec 2016 | EP |
3557590 | Oct 2019 | EP |
2004-80496 | Mar 2004 | JP |
2004-318503 | Nov 2004 | JP |
2005-79814 | Mar 2005 | JP |
2006-107134 | Apr 2006 | JP |
2008-11865 | Jan 2008 | JP |
2009-232301 | Oct 2009 | JP |
2009-538571 | Nov 2009 | JP |
2010-517725 | May 2010 | JP |
2010-122901 | Jun 2010 | JP |
2010-162297 | Jul 2010 | JP |
2010-181280 | Aug 2010 | JP |
2011-200575 | Oct 2011 | JP |
2012-45373 | Mar 2012 | JP |
2012-059264 | Mar 2012 | JP |
2012-524640 | Oct 2012 | JP |
2012-239808 | Dec 2012 | JP |
2013-192608 | Sep 2013 | JP |
2013-207323 | Oct 2013 | JP |
2013-543156 | Nov 2013 | JP |
2013-544140 | Dec 2013 | JP |
2014-45782 | Mar 2014 | JP |
2014-171831 | Sep 2014 | JP |
2015-28686 | Feb 2015 | JP |
2015-73590 | Apr 2015 | JP |
2015-213686 | Dec 2015 | JP |
2016-502875 | Feb 2016 | JP |
2016-528016 | Sep 2016 | JP |
2016-177151 | Oct 2016 | JP |
2016-202751 | Dec 2016 | JP |
2016-538926 | Dec 2016 | JP |
2017-40981 | Feb 2017 | JP |
2017-117265 | Jun 2017 | JP |
2017-515520 | Jun 2017 | JP |
2017-134689 | Aug 2017 | JP |
2017-156267 | Sep 2017 | JP |
2017-526073 | Sep 2017 | JP |
2017-182393 | Oct 2017 | JP |
2017-529880 | Oct 2017 | JP |
2017-211994 | Nov 2017 | JP |
2017-532069 | Nov 2017 | JP |
2018-504660 | Feb 2018 | JP |
2018-523554 | Aug 2018 | JP |
6382433 | Aug 2018 | JP |
2018-191122 | Nov 2018 | JP |
2019-28806 | Feb 2019 | JP |
2019-32461 | Feb 2019 | JP |
2019-505035 | Feb 2019 | JP |
2019-36226 | Mar 2019 | JP |
2019-55076 | Apr 2019 | JP |
2019-207536 | Dec 2019 | JP |
10-2002-0060421 | Jul 2002 | KR |
10-2008-0051460 | Jun 2008 | KR |
10-2012-0023657 | Mar 2012 | KR |
10-2013-0093837 | Aug 2013 | KR |
10-2013-0111569 | Oct 2013 | KR |
10-2013- 0111570 | Oct 2013 | KR |
10-2015-0115385 | Oct 2015 | KR |
10-1594486 | Feb 2016 | KR |
10-2016-0028351 | Mar 2016 | KR |
10-2016-0076264 | Jun 2016 | KR |
10-2016-0077199 | Jul 2016 | KR |
10-2017-0003608 | Jan 2017 | KR |
10-2017-0019040 | Feb 2017 | KR |
10-2017-0019745 | Feb 2017 | KR |
10-2017-0029014 | Mar 2017 | KR |
10-2018-0129188 | Dec 2018 | KR |
10-2019-0094795 | Aug 2019 | KR |
2001096986 | Dec 2001 | WO |
200241134 | May 2002 | WO |
2003067202 | Aug 2003 | WO |
2006046648 | May 2006 | WO |
2008073359 | Jun 2008 | WO |
WO-2009095908 | Aug 2009 | WO |
2010028320 | Mar 2010 | WO |
2010126825 | Nov 2010 | WO |
2012048832 | Apr 2012 | WO |
2012060588 | May 2012 | WO |
2012061438 | May 2012 | WO |
2012061440 | May 2012 | WO |
2013103570 | Jul 2013 | WO |
2013109916 | Jul 2013 | WO |
2014006862 | Jan 2014 | WO |
2014015378 | Jan 2014 | WO |
2014144258 | Sep 2014 | WO |
2014207875 | Dec 2014 | WO |
2015027133 | Feb 2015 | WO |
2015084353 | Jun 2015 | WO |
2015153803 | Oct 2015 | WO |
2015164845 | Oct 2015 | WO |
2015183828 | Dec 2015 | WO |
2015187799 | Dec 2015 | WO |
2015198488 | Dec 2015 | WO |
2016036472 | Mar 2016 | WO |
2016036582 | Mar 2016 | WO |
2016151479 | Sep 2016 | WO |
2016161152 | Oct 2016 | WO |
2016164475 | Oct 2016 | WO |
2016179559 | Nov 2016 | WO |
2016207745 | Dec 2016 | WO |
2017003045 | Jan 2017 | WO |
2017037242 | Mar 2017 | WO |
2017054277 | Apr 2017 | WO |
2017062621 | Apr 2017 | WO |
2017087642 | May 2017 | WO |
2017090810 | Jun 2017 | WO |
2017172046 | Oct 2017 | WO |
2017215203 | Dec 2017 | WO |
2018132507 | Jul 2018 | WO |
2018148356 | Aug 2018 | WO |
2018213401 | Nov 2018 | WO |
2019020977 | Jan 2019 | WO |
2019099553 | May 2019 | WO |
2019168956 | Sep 2019 | WO |
2019240513 | Dec 2019 | WO |
2022010573 | Jan 2022 | WO |
Entry |
---|
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20180581.9, mailed on Nov. 30, 2021, 1 page. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/880,552, dated Dec. 22, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/921,312, dated Dec. 7, 2021, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/035164, dated Dec. 16, 2021, 19 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/035462, dated Dec. 16, 2021, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/025768, dated Dec. 16, 2021, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/035474, dated Dec. 16, 2021, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/035504, dated Sep. 16, 2021, 12 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019210192, dated Dec. 2, 2021, 3 pages. |
Office Action received for Danish Patent Application No. PA202070395, dated Dec. 15, 2021, 5 pages. |
Office Action received for Indian Patent Application No. 202014041484, dated Dec. 8, 2021, 8 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,717, dated Nov. 4, 2021, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,997, dated Nov. 16, 2021, 2 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-560883, dated Oct. 29, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/894,309, dated Nov. 5, 2021, 12 pages. |
Office Action received for Australian Patent Application No. 2019234289, dated Nov. 1, 2021, 4 pages. |
Advisory Action received for U.S. Appl. No. 16/144,864, dated Jul. 29, 2019, 6 pages. |
Advisory Action received for U.S. Appl. No. 16/143,909, dated Nov. 7, 2019, 5 pages. |
Advisory Action received for U.S. Appl. No. 16/143,997, dated Dec. 26, 2019, 7 pages. |
Advisory Action received for U.S. Appl. No. 16/144,849, dated Aug. 12, 2019, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/144,849, dated Jan. 21, 2020, 6 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/144,864, dated Apr. 29, 2020, 4 pages. |
Casella Cel Casella, “The Casella dBadge2—World's First Truly Wireless Noise Dosimeter and Airwave App!”, Retrieved from URL: <https://www.youtube.com/watch?v=Xvy2fl3cgYo>, May 27, 2015, 3 pages. |
Certificate of Examination received for Australian Patent Application No. 2019100222, dated Aug. 29, 2019, 2 pages. |
Cnet, “Google Fit's automatic activity tracking is getting smarter on Android Wear”, Available online at: https://www.youtube.com/watch?v=IttzlCid_d8, May 18, 2016, 1 page. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,909, dated Feb. 20, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,909, dated Mar. 18, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,959, dated Dec. 13, 2019, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201870379, dated Jul. 5, 2019, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201870600, dated Oct. 17, 2019, 2 pages. |
Evergreen et al., “Bar Chart”, Better Evaluation, Available Online at: https://www.betterevaluation.org/en/evaluation-options/BarChart, Oct. 31, 2014, 8 pages. |
Final Office Action received for U.S. Appl. No. 15/167,699, dated Jun. 30, 2017., 8 Pages. |
Final Office Action received for U.S. Appl. No. 16/143,909, dated Aug. 28, 2019, 20 pages. |
Final Office Action received for U.S. Appl. No. 16/143,997, dated Sep. 30, 2019, 16 pages. |
Final Office Action received for U.S. Appl. No. 16/144,030, dated Feb. 13, 2020, 11 pages. |
Final Office Action received for U.S. Appl. No. 16/144,030, dated Oct. 1, 2019, 13 pages. |
Final Office Action received for U.S. Appl. No. 16/144,849, dated Jun. 7, 2019, 29 pages. |
Final Office Action received for U.S. Appl. No. 16/144,864, dated May 17, 2019, 24 pages. |
Fitbit App, Available online at: <http://web.archive.org/web/20180114083150/https://www.fitbit.com/au/app>, Jan. 14, 2018, 8 pages. |
Garmin, “Fenix 5x Owner's Manual”, Online Available at :—https://web.archive.org/web/20180127170640/https://static.garmin.com/pumac/fenix5x_OM_EN.pdf, Jan. 27, 2018, 42 pages. |
Graphs and Charts, Online available at: <https://www.teachervision.com/lesson-planning/ graph-chart-teacher-resources, retrieved on Dec. 12, 2018, 4 pages. |
Intention to Grant received for Danish Patent Application No. PA201870379, dated May 2, 2019, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201870600, dated Jul. 10, 2019, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/073188, dated Jun. 16, 2016, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/073188 dated Feb. 24, 2014, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/019694, dated Sep. 2, 2019, 17 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/024570, dated Aug. 8, 2019, 18 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2019/019694, dated Jul. 10, 2019, 12 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 19726205.8, dated Feb. 14, 2020, 5 pages. |
Megadepot, “Casella dBadge2 Noise Dosimeter”, Retrieved from URL: <https://www.youtube.com/watch?v=pHiHLiYCD08>, Jun. 12, 2018, 3 pages. |
Multi-Set Bar Chart, The Data Visualization Catalogue, Available Online at: https://datavizcatalogue.com/methods/multiset_barchart.html, Feb. 8, 2014, 3 pages. |
Myflo App, “Functional Medicine Period Tracker and Hormone Balancing App”, Available online at <https://web.archive.org/web/20170127104125/https://myflotracker.com/>, Jan. 2017, 14 pages. |
Myflo Tutorial, “How to change the start date of your current period”, Available online at <https://www.youtube.com/watch?v=uQQ-odIBJB4>, Jan. 23, 2017, 3 pages. |
Myflo Tutorial, “Setting and changing the end date of your period”, Available online at <https://www.youtube.com/watch?v=UvAA4OgqL3E>, Jan. 23, 2017, 3 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/167,699, dated Oct. 21, 2016, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/885,448, dated Apr. 16, 2020, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/138,809, dated Feb. 28, 2020, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/143,909, dated Apr. 19, 2019, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/143,959, dated Apr. 17, 2019, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/143,997, dated May 21, 2019, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,030, dated Apr. 12, 2019, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,849, dated Dec. 31, 2018, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,849, dated Sep. 17, 2019, 9 pages. |
Non-Final Office Action Received for U.S. Appl. No. 16/144,864, dated Dec. 18, 2018, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,864, dated Jan. 31, 2020, 29 pages. |
Notice from the European Patent Office dated Oct. 1, 2007 Concerning Business Methods, Official Journal EPO, available online at <http://archive.epo.org/epo/pubs/oj007/11_07/11_5927.pdf>, Nov. 2007, pp. 592-593. |
Notice of Acceptance received for Australian Patent Application No. 2013406817, dated Nov. 21, 2017, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018201260, dated Jan. 15, 2020, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201380081315.7, dated Jan. 4, 2019, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2016-7014353, dated Aug. 2, 2018, 3 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)). |
Notice of Allowance received for Korean Patent Application No. 10-2018-7032096, dated Dec. 12, 2018, 4 pages (1 page of English Translation and 3 pages of Official copy). |
Notice of Allowance received for U.S. Appl. No. 15/167,699, dated Oct. 27, 2017, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/143,909, dated Jan. 21, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/143,959, dated Oct. 31, 2019, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,849, dated Apr. 17, 2020, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,849, dated Mar. 6, 2020, 9 pages. |
Office Action received for Australian Patent Application No. 2013406817, dated Aug. 1, 2017, 3 pages. |
Office Action received for Australian Patent Application No. 2013406817, dated Nov. 14, 2016, 4 pages. |
Office Action received for Australian Patent Application No. 2018201260, dated Feb. 12, 2019, 6 pages. |
Office Action received for Australian Patent Application No. 2018201260, dated Jul. 17, 2019, 3 pages. |
Office Action received for Australian Patent Application No. 2018201260, dated Sep. 5, 2019, 5 pages. |
Office Action received for Australian Patent Application No. 2019100222, dated May 24, 2019, 6 pages. |
Office Action received for Australian Patent Application No. 2019100495, dated Mar. 6, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2019100495, dated Mar. 16, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2019100495, dated Sep. 17, 2019, 7 pages. |
Office Action received for Australian Patent Application No. 2019222943, dated Oct. 3, 2019, 3 pages. |
Office Action received for Chinese Patent Application No. 201380081315.7, dated Aug. 16, 2018, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201380081315.7, dated Mar. 2, 2018, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201870378, dated Feb. 25, 2019, 3 pages. |
Office Action received for Danish Patent Application No. PA201870378, dated Jan. 6, 2020, 3 pages. |
Office Action received for Danish Patent Application No. PA201870379, dated Feb. 28, 2019, 3 pages. |
Office Action received for Danish Patent Application No. PA201870380, dated Mar. 5, 2020, 2 pages. |
Office Action received for Danish Patent Application No. PA201870380, dated Mar. 27, 2019, 4 pages. |
Office Action received for Danish Patent Application No. PA201870380, dated Sep. 11, 2018, 9 pages. |
Office Action received for Danish Patent Application No. PA201870599, dated Dec. 20, 2019, 5 pages. |
Office Action received for Danish Patent Application No. PA201870600, dated May 8, 2019, 3 pages. |
Office Action received for Danish Patent Application No. PA201870601, dated Dec. 13, 2018, 8 pages. |
Office Action received for Danish Patent Application No. PA201870601, dated Jan. 14, 2020, 3 pages. |
Office Action received for Danish Patent Application No. PA201870601, dated Jun. 25, 2019, 3 pages. |
Office Action received for Danish Patent Application No. PA201870602, dated Feb. 5, 2020, 3 pages. |
Office Action received for Danish Patent Application No. PA201870602, dated Jun. 26, 2019, 3 Pages. |
Office Action received for European Patent Application No. 19721883.7, dated Jan. 10, 2020, 4 pages. |
Office Action received for European Patent Application No. 13812320.3, dated Mar. 28, 2018, 7 pages. |
Office Action received for Japanese Patent Application No. 2019-162293, dated Jan. 31, 2020, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2016-7014353, dated Mar. 21, 2018, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2019-7025538, dated Feb. 17, 2020, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Rainmaker, “Garmin Fenix3 New Auto Climb Functionality”, Available online at: https://www.youtube.com/watch?v=iuavOSNpVRc, Feb. 19, 2015, 1 page. |
Rizknows, “Tom Tom Multisport Cardio Review”, Online available at :—https://www.youtube.com/watch?v=WoVCzLrSN9A, Sep. 4, 2015, 1 page. |
Search Report and Opinion received for Danish Patent Application No. PA201870378, dated Sep. 10, 2018, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870379, dated Sep. 14, 2018, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870599, dated Dec. 21, 2018, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870600, dated Jan. 31, 2019, 8 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870602, dated Dec. 19, 2018, 8 pages. |
Smith, “Garmin Fenix 5 Activity/Smart Watch Review”, Online Available at :—https://www.youtube.com/watch?v=6PkQxXQxpoU, Sep. 2, 2017, 1 page. |
Sportstechguides, “Garmin Fenix 5: How to Add Power Data Fields”, Online Available at :—https://www.youtube.com/watch?v=ZkPptnnXEiQ, Apr. 29, 2017, 2 pages. |
Sportstechguides, “Garmin Fenix 5: How To Set Up Run Alerts”, Online Available at :—https://www.youtube.com/watch?v=gSMwv8vlhB4, May 13, 2017, 2 pages. |
Studiosixdigital, “Dosimeter”, Retrieved from URL: <https://studiosixdigital.com/audiotools-modules-2/spl-modules/dosimeter.html>, Mar. 3, 2017, 6 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/144,849, dated Mar. 31, 2020, 2 pages. |
Suunto Spartan Trainer Wrist HR 1.12, Online Available at :—https://web.archive.org/web/20180127155200/https://ns.suunto.com/Manuals/Spartan_Trainer_WristHR/Userguides/Suunto_Spartan_Trainer_WristHR_UserGuide_EN.pdf, Jan. 17, 2018, 47 pages. |
Suunto, “Suunto Spartan—Heart Rate Zones”, Online Available at :—https://www.youtube.com/watch?v=aixfoCnS0OU, Mar. 19, 2018, 2 pages. |
Teunmo, “Data field: Visual Pace Alarm”, Garmin Forum; Available online at: https://forums.garmin.com/forum/developers/connect-iq/connect-iq-showcase/115996-data-field-visual-pace-alarm, Nov. 17, 2015, 10 pages. |
TomTom, “TomTom Runner & Multi-Sport Reference Guide”, Online available at :—https://web.archive.org/web/20150908075934/http://download.tomtom.com/open/manuals/Runner_Multi-Sport/refman/TomTom-Runner-Multi-Sport-RG-en-GB.pdf, Sep. 8, 2015, 44 pages. |
Visual Pace Alarm app, Available Online at: https://apps.garmin.com/en-US/apps/3940f3a2-4847-4078-a911-d77422966c82, Oct. 19, 2016, 1 page. |
Weiyu et al., “A Multi-Identities Authentication and Authorization Schema in Cloud Computing”, Aug. 20, 2012, pp. 7-10 (English Abstract Submitted). |
Wesley, “Apple Watch Series 1”, online available at :—http://tool-box.info/blog/archives/1737-unknown.html, May 28, 2015, 5 pages (Official copy only) (See Communication under 37 CFR § 1.98(a) (3)). |
Youtube, “Apple Watch Series 3”, Online available at :—https://www.youtube.com/watch?v=iBPr9gEfkK8, Nov. 21, 2017, 15 pages (Official copy only) (See Communication under 37 CFR § 1.98(a) (3)). |
Zlelik, “Garmin Fenix 5 Open Water Swimming Activity Demo”, Online Available at :—https://www.youtube.com/watch?v=iSVhdvw2d, Jun. 9, 2017, 1 page. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/586,154, dated Mar. 11, 2020, 4 pages. |
Final Office Action received for U.S. Appl. No. 16/586,154, dated Jul. 6, 2020, 27 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/024570, dated Nov. 19, 2020, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/035462, dated Sep. 11, 2020, 17 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2020/035164, dated Oct. 16, 2020, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/586,154, dated Dec. 9, 2019, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/880,714, dated Oct. 28, 2020, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/880,552, dated Dec. 1, 2020, 7 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020256383, dated Aug. 3, 2021, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/907,261, dated Aug. 13, 2021, 8 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 20180581.9, mailed on Aug. 18, 2021, 15 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 20180592.6, mailed on Aug. 11, 2021, 16 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/880,714, dated Feb. 26, 2021, 5 pages. |
Final Office Action received for U.S. Appl. No. 16/894,309, dated Feb. 24, 2021, 30 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/035164, dated Feb. 8, 2021, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/880,552, dated Feb. 19, 2021, 11 pages. |
Office Action received for Danish Patent Application No. PA201970534, dated Feb. 16, 2021, 2 pages. |
Office Action received for Korean Patent Application No. 10-2020-7026035, dated Feb. 19, 2021, 13 pages (6 pages of English Translation and 7 pages of Official Copy). |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/143,997, dated May 3, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/880,552, dated Apr. 21, 2021, 3 pages. |
Office Action received for Chinese Patent Application No. 202010618569.X, dated Mar. 12, 2021, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Notice of Allowance received for Chinese Patent Application No. 201910972529.2, dated Sep. 14, 2020, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/144,864, dated Sep. 10, 2020, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,864, dated Sep. 16, 2020, 2 pages. |
Epstein et al., “Examining Menstrual Tracking to Inform the Design of Personal Informatics Tools”, Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI '17, ACM Press, Denver, CO, USA, May 6-11, 2017, pp. 6876-6888. |
Moglia et al., “Evaluation of Smartphone Menstrual Cycle Tracking Applications Using an Adapted Applications Scoring System”, Obstetrics and Gynecology, vol. 127, No. 6, Jun. 2016, pp. 1153-1160. |
Advisory Action received for U.S. Appl. No. 16/144,864, dated Jul. 6, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/144,864, dated Jun. 22, 2020, 3 pages. |
Office Action received for European Patent Application No. 19726205.8, dated Jun. 26, 2020, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/894,309, dated Jun. 25, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,997, dated Jul. 2, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/880,552, dated Jul. 7, 2021, 2 pages. |
Office Action received for Australian Patent Application No. 2020230340, dated May 27, 2021, 5 pages. |
Office Action received for Chinese Patent Application No. 202010606407.4, dated Jun. 2, 2021, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202011220489.5, dated Jun. 1, 2021, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-153166, dated May 31, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Australian Patent Application No. 2020256383, dated Jun. 4, 2021, 3 pages. |
Office Action received for Danish Patent Application No. PA202070335, dated Jun. 11, 2021, 4 pages. |
Office Action received for European Patent Application No. 19721883.7, dated Jun. 15, 2021, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/249,627, dated Oct. 6, 2021, 4 pages. |
Decision to Refuse received for European Patent Application No. 13812320.3, dated Oct. 14, 2021, 4 pages. |
Notice of Allowance received for U.S. Appl. No. 16/143,997, dated Sep. 30, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/586,154, dated Oct. 15, 2021, 8 pages. |
Office Action received for Australian Patent Application No. 2019210192, dated Sep. 9, 2021, 4 pages. |
Office Action received for Australian Patent Application No. 2020230340, dated Oct. 11, 2021, 4 pages. |
Office Action received for Australian Patent Application No. 2020239740, dated Sep. 28, 2021, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/138,809, dated Dec. 16, 2020, 7 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/880,552, dated Dec. 16, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/907,261, dated Dec. 16, 2020, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/880,552, dated Dec. 23, 2020, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/586,154, dated Dec. 28, 2020, 26 pages. |
Search Report and Opinion received for Danish Patent Application No. PA202070620, dated Dec. 11, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/880,552, dated Nov. 24, 2021, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/921,312, dated Nov. 29, 2021, 5 pages. |
Office Action received for Danish Patent Application No. PA202070335, dated Nov. 17, 2021, 6 pages. |
Office Action received for Danish Patent Application No. PA202070620, dated Nov. 19, 2021, 2 pages. |
Office Action received for European Patent Application No. 20203526.7, dated Nov. 23, 2021, 9 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/990,846, dated Feb. 9, 2022, 3 pages. |
Final Office Action received for U.S. Appl. No. 16/249,627, dated Feb. 14, 2022, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,779, dated Feb. 16, 2022, 17 pages. |
Office Action received for Australian Patent Application No. 2020239692, dated Jan. 27, 2022, 3 pages. |
Office Action received for Korean Patent Application No. 10-2020-7023277, dated Jan. 26, 2022, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2020-104679, dated Jan. 4, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/586,154, dated Sep. 3, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,704, dated Feb. 9, 2021, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,704, dated Jun. 25, 2021, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,717, dated Jan. 29, 2021, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,717, dated May 17, 2021, 5 pages. |
Final Office Action received for U.S. Appl. No. 17/031,704, dated Apr. 1, 2021, 31 pages. |
Final Office Action received for U.S. Appl. No. 17/031,717, dated Feb. 24, 2021, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/249,627, dated Aug. 31, 2021, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,704, dated Dec. 10, 2020, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,717, dated Nov. 19, 2020, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,717, dated Sep. 14, 2021, 35 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7026035, dated Aug. 23, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/921,312, dated Sep. 14, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,704, dated Jul. 21, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,727, dated Dec. 24, 2020, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,727, dated Jun. 25, 2021, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,727, dated Mar. 12, 2021, 7 pages. |
Office Action received for Australian Patent Application No. 2020239740, dated Jul. 9, 2021, 4 pages. |
Office Action received for Danish Patent Application No. PA202070619, dated Aug. 27, 2021, 12 pages. |
Search Report and Opinion received for Danish Patent Application No. PA202070619, dated Dec. 2, 2020, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,727, dated Jan. 15, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,779, dated Mar. 10, 2022, 2 pages. |
Notice of Acceptance received for Australian Patent application No. 2020239740, dated Feb. 22, 2022., 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/584,186, dated Feb. 3, 2020, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,186, dated Jul. 31, 2020, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/014215, dated Aug. 6, 2020, 14 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2019/014215, dated Jun. 4, 2019, 17 pages. |
International Search Report and written Opinion received for PCT Patent Application No. PCT/US2020/025768, dated Aug. 10, 2020, 11 pages. |
Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2019/014215, dated Apr. 12, 2019, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/584,186, dated Dec. 6, 2019, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/880,552, dated Jul. 23, 2020, 19 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,186, dated Mar. 24, 2020, 10 pages. |
Office Action received for Chinese Patent Application No. 201910858933.7, dated Aug. 18, 2020, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA201970534, dated Jun. 29, 2020, 2 pages. |
Office Action received for Japanese Patent Application No. 2019-162293, dated Jul. 27, 2020, 9 pages (5 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2019-7025538, dated Aug. 15, 2020, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Search Report and Opinion received for Danish Patent Application No. PA201970534, dated Sep. 23, 2019, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/586,154, dated Dec. 11, 2020, 5 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/035474, dated Nov. 26, 2020, 16 pages. |
Search Report and Opinion received for Danish Patent Application No. PA202070335, dated Nov. 27, 2020, 10 pages. |
Search Report and Opinion received for Danish Patent Application No. PA202070395, dated Nov. 24, 2020, 10 pages. |
Gupta Rajat, “Disable High Volume Warning (no root) in Samsung S7, S8 / Android 7.0”, Online available at: <https://www.youtube.com/watch?v=9fKwRBtk-x8>, Retrieved on Nov. 26, 2020; esp. 2:04, Aug. 6, 2017, 1 page. |
Kalyani Tech., “I See Some problems in Honor Band 5”, Retrieved from: https://www.youtube.com/watch?v=5XPnYJFqajl, May 19, 2020, 1 page. |
Smartwatch Ticks, “Senbono S10 IP67 Waterproof Multi-Function Blood Pressure Sports Smartwatch: One Minute Overview”, Retrieved from: https://www.youtube.com/watch?v=rMxLJvKIVBs, Oct. 30, 2019, 1 page. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/907,261, dated Jul. 16, 2021, 10 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-547369, dated Jul. 16, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/138,809, dated Jul. 20, 2021, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 16/880,552, dated Jul. 23, 2021, 5 pages. |
Office Action received for Australian Patent Application No. 2019234289, dated Jul. 20, 2021, 4 pages. |
Office Action received for Australian Patent Application No. 2020239692, dated Jul. 20, 2021, 5 pages. |
Office Action received for Chinese Patent Application No. 201910858933.7, dated Jun. 29, 2021, 8 pages (3 pages of English Translation and 5 pages of Official Copy). |
Non-Final Office Action received for U.S. Appl. No. 16/143,997, dated Jul. 27, 2020, 15 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020204153, dated Jul. 6, 2020, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,864, dated Jul. 28, 2020, 27 pages. |
Cook, James, “German Period Tracking App Clue Has Over 2.5 Million Active Users—But It's Still Not Sure How It's Going to Make Money”, Available online at: https://www.businessinsider.in/tech/german-period-tracking-app-clue-has-over-2-5-million-active-users-but-its-still-not-sure-how-its-going-to-make-money/articleshow/50511307.cms, Jan. 9, 2016, 9 pages. |
Final Office Action received for U.S. Appl. No. 16/586,154, dated May 24, 2021, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/990,846, dated May 10, 2021, 16 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7026391, dated May 11, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2020-7026453, dated May 11, 2021, 3 pages (1 page of English Translation and 2 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/143,997, dated May 13, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/880,552, dated May 12, 2021, 7 pages. |
Office Action received for Chinese Patent Application No. 202010618240.3, dated Mar. 29, 2021, 21 pages (11 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA202070620, dated May 10, 2021, 5 pages. |
Office Action received for Japanese Patent Application No. 2020-547369, dated Apr. 9, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/070280, dated Nov. 30, 2020, 20 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/070280, dated Oct. 7, 2020, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/249,627, dated Mar. 11, 2021, 21 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,864, dated Mar. 12, 2021, 2 pages. |
Office Action received for Australian Patent Application No. 2020230340, dated Mar. 2, 2021, 6 pages. |
Office Action received for Chinese Patent Application No. 202010606407.4, dated Jan. 27, 2021, 16 pages (7 pages of English Translation and 9 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 13812320.3, mailed on Mar. 12, 2021, 9 pages. |
Intention to Grant received for Danish Patent Application No. PA201870601, dated Apr. 24, 2020, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201870602, dated Apr. 24, 2020, 2 pages. |
Office Action received for Indian Patent Application No. 201617016494, dated Apr. 27, 2020, 7 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20180581.9, mailed on Jan. 26, 2022, 1 page. |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 20180592.6, mailed on Jan. 26, 2022, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA202070619, dated Jan. 17, 2022, 2 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/042439, dated Jan. 27, 2022, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,723, dated Jan. 24, 2022, 17 pages. |
Notice of Allowance received for Chinese Patent Application No. 202010606407.4, dated Jan. 24, 2022, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2018-184532, dated Jan. 17, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2021-7042504, dated Jan. 17, 2022, 6 pages (1 page of English Translation and 5 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/990,846, dated Jan. 20, 2022, 6 pages. |
Office Action received for Japanese Patent Application No. 2020-160023, dated Jan. 17, 2022, 11 pages (06 pages of English Translation and 05 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 20180581.9, dated Jan. 21, 2022, 14 pages. |
Result of Consultation received for European Patent Application No. 20180592.6, dated Jan. 26, 2022, 18 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/894,309, dated Jan. 25, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/249,627, dated Mar. 23, 2022, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,723, dated Mar. 21, 2021, 5 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/070280, dated Mar. 17, 2022, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/041,415, dated Mar. 29, 2022, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,717, dated Mar. 16, 2022, 12 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 13812320.3, dated Sep. 16, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/921,312, dated Sep. 24, 2021, 2 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-153166, dated Sep. 13, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/907,261, dated Sep. 28, 2021, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 16/990,846, dated Sep. 22, 2021, 9 pages. |
Office Action received for Chinese Patent Application No. 202010618569.X, dated Sep. 7, 2021, 7 pages (4 pages of English Translation and 3 pages of Official Copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/880,714, dated Sep. 16, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,997, dated Oct. 21, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/586,154, dated Oct. 27, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/031,704, dated Nov. 2, 2021, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/035227, dated Oct. 6, 2021, 17 pages. |
Office Action received for Danish Patent Application No. PA202070619, dated Oct. 14, 2021, 3 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/143,997, dated Aug. 13, 2020, 3 pages. |
Decision to Grant received for Danish Patent Application No. PA201870601, dated Aug. 17, 2020, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201870602, dated Aug. 18, 2020, 2 pages. |
Extended European Search Report received for European Patent Application No. 20180581.9, dated Aug. 12, 2020, 9 pages. |
Extended European Search Report received for European Patent Application No. 20180592.6, dated Aug. 11, 2020, 10 pages. |
Final Office Action received for U.S. Appl. No. 16/138,809, dated Aug. 27, 2020, 24 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/249,627, dated Jun. 2, 2021, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/143,997, dated Jun. 4, 2021, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 16/880,714, dated Jun. 9, 2021, 6 pages. |
Office Action received for Australian Patent Application No. 2019210192, dated May 25, 2021, 4 pages. |
Office Action received for European Patent Application No. 20182116.2, dated May 25, 2021, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/907,261, dated Mar. 25, 2021, 2 pages. |
Decision on Appeal received for Korean Patent Application No. 10-2019-7025538, mailed on Feb. 24, 2021, 20 pages (4 pages of English Translation and 16 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 16/907,261, dated Mar. 18, 2021, 20 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2019-7025538, dated Mar. 10, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/144,864, dated Mar. 30, 2021, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 16/880,714, dated Mar. 19, 2021, 7 pages. |
Office Action received for Australian Patent Application No. 2019234289, dated Mar. 16, 2021, 8 pages. |
Result of Consultation received for European Patent Application No. 19726205.8, dated Mar. 15, 2021, 19 pages. |
Final Office Action received for U.S. Appl. No. 16/144,864, dated May 28, 2020, 29 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019222943, dated May 5, 2020, 3 pages. |
Office Action received for Chinese Patent Application No. 201910972529.2, dated Jun. 28, 2020, 8 pages (1 page of English Translation and 7 pages of Official Copy). |
Brief Communication regarding Oral Proceedings received for European Patent Application No. 20180592.6, mailed on Dec. 21, 2021, 1 page. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7038005, dated Dec. 14, 2021, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010606407.4, dated Nov. 18, 2021, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010618240.3, dated Dec. 3, 2021, 23 pages (14 pages of English Translation and 9 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 20182116.2, mailed on Dec. 21, 2021, 7 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/894,309, dated Dec. 24, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/894,309, dated Jan. 26, 2021, 3 pages. |
Extended European Search Report received for European Patent Application No. 20203526.7, dated Jan. 29, 2021, 13 pages. |
Final Office Action received for U.S. Appl. No. 16/143,997, dated Feb. 9, 2021, 16 pages. |
Lovejoy, Ben, “Apple Watch blood sugar measurement coming in Series 7, claims report”, Available Online at: https://9to5mac.com/2021/01/25/apple-watch-blood-sugar-measurement/, Jan. 25, 2021, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,864, dated Feb. 9, 2021, 13 pages. |
Office Action received for Korean Patent Application No. 10-2020-7026391, dated Jan. 27, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-7026453, dated Jan. 27, 2021, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/138,809, dated Jun. 9, 2020, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/885,448, dated Jun. 16, 2020, 5 pages. |
Office Action received for European Patent Application No. 19721883.7, dated May 28, 2020, 11 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/586,154, dated Apr. 14, 2021, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2019-162293, dated Apr. 9, 2021, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/138,809, dated Apr. 16, 2021, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,030, dated Apr. 5, 2021, 8 pages. |
Office Action received for European Patent Application No. 20180581.9, dated Apr. 1, 2021, 11 pages. |
Office Action received for European Patent Application No. 20180592.6, dated Apr. 1, 2021, 11 pages. |
Office Action received for Japanese Patent Application No. 2018-184532, dated Mar. 1, 2021, 11 pages (6 pages of English Translation and 5 pages of Official Copy). |
Notice of Acceptance received for Australian Patent Application No. 2020288147, dated Dec. 22, 2021, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 202010618569.X, dated Jan. 7, 2022, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Office Action received for Chinese Patent Application No. 202011220489.5, dated Dec. 1, 2021, 19 pages (11 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2020-551585, dated Jan. 6, 2022, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/894,309, dated Feb. 25, 2022, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/048568, dated Jan. 7, 2022 14 pages. |
Office Action received for Chinese Patent Application No. 201910858933.7, dated Dec. 30, 2021, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/042439, dated Oct. 9, 2020, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/144,030, dated Nov. 5, 2020, 5 pages. |
Office Action received for Australian Patent Application No. 2019234289, dated Nov. 2, 2020, 6 pages. |
Office Action received for Australian Patent Application No. 2020230340, dated Nov. 2, 2020, 5 pages. |
Office Action received for European Patent Application No. 20182116.2, dated Nov. 6, 2020, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 19726205.8, mailed on Oct. 29, 2020, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2019/019694, dated Sep. 24, 2020, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/907,261, dated Sep. 30, 2020, 22 pages. |
Notice of Allowance received for U.S. Appl. No. 16/144,864, dated Sep. 29, 2020, 2 pages. |
Result of Consultation received for European Patent Application No. 19721883.7, dated Oct. 7, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/880,552, dated Oct. 20, 2020, 6 pages. |
European Search Report received for European Patent Application No. 20182116.2, dated Oct. 21, 2020, 4 pages. |
Invitation to Pay Addition Fees received for PCT Patent Application No. PCT/US2020/035474, dated Oct. 2, 2020, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/894,309, dated Oct. 15, 2020, 24 pages. |
Office Action received for Japanese Patent Application No. 2020-104679, dated Sep. 18, 2020, 13 pages (7 pages of English Translation and 6 pages of Official Copy). |
Chatrzarrin Hanieh, “Feature Extraction for the Differentiation of Dry and Wet Cough Sounds”, Carleton University, Sep. 2011, 144 pages. |
Haslam Oliver, “Stop Coronavirus in its Tracks by Using This Apple Watch App to Time Hand Washes”, Available Online at: <https://www.imore.com/stop-coronavirus-its-tracks-using-apple-watch-app-time-hand-washes>, Mar. 12, 2020, 12 pages. |
Liaqat et al., “Challenges with Real-World Smartwatch based Audio Monitoring”, WearSys'18, Munich, Germany, Available Online at: <https://doi.org/10.1145/3211960.3211977>, Jun. 10, 2018, 6 pages. |
Lyles Taylor, “Wear OS Smartwatches are Now Sending Reminders to Wash Your Hands”, Available Online at: <https://www.theverge.com/2020/4/14/21221294/google-wear-os-smartwatches-reminders-wash-your-hands>, Apr. 14, 2020, 2 pages. |
Peters Jay, “Samsung's Smartwatches Get a Hand-Washing Reminder and Timer App”, Available Online at: <https://www.theverge.com/2020/4/17/21225205/samsung-smartwatch-galaxy-active-hand-washing-timer-reminder-app>, Apr. 17, 2020, 2 pages. |
Schoon Ben, “Wear OS Now Sends a Reminder to Wash Your Hands Every Few Hours”, Available Online at: <https://9to5google.com/2020/04/14/wear-os-wash-hands-reminder-coronavirus/>, Apr. 14, 2020, 7 pages. |
Decision to Grant received for Danish Patent Application No. PA202070619, dated Aug. 11, 2022, 2 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/249,627, dated Aug. 22, 2022, 21 pages. |
Office Action received for Japanese Patent Application No. 2021-167557, dated Aug. 15, 2022, 5 pages (3 pages of English Translation and 2 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/041,415, dated Jun. 29, 2022, 2 pages. |
Office Action received for Chinese Patent Application No. 202010618240.3, dated May 25, 2022, 20 pages (11 pages of English Translation and 9 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 20203526.7, mailed on Jun. 23, 2022, 9 pages. |
Final Office Action received for U.S. Appl. No. 17/031,723, dated Jul. 12, 2022, 25 pages. |
Final Office Action received for U.S. Appl. No. 17/031,779, dated Jul. 14, 2022, 19 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,717, dated Jul. 7, 2022, 12 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20182116.2, mailed on Apr. 13, 2022, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/031,717, dated Apr. 15, 2022, 3 pages. |
Decision to Refuse received for European Patent Application No. 20180581.9, dated Apr. 13, 2022, 16 pages. |
Intention to Grant received for European Patent Application No. 20180592.6, dated Apr. 20, 2022, 21 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 20180581.9, mailed on Apr. 13, 2022, 10 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 20180592.6, mailed on Apr. 7, 2022, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/888,780, dated Apr. 20, 2022, 22 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020239692, dated Apr. 6, 2022, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-160023, dated Apr. 11, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2021-571467, dated Apr. 11, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/894,309, dated Apr. 8, 2022, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,723, dated Aug. 30, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,779, dated Aug. 29, 2022, 2 pages. |
Decision to Grant received for European Patent Application No. 20180592.6, dated Sep. 1, 2022, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 17/041,415, dated Aug. 31, 2022, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/317,084, dated Aug. 29, 2022, 10 pages. |
Office Action received for Korean Patent Application No. 10-2020-7033395, dated Aug. 29, 2022, 11 pages (4 pages of English Translation and 7 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/888,780, dated Aug. 2, 2022, 4 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/953,781, dated Jul. 26, 2022, 9 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-551585, dated Jul. 22, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2020-7023277, dated Jul. 18, 2022, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-0124134, dated Jul. 28, 2022, 22 pages (11 pages of English Translation and 11 pages of Official Copy). |
Intention to Grant received for European Patent Application No. 20182116.2, dated Jun. 2, 2022, 8 pages. |
Office Action received for Chinese Patent Application No. 202011220489.5, dated Apr. 25, 2022, 15 pages (9 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202111611270.2, dated May 10, 2022, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Corrected Notice of Allowance received for U.S. Appl. No. 17/031,717, dated May 19, 2022, 3 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 20182116.2, mailed on May 24, 2022, 7 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-7008569, dated May 19, 2022, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Advisory Action received for U.S. Appl. No. 17/031,779, dated Oct. 20, 2022, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 17/483,380, dated Apr. 26, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/249,627, dated Sep. 28, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/953,781, dated Oct. 31, 2022, 12 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/483,380, dated Aug. 29, 2022, 5 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20746438.9, mailed on Nov. 7, 2022, 1 page. |
Extended European Search Report received for European Patent Application No. 22190169.7, dated Nov. 23, 2022, 11 pages. |
Final Office Action received for U.S. Appl. No. 16/888,780, dated Nov. 25, 2022, 10 pages. |
Final Office Action received for U.S. Appl. No. 17/483,380, dated Jun. 2, 2022, 21 pages. |
Intention to Grant received for European Patent Application No. 20182116.2, dated Nov. 11, 2022, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/030491, dated Sep. 5, 2022, 15 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 19703582.7, dated Sep. 12, 2022, 3 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 20746438.9, dated Dec. 2, 2022, 4 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 20760607.0, dated Nov. 21, 2022, 3 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,723, dated Dec. 5, 2022, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/483,380, dated Feb. 2, 2022, 19 pages. |
Notice of Allowance received for Chinese Patent Application No. 202111611270.2, dated Sep. 21, 2022, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 16/953,781, dated Nov. 9, 2022, 7 pages. |
Office Action received for Australian Patent Application No. 2021261861, dated Oct. 14, 2022, 5 pages. |
Office Action received for Australian Patent Application No. 2021266294, dated Nov. 11, 2022, 3 pages. |
Office Action received for Chinese Patent Application No. 202010618240.3, dated Sep. 21, 2022, 16 pages (9 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202210004176.9, dated Sep. 28, 2022, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA202070395, dated Oct. 7, 2022, 4 pages. |
Office Action received for European Patent Application No. 20746438.9, dated Oct. 31, 2022, 7 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/041,415, dated Oct. 13, 2022, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/041,415, dated Sep. 20, 2022, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/317,084, dated Sep. 20, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,723, dated Jan. 23, 2023, 4 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20203526.7, mailed on Jan. 18, 2023, 1 page. |
Non-Final Office Action received for U.S. Appl. No. 16/249,627, dated Jan. 19, 2023, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/952,053, dated Jan. 12, 2023, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 17/317,084, dated Jan. 6, 2023, 6 pages. |
Office Action received for Australian Patent Application No. 2021261861, dated Jan. 12, 2023, 4 pages. |
Office Action received for Australian Patent Application No. 2022202459, dated Jan. 6, 2023, 3 pages. |
Office Action received for Chinese Patent Application No. 201910204981.4, dated Nov. 29, 2022, 14 pages (5 pages of English Translation and 9 pages of Official Copy). |
Office Action received for European Patent Application No. 19703582.7, dated Jan. 11, 2023, 11 pages. |
Office Action received for Korean Patent Application No. 10-2022-7036381, dated Jan. 6, 2023, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 20203526.7, dated Jan. 13, 2023, 3 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/317,084, dated Jan. 19, 2023, 2 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20203526.7, mailed on Dec. 23, 2022, 4 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2021/035227, dated Dec. 15, 2022, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2021/035504, dated Dec. 15, 2022, 8 pages. |
Office Action received for Australian Patent Application No. 2020313970, dated Dec. 22, 2022, 3 pages. |
Office Action received for Japanese Patent Application No. 2021-192437, dated Dec. 16, 2022, 4 pages (2 pages of English Translation and 2 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/249,627, dated Mar. 1, 2023, 4 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/337,147, dated Feb. 21, 2023, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/666,301, dated Feb. 16, 2023, 24 pages. |
Notice of Allowance received for U.S. Appl. No. 16/953,781, dated Feb. 27, 2023, 5 pages. |
Intention to Grant received for European Patent Application No. 20203526.7, dated Feb. 10, 2023, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/483,380, dated Feb. 9, 2023, 25 pages. |
Notice of Allowance received for Chinese Patent Application No. 202210238202.4, dated Jan. 13, 2023, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2021-167557, dated Jan. 27, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/031,779, dated Feb. 1, 2023, 11 pages. |
Office Action received for European Patent Application No. 20746438.9, dated Feb. 1, 2023, 9 pages. |
Office Action received for European Patent Application No. 20760607.0, dated Feb. 1, 2023, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 17/952,053, dated Apr. 17, 2023, 6 pages. |
Notice of Hearing received for Indian Patent Application No. 201617016494, mailed on Apr. 10, 2023, 2 pages. |
Office Action received for Chinese Patent Application No. 202210004176.9, dated Feb. 19, 2023, 23 pages (14 pages of English Translation and 9 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/666,301, dated Mar. 28, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/952,053, dated Apr. 5, 2023, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/953,781, dated Mar. 30, 2023, 2 pages. |
Decision to Grant received for European Patent Application No. 20182116.2, dated Mar. 23, 2023, 3 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/952,182, dated Mar. 28, 2023, 9 pages. |
Office Action received for Australian Patent Application No. 2020313970, dated Mar. 22, 2023, 4 pages. |
Office Action received for Australian Patent Application No. 2022202459, dated Mar. 27, 2023, 5 pages. |
Office Action received for Danish Patent Application No. PA202070395, dated Mar. 31, 2023, 3 pages. |
Office Action received for Japanese Patent Application No. 2022-502594, dated Mar. 20, 2023, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-0124134, dated Mar. 28, 2023, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2021/048568, dated Mar. 9, 2023, 11 pages. |
Nakasuji, Yoshito, “Apple Watch”, First Edition 1st Printing, Japan, Incorporated Company Technical Hyoronsha, Jun. 15, 2015, 4 pages (Official copy only) (See Communication under 37 CFR § 1.98(a) (3)). |
Notice of Acceptance received for Australian Patent Application No. 2021266294, dated Mar. 3, 2023, 3 pages. |
Office Action received for Australian Patent Application No. 2022201823, dated Mar. 9, 2023, 3 pages. |
Office Action received for Australian Patent Application No. 2022204568, dated Mar. 11, 2023, 4 pages. |
Office Action received for Japanese Patent Application No. 2022-022159, dated Feb. 20, 2023, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Advisory Action received for U.S. Appl. No. 17/483,380, dated Aug. 30, 2023, 4 pages. |
Advisory Action received for U.S. Appl. No. 17/952,133, dated Oct. 20, 2023, 7 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/249,627, dated Aug. 1, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/249,627, dated Nov. 21, 2023, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,723, dated Jun. 22, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,723, dated Oct. 31, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/483,380, dated Jul. 3, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/483,380, dated May 1, 2023, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/952,133, dated Jul. 3, 2023, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/031,779, dated Jun. 14, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/135,710, dated Aug. 18, 2023, 4 pages. |
Dabek et al., “A timeline-based framework for aggregating and summarizing electronic health records”, IEEE Workshop on Visual Analytics in Healthcare (VAHC), available online at: https://www.researchgate.net/publication/325833364_A_timeline-based_framework_for_aggregating_and_summarizing_electronic_health_records, 2017, 7 pages. |
Decision to Grant received for European Patent Application No. 19721883.7, dated Aug. 31, 2023, 4 pages. |
Decision to Grant received for European Patent Application No. 20203526.7, dated Jun. 22, 2023, 4 pages. |
Final Office Action received for U.S. Appl. No. 16/249,627, dated Jun. 30, 2023, 19 pages. |
Final Office Action received for U.S. Appl. No. 17/031,723, dated Oct. 4, 2023, 13 pages. |
Final Office Action received for U.S. Appl. No. 17/337,147, dated Oct. 31, 2023, 17 pages. |
Final Office Action received for U.S. Appl. No. 17/483,380, dated Jun. 6, 2023, 11 pages. |
Final Office Action received for U.S. Appl. No. 17/952,133, dated Sep. 26, 2023, 20 pages. |
Health Follow-Up with Wearable Medical Device, Vivago Move, XP93061915, Retrieved from the Internet: https://move.vivago.com/en/wearable-medical-devices/#:˜:text=Vivago%20MOVETM%20is%20developed,more%20personalized%20and%20timely%20care. [retrieved on Jul. 6, 2023], Jul. 31, 2021, 4 pages. |
Intention to Grant received for European Patent Application No. 19721883.7, dated May 11, 2023, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2023/017428, dated Jul. 14, 2023, 17 pages. |
Levy et al., “A good little tool to get to know yourself a bit better”, a qualitative study on users' experiences of app-supported menstrual tracking in Europe., In: BMC Public Health, vol. 19, 2019, pp. 1-11. |
Non-Final Office Action received for U.S. Appl. No. 16/249,627, dated Oct. 31, 2023, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/888,780, dated Aug. 17, 2023, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,723, dated Jun. 2, 2023, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/584,190, dated Oct. 5, 2023, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/952,133, dated Jun. 2, 2023, 28 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022201823, dated Sep. 26, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022202459, dated May 11, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022203508, dated Jun. 27, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022204568, dated Jul. 27, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2023212604, dated Oct. 12, 2023, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201910204981.4, dated Aug. 2, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2021-192437, dated May 19, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2022-022159, dated Aug. 10, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2022-078277, dated Oct. 27, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2022-078280, dated Sep. 4, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2022-7036381, dated Jul. 12, 2023, 7 pages (2 pages of English Translation and 5 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 17/031,779, dated May 26, 2023, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/135,710, dated Jul. 27, 2023, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/135,710, dated Nov. 6, 2023, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/483,380, dated Nov. 20, 2023, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 17/666,301, dated May 4, 2023, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 18/078,444, dated Aug. 31, 2023, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 18/078,444, dated May 12, 2023, 9 pages. |
Office Action received for Australian Patent Application No. 2021261861, dated May 3, 2023, 4 pages. |
Office Action received for Australian Patent Application No. 2021261861, dated Sep. 22, 2023, 5 pages. |
Office Action received for Australian Patent Application No. 2021283914, dated Sep. 25, 2023, 5 pages. |
Office Action received for Australian Patent Application No. 2022201823, dated Jun. 26, 2023, 6 pages. |
Office Action received for Australian Patent Application No. 2022203508, dated May 19, 2023, 2 pages. |
Office Action received for Australian Patent Application No. 2022204568, dated May 22, 2023, 4 pages. |
Office Action received for Australian Patent Application No. 2023203776, dated Nov. 7, 2023, 2 pages. |
Office Action received for Australian Patent Application No. 2023212604, dated Sep. 4, 2023, 3 pages. |
Office Action received for Chinese Patent Application No. 201910204981.4, dated Apr. 29, 2023, 12 pages (4 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202180053264.1, dated Sep. 23, 2023, 17 pages (9 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202210004176.9, dated Apr. 28, 2023, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Danish Patent Application No. PA202070395, dated Jul. 5, 2023, 6 pages. |
Office Action received for Danish Patent Application No. PA202070395, dated Nov. 3, 2023, 3 pages. |
Office Action received for European Patent Application No. 20746438.9, dated Jul. 4, 2023, 7 pages. |
Office Action received for European Patent Application No. 20746438.9, dated Oct. 31, 2023, 9 pages. |
Office Action received for European Patent Application No. 20751022.3, dated Oct. 19, 2023, 8 pages. |
Office Action received for European Patent Application No. 20753659.0, dated Oct. 26, 2023, 9 pages. |
Office Action received for European Patent Application No. 20760607.0, dated Aug. 17, 2023, 7 pages. |
Office Action received for German Patent Application No. 112020002566.7, dated Mar. 24, 2023, 32 pages (14 pages of English Translation and 18 pages of official Copy). |
Office Action received for Indian Patent Application No. 202215032692, dated Jun. 15, 2023, 3 pages. |
Office Action received for Japanese Patent Application No. 2022-078277, dated Jun. 9, 2023, 11 pages (6 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2022-078280, dated Jul. 24, 2023, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2022-131993, dated Sep. 15, 2023, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2020-0124134, dated Jun. 23, 2023, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2023-7034892, dated Nov. 8, 2023, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/666,301, dated Jun. 5, 2023, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/666,301, dated May 17, 2023, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 18/078,444, dated Jun. 15, 2023, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 18/078,444, dated Oct. 16, 2023, 4 pages. |
Vivago Mobile User Manual, XP093061914, retrieved from the Internet: https://vivago.studio.crasman.fi/pub/web/2016/materials/ladattavat+materiaalit/AEN0007-05_Vivago-MOBILE-User-Manual.pdf [retrieved on Jul. 6, 2023], Jul. 4, 2019, 38 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/888,780, dated Dec. 14, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/584,190, dated Dec. 4, 2023, 5 pages. |
Decision on Appeal received for Korean Patent Application No. 10-2020-0124134, mailed on Oct. 20. 2023, 24 pages (4 pages of English Translation and 20 pages of Official Copy). |
Hardwick, Tim, “AliveCor ‘Kardia Band’ Medical Grade EKG Analyzer for Apple Watch Receives FDA Approval”, MacRumors, Available online at: https://www.macrumors.com/2017/11/30/alivecor-kardia-ekg-band-medical-fda-apple-watch/, Nov. 30, 2017, 3 pages. |
Kardia By Alivecor, “How to Record a Clean EKG With Kardiaband”, Available Online at: https://www.youtube.com/watch?v=_Vlc9VE6VO4&t=2s, Nov. 30, 2017, 2 pages. |
Luo et al., “Detection and Prediction of Ovulation From Body Temperature Measured by an In-Ear Wearable Thermometer”, IEEE Transactions on Biomedical Engineering, Available online at: 10.1109/TBME.2019.2916823, vol. 67, No. 2, May 15, 2019, pp. 512-522. |
Notice of Allowance received for Korean Patent Application No. 10-2020-0124134, dated Nov. 21, 2023, 8 pages (2 pages of English Translation and 6 pages of Official Copy). |
Prasad et al., “Understanding Sharing Preferences and Behavior for Mhealth Devices”, Proceedings of the 2012 ACM workshop on Privacy in the electronic society, Available online at: https://dl.acm.org/doi/10.1145/2381966.2381983, Oct. 15, 2012, pp. 117-128. |
Notice of Allowance received for Japanese Patent Application No. 2022-502594, dated Jul. 7, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Acceptance received for Australian Patent Application No. 2020313970, dated Jun. 22, 2023, 3 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2022/030491, mailed on Dec. 21, 2023. |
Notice of Acceptance received for Australian Patent Application No. 2023203776, mailed on Dec. 12, 2023, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-131993, mailed on Dec. 18, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2022-7012608, mailed on Dec. 5, 2023, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Number | Date | Country | |
---|---|---|---|
20210020316 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62875448 | Jul 2019 | US |