The disclosure relates generally to a health system and method and in particular to a health lending system and method.
The problem of financial credit scoring is a very challenging and important financial analysis problem. The main challenge with the credit risk modeling and assessment is that the current models are riddled with uncertainty. The estimation of the probability of default (insolvency), modeling correlation structure for a group of connected borrowers and estimation of amount of correlation are the most important sources of uncertainty that can severely impair the quality of credit risk models.
Many techniques have already been proposed to tackle this problem, ranging from statistical classifiers to decision trees, nearest-neighbor methods and neural networks. Although the latter are powerful pattern recognition techniques, their use for practical problem solving (and credit scoring) is rather limited due to their intrinsic opaque, black box nature. The best known method in the industry is the Fair Isaac Corporation (FICO®) score. The FICO Score® is calculated from several different pieces of credit data in a credit report of a user. The data may be grouped into five categories as shown in
The FICO Score considers both positive and negative information in a credit report. For example, late payments will lower your FICO Score, but establishing or re-establishing a good track record of making payments on time will raise your score. There are several credit reporting companies that work in conjunction with each other, such as Equifax and Transunion to name but a few organizations. However these companies are not able to properly align themselves to a risk management model that matches health based loans. Specifically they do not know the demographics, the place of living, the occupation, the length of employment and dependents of the person. Further in the case of health based services and loans, the risk are increased due to the unhealthy nature of the consumer who is getting the health service and must pay back the loan.
The recent upsurge in health care costs has seen an increased interest in lending to consumers for health services. It is desirable to provide a system and method for determining a health credit score that models the risk of a health care loan to a consumer.
The disclosure is particularly applicable to a cloud based system and method for health lending using a health credit (“HICO”) score that may be generated from a probabilistic graph model and it is in this context that the disclosure will be described. It will be appreciated, however, that the system and method has greater utility since it may use other models in order to generate the HICO and may be implemented in different manners that those described below that would be within the scope of the disclosure. Although the health lending system is shown integrated with a health services system in the figures and descriptions below, the health lending system also may be a standalone system or integrated into other systems.
The health credit score (“HICO”) generated by the system and method described below has several factors that differentiate the HICO from the credit score described above. The HICO is a score that is a risk measure placed on all entities of a healthcare transaction in which a company that owns or operates the system may have an interest or a company that utilizes the HICO score for its risk assessment. Each entity may be a health service consumer, a health service provider or a health service payer. However, the system and method described herein may be used to perform a risk measure on various other entities that are part of the health services industry or space. For purposes of illustration below, the description below may consider the entity types described above and then consider the specific risk each entity poses as well as the data and models that may be used to generate the HICO.
The backend system 108 may have a health marketplace engine 110 and a health lending system 113 that may be coupled together. Each of these components of the backend system may be implemented using one or more computing resources, such as one or more server computers, one or more cloud computing resources and the like. In one embodiment, the health marketplace engine 110 and the health lending system 113 may each be implemented in software in which each has a plurality of lines of computer code that are executed by a processor of the one or more computing resources of the backend system. Thus, in that embodiment, the processor of the one or more computing resources of the backend system is configured to perform the operations and functions of the marketplace and health lending system as described below. In other embodiments, each of the health marketplace engine 110 and the health lending system 113 may be implemented in hardware such as a programmed logic device, a programmed processor or microcontroller and the like. The backend system 108 may be coupled to a store 114 that stores the various data and software modules that make up the healthcare system and the health lending system. The store 114 may be implemented as a hardware database system, a software database system or any other storage system.
The health marketplace engine 110 may allow practitioners that have joined the healthcare social community to reach potential clients in ways unimaginable even a few years ago. In addition to giving practitioners a social portal with which to communicate and market themselves with consumers, the marketplace gives each healthcare practitioner the ability to offer their services in an environment that is familiar to users of Groupon, Living Social, or other social marketplaces.
The health lending system, as described below, is a system that receives data about an entity involved in a health services transaction and then generates a risk measure for the entity involved in the health services transaction. In one embodiment, the risk measure may be in the form of a health credit score (“HICO”) that is a risk measure placed on all entities of a healthcare or health services transaction for a company that owns or operates the system may have an interest or a company that utilizes the HICO score for its risk assessment. Each entity may be a health service consumer, a health service provider or a health service payer. However, the system and method described herein may be used to perform a risk measure on various other entities that are part of the health services industry or space. In one embodiment, the risk measure may be based on a probabilistic graph model as described below.
Now, the health data input information for the health lending system is described in more detail. The health data input information may include one or more vectors of data that may be generated by an “Extract Transform and Load Process (ETL)” and accessible via the health system using Application Programmer Interfaces (APIs). An example of the data entities that may be used for the Probabilistic Graph structure(s) and the graph model engine 302 appear below. However, additional or other data vectors may be used and those other data vectors may be from other ETL processes. Thus, the example data vectors below are merely illustrative and the disclosure is directed to various different types of data vectors that may be used by the graph model engine.
Consumer Entity
In some embodiments, the health services system may be a hybrid bank/insurer in which the consumers present two possible risk profiles. Specifically, the health services system may provide consumers with traditional health insurance as well as lend them money to pay for health services.
Health Services Lending
In the context of lending money for health services (including health care procedures), the main risk is that the consumer defaults on the loan, thus the main metrics for determining default risk will probably be measures like the known FICO credit score, credit history, available assets (liquid and non-liquid), willingness and/or ability to back the loan by collateral, etc. The overall current FICO model for creditworthiness breaks down as follows:
Health Insurance
The setting of risk adjustment in terms of health insurance premiums is an extremely complicated and regulated (especially under the ACA) process. The system may also collect data on plan members that may not be a part of the usual risk models in exchange for lower premiums. These datasets could possibly include data from personal wearable devices (Fitbit, Jawbone, smartphone apps) that track lifestyle and biological measurements, as well as past medical records.
For health insurance lending, the health system may have the following information about each person who wants health insurance.
Insurance Information
Marketplace Interactions
Self Reported Health Statistics Via Wearable APIs
Financial Information
Social Network Interaction Data
Wearable API Data
Provider Entities
In addition to processing insurance claims for providers, the health lending system may also immediately pay providers for their services instead of them having to wait for the payer to process a claim and then the health lending system is reimbursed from the payer. The risk in immediately paying providers for services rendered is that either the price we pay the provider is more than the price that will be reimbursed by the payer or worse that the service is not covered at all by the consumer's insurance. An analysis of current trends shows that on average for both private insurance and Medicare, providers submit claims for higher than the allowed price with the mentality for providers to bill at the highest price and hope for the best. The application of the current system accurately predicts what a payer is actually going to pay for a given claim so that we can minimize the number of transactions where the amount we pay the provider is higher than the amount reimbursed by the payer.
The health lending system has various information about each provider including:
Provider Demographics (Age, Gender, Location)
Medical Education
Pricing
Ratings, Reviews, Recognitions
Claims Statistics
Payer Entities (Aka Insurance Carriers, Trading Partners)
In the situation where the health lending system immediately remit payment to a provider for a service, the health lending system then submits the claim to the payer to collect payment. Like with the providers, the main risk is in the amount reimbursed from the payer for a service and the length of time it takes for the reimbursement.
The health lending system has various information about each payer including (from the processing of X12 transactions):
Thus, for each of the above entities, the health lending system may assess or predict the risk associated with the transaction with each of the above entities. The risk prediction may be a mixture of the three scores based on a probability model.
As shown in
For a provider entity, the method may process provider information (examples of which are set forth above) via an API (406). When the health lending component 113 in
For a consumer entity, the method may process consumer information (examples of which are set forth above) (410). When the health lending component 113 in
As shown, one or more of the created Bayes graphs may be used in the method to create a health credit risk score ranking (414). When the health lending component 113 in
In the above method, a Bayesian network classifiers is used that provides the capacity of giving a clear insight into the structural relationships in the domain under investigation. In addition, as of late, Bayesian network classifiers have had success for financial credit scoring. In the method, a BeliefNetwork or a network of Bayes Nets which is also called a Probabilistic Graph Model (PGM) may be used.
The method uses probabilistic graphs for modeling and assessment of credit concentration risk based on health and medical behaviors as a function of the risk. The destructive power of credit concentrations essentially depends on the amount of correlation among borrowers. However, borrower company's correlation and concentration of credit risk exposures have been difficult for the banking industry to measure in an objective way as they are riddled with uncertainty. As a result, banks do not manage to make a quantitative link to the correlation driving risks and fail to prevent concentrations from accumulating. However, since the health lending system and method has the ability to exact health and medical behaviors tied to the consumer, the method creates BeliefNetworks that provide an attractive solution to the usual credit scoring problems, specifically within the health domain to show how to apply them in representing, quantifying and managing the uncertain knowledge in concentration of “health credits risk exposures”.
The method may use a stepwise Belief network model building scheme and the method may incorporate prior beliefs regarding the risk exposure of a group of related behavior such as office revisits and outcomes and then update these beliefs through the whole model with the new information as it is learned. The method may use a specific graph structure, BeliefNetwork network, and the model provides better understanding of the concentration risk accumulating due to strong direct or indirect business links between borrowers and lenders as a function of the health data that is used. The method also may use three model BeliefNetworks and the mutual information and construct a BeliefNetwork that is a reliable model that can be implemented to identify and control threat from concentration of credit exposures.
A Bayesian network (BN) represents a joint probability distribution over a set of discrete attributes. It is to be considered as a probabilistic white-box model consisting of a qualitative part specifying the conditional (inter)dependencies between the attributes and a quantitative part specifying the conditional probabilities of the data set attributes. Formally, a Bayesian network consists of two parts, B=<G, θ>, wherein a directed acyclic graph G consisting of nodes and arcs and one or more conditional probability tables θ=(θ×1, . . . θ×n). The nodes are the attribute X1 . . . Xn whereas the arcs indicate direct dependencies. The Bayesian network is essentially a statistical model that makes it feasible to compute the (joint) posterior probability distribution of any subset of unobserved stochastic variables, given that the variables in the complementary subset are observed.
The graph G then encodes the independence relationships of the domain. The network B represents the following joint probability distribution:
PB(X1 . . . Xn)=Πi=1nPb(Xi|ΠXi)=Πi=1nθXi|ΠXi (Equation 1)
This yields a Bayesian probabilistic graph structure that is familiar to those trained in the art.
Given this basic functionality, a baseline for discreet tractable variables is created where inference is exact. In our cases of the three probabilistic graph models (as shown in
In order to improve the performance of the models and graphs, for continuous variables such as pricing information, the method may utilize Markov chain Monte Carlo (MCMC hereafter) which samples directly from the posterior distributions. The method may also use the well known Metropolis-Hastings algorithm for Markov Chains. The Metropolis-Hastings algorithm was first adapted for structural learning of Bayesian and Markov Networks by Madigan and York. In the method; metropolis—Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. In our case of the Health Credit Score Models described above, the models are considered high dimensionality.
The BeliefNetworks building process for the provider network model and build process may use the following code example:
An example of the provider payer risk Bayes network in shown in
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the disclosure and its practical applications, to thereby enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as are suited to the particular use contemplated.
The system and method disclosed herein may be implemented via one or more components, systems, servers, appliances, other subcomponents, or distributed between such elements. When implemented as a system, such systems may include an/or involve, inter alia, components such as software modules, general-purpose CPU, RAM, etc. found in general-purpose computers. In implementations where the innovations reside on a server, such a server may include or involve components such as CPU, RAM, etc., such as those found in general-purpose computers.
Additionally, the system and method herein may be achieved via implementations with disparate or entirely different software, hardware and/or firmware components, beyond that set forth above. With regard to such other components (e.g., software, processing components, etc.) and/or computer-readable media associated with or embodying the present inventions, for example, aspects of the innovations herein may be implemented consistent with numerous general purpose or special purpose computing systems or configurations. Various exemplary computing systems, environments, and/or configurations that may be suitable for use with the innovations herein may include, but are not limited to: software or other components within or embodied on personal computers, servers or server computing devices such as routing/connectivity components, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, consumer electronic devices, network PCs, other existing computer platforms, distributed computing environments that include one or more of the above systems or devices, etc.
In some instances, aspects of the system and method may be achieved via or performed by logic and/or logic instructions including program modules, executed in association with such components or circuitry, for example. In general, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular instructions herein. The inventions may also be practiced in the context of distributed software, computer, or circuit settings where circuitry is connected via communication buses, circuitry or links. In distributed settings, control/instructions may occur from both local and remote computer storage media including memory storage devices.
The software, circuitry and components herein may also include and/or utilize one or more type of computer readable media. Computer readable media can be any available media that is resident on, associable with, or can be accessed by such circuits and/or computing components. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and can accessed by computing component. Communication media may comprise computer readable instructions, data structures, program modules and/or other components. Further, communication media may include wired media such as a wired network or direct-wired connection, however no media of any such type herein includes transitory media. Combinations of the any of the above are also included within the scope of computer readable media.
In the present description, the terms component, module, device, etc. may refer to any type of logical or functional software elements, circuits, blocks and/or processes that may be implemented in a variety of ways. For example, the functions of various circuits and/or blocks can be combined with one another into any other number of modules. Each module may even be implemented as a software program stored on a tangible memory (e.g., random access memory, read only memory, CD-ROM memory, hard disk drive, etc.) to be read by a central processing unit to implement the functions of the innovations herein. Or, the modules can comprise programming instructions transmitted to a general purpose computer or to processing/graphics hardware via a transmission carrier wave. Also, the modules can be implemented as hardware logic circuitry implementing the functions encompassed by the innovations herein. Finally, the modules can be implemented using special purpose instructions (SIMD instructions), field programmable logic arrays or any mix thereof which provides the desired level performance and cost.
As disclosed herein, features consistent with the disclosure may be implemented via computer-hardware, software and/or firmware. For example, the systems and methods disclosed herein may be embodied in various forms including, for example, a data processor, such as a computer that also includes a database, digital electronic circuitry, firmware, software, or in combinations of them. Further, while some of the disclosed implementations describe specific hardware components, systems and methods consistent with the innovations herein may be implemented with any combination of hardware, software and/or firmware. Moreover, the above-noted features and other aspects and principles of the innovations herein may be implemented in various environments. Such environments and related applications may be specially constructed for performing the various routines, processes and/or operations according to the invention or they may include a general-purpose computer or computing platform selectively activated or reconfigured by code to provide the necessary functionality. The processes disclosed herein are not inherently related to any particular computer, network, architecture, environment, or other apparatus, and may be implemented by a suitable combination of hardware, software, and/or firmware. For example, various general-purpose machines may be used with programs written in accordance with teachings of the invention, or it may be more convenient to construct a specialized apparatus or system to perform the required methods and techniques.
Aspects of the method and system described herein, such as the logic, may also be implemented as functionality programmed into any of a variety of circuitry, including programmable logic devices (“PLDs”), such as field programmable gate arrays (“FPGAs”), programmable array logic (“PAL”) devices, electrically programmable logic and memory devices and standard cell-based devices, as well as application specific integrated circuits. Some other possibilities for implementing aspects include: memory devices, microcontrollers with memory (such as EEPROM), embedded microprocessors, firmware, software, etc. Furthermore, aspects may be embodied in microprocessors having software-based circuit emulation, discrete logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and hybrids of any of the above device types. The underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS”), bipolar technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and so on.
It should also be noted that the various logic and/or functions disclosed herein may be enabled using any number of combinations of hardware, firmware, and/or as data and/or instructions embodied in various machine-readable or computer-readable media, in terms of their behavioral, register transfer, logic component, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor storage media) though again does not include transitory media. Unless the context clearly requires otherwise, throughout the description, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
Although certain presently preferred implementations of the invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various implementations shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the applicable rules of law.
While the foregoing has been with reference to a particular embodiment of the disclosure, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.
This application claims the benefit under 35 USC 119(e) and priority under 35 USC 120 to U.S. Provisional Patent Application Ser. No. 62/105,503, filed on Jan. 20, 2015, and entitled “Health Lending System and Method Using Probabilistic Graph Models”, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5872021 | Matsumoto et al. | Feb 1999 | A |
6546428 | Baber et al. | Apr 2003 | B2 |
7386565 | Singh et al. | Jun 2008 | B1 |
7917378 | Fitzgerald et al. | Mar 2011 | B2 |
7917515 | Lemoine | Mar 2011 | B1 |
7970802 | Ishizaki | Jun 2011 | B2 |
7992153 | Ban | Aug 2011 | B2 |
8073801 | Von Halle et al. | Dec 2011 | B1 |
8095975 | Boss et al. | Jan 2012 | B2 |
8103667 | Azar et al. | Jan 2012 | B2 |
8103952 | Hopp | Jan 2012 | B2 |
8203562 | Alben et al. | Jun 2012 | B1 |
8229808 | Heit | Jul 2012 | B1 |
8286191 | Amini et al. | Oct 2012 | B2 |
8359298 | Schacher et al. | Jan 2013 | B2 |
8364501 | Rana et al. | Jan 2013 | B2 |
8417755 | Zimmer | Apr 2013 | B1 |
8495108 | Nagpal et al. | Jul 2013 | B2 |
8515777 | Rajasenan | Aug 2013 | B1 |
8817665 | Thubert et al. | Aug 2014 | B2 |
8984464 | Mihal et al. | Mar 2015 | B1 |
9165045 | Mok et al. | Oct 2015 | B2 |
9208284 | Douglass | Dec 2015 | B1 |
20020022973 | Sun et al. | Feb 2002 | A1 |
20020038233 | Shubov et al. | Mar 2002 | A1 |
20020165738 | Dang | Nov 2002 | A1 |
20030055668 | Saran et al. | Mar 2003 | A1 |
20030097359 | Ruediger | May 2003 | A1 |
20030171953 | Narayanan et al. | Sep 2003 | A1 |
20030217159 | Schramm-Apple et al. | Nov 2003 | A1 |
20030233252 | Haskell et al. | Dec 2003 | A1 |
20040143446 | Lawrence | Jul 2004 | A1 |
20050010452 | Lusen | Jan 2005 | A1 |
20050071189 | Blake et al. | Mar 2005 | A1 |
20050102170 | Lefever et al. | May 2005 | A1 |
20050137912 | Rao et al. | Jun 2005 | A1 |
20050152520 | Logue | Jul 2005 | A1 |
20050182780 | Forman et al. | Aug 2005 | A1 |
20050222912 | Chambers | Oct 2005 | A1 |
20060036478 | Aleynikov et al. | Feb 2006 | A1 |
20060074290 | Chen et al. | Apr 2006 | A1 |
20060089862 | Anandarao et al. | Apr 2006 | A1 |
20060129428 | Wennberg | Jun 2006 | A1 |
20060136264 | Eaton et al. | Jun 2006 | A1 |
20070113172 | Behrens et al. | May 2007 | A1 |
20070118399 | Avinash et al. | May 2007 | A1 |
20070156455 | Tarino et al. | Jul 2007 | A1 |
20070174101 | Li et al. | Jul 2007 | A1 |
20070180451 | Ryan et al. | Aug 2007 | A1 |
20070214133 | Liberty et al. | Sep 2007 | A1 |
20070233603 | Schmidgall et al. | Oct 2007 | A1 |
20070260492 | Feied et al. | Nov 2007 | A1 |
20070276858 | Cushman et al. | Nov 2007 | A1 |
20070288262 | Sakaue | Dec 2007 | A1 |
20080013808 | Russo et al. | Jan 2008 | A1 |
20080082980 | Nessland et al. | Apr 2008 | A1 |
20080091592 | Blackburn | Apr 2008 | A1 |
20080126264 | Tellefsen et al. | May 2008 | A1 |
20080133436 | Di Profio | Jun 2008 | A1 |
20080288292 | Bi et al. | Nov 2008 | A1 |
20080295094 | Korupolu et al. | Nov 2008 | A1 |
20080319983 | Meadows | Dec 2008 | A1 |
20090083664 | Bay | Mar 2009 | A1 |
20090125796 | Day et al. | May 2009 | A1 |
20090192864 | Song et al. | Jul 2009 | A1 |
20090198520 | Piovanetti-Perez | Aug 2009 | A1 |
20090300054 | Fisher et al. | Dec 2009 | A1 |
20090307104 | Weng | Dec 2009 | A1 |
20090313045 | Boyce | Dec 2009 | A1 |
20100076950 | Kenedy et al. | Mar 2010 | A1 |
20100082620 | Jennings, III et al. | Apr 2010 | A1 |
20100088108 | Machado | Apr 2010 | A1 |
20100088119 | Tipirneni | Apr 2010 | A1 |
20100138243 | Carroll | Jun 2010 | A1 |
20100217973 | Kress et al. | Aug 2010 | A1 |
20100228721 | Mok et al. | Sep 2010 | A1 |
20100295674 | Hsieh et al. | Nov 2010 | A1 |
20100332273 | Balasubramanian et al. | Dec 2010 | A1 |
20110015947 | Erry et al. | Jan 2011 | A1 |
20110055252 | Kapochunas et al. | Mar 2011 | A1 |
20110071857 | Malov et al. | Mar 2011 | A1 |
20110137672 | Adams | Jun 2011 | A1 |
20110218827 | Kennefick et al. | Sep 2011 | A1 |
20110270625 | Pederson et al. | Nov 2011 | A1 |
20120011029 | Thomas et al. | Jan 2012 | A1 |
20120035984 | Srinivasa et al. | Feb 2012 | A1 |
20120078940 | Kolluri et al. | Mar 2012 | A1 |
20120130736 | Dunston et al. | May 2012 | A1 |
20120158429 | Murawski et al. | Jun 2012 | A1 |
20120158750 | Faulkner et al. | Jun 2012 | A1 |
20120173279 | Nessa et al. | Jul 2012 | A1 |
20120245958 | Lawrence et al. | Sep 2012 | A1 |
20120246727 | Elovici et al. | Sep 2012 | A1 |
20120290320 | Kurgan et al. | Nov 2012 | A1 |
20120290564 | Mok et al. | Nov 2012 | A1 |
20130030827 | Snyder et al. | Jan 2013 | A1 |
20130044749 | Eisner et al. | Feb 2013 | A1 |
20130085769 | Jost et al. | Apr 2013 | A1 |
20130138554 | Nikankin | May 2013 | A1 |
20130166552 | Rozenwald et al. | Jun 2013 | A1 |
20130204940 | Kinsel et al. | Aug 2013 | A1 |
20130304903 | Mick et al. | Nov 2013 | A1 |
20140046931 | Mok et al. | Feb 2014 | A1 |
20140056243 | Pelletier et al. | Feb 2014 | A1 |
20140059084 | Adams et al. | Feb 2014 | A1 |
20140088981 | Momita | Mar 2014 | A1 |
20140136233 | Atkinson et al. | May 2014 | A1 |
20140222482 | Gautam et al. | Aug 2014 | A1 |
20140244300 | Bess et al. | Aug 2014 | A1 |
20140278491 | Weiss | Sep 2014 | A1 |
20140358578 | Ptachcinski | Dec 2014 | A1 |
20140358845 | Mundlapudi et al. | Dec 2014 | A1 |
20150095056 | Ryan et al. | Apr 2015 | A1 |
20150112696 | Kharraz Tavakol | Apr 2015 | A1 |
20150142464 | Rusin et al. | May 2015 | A1 |
20150199482 | Corbin et al. | Jul 2015 | A1 |
20150332283 | Witchey | Nov 2015 | A1 |
20160028552 | Spanos et al. | Jan 2016 | A1 |
20160055205 | Jonathan et al. | Feb 2016 | A1 |
20160253679 | Venkatraman et al. | Sep 2016 | A1 |
20160328641 | Alsaud et al. | Nov 2016 | A1 |
20170091397 | Shah et al. | Mar 2017 | A1 |
20170132621 | Miller et al. | May 2017 | A1 |
20170351821 | Tanner et al. | Dec 2017 | A1 |
20170372300 | Dunlevy et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2478440 | Oct 2013 | GB |
WO2012122065 | Sep 2012 | WO |
Entry |
---|
Lin et al., A simplicial complex, a hypergraph, structure in the latent semantic space of document clustering, © Elsevier, 2005 (26 pgs.). |
PCT/US16/14117, International Search Report dated Mar. 31, 2016 (2 pgs.). |
PCT/US16/14117, Written Opinion dated Mar. 31, 2016 (6 pgs.). |
Ahlswede et al., Network Information Flow, IEEE Transactions on Information Theory, vol. 46, No. 4; Jul. 2000 (13 pgs.). |
Bhattacharya, Indrajit and Getoor, Lise, Entity Resolution in Graphs, Department of Computer Science, University of Maryland (2005) (21 pgs.). |
Chen et al., Adaptive Graphical Approach to Entity Resolution, Jun. 18-23, 2007, Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 204-213 (10 pgs.). |
Christen, Data Matching, Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection, © Springer-Verlag Berlin Heidelberg, 2012 (279 pgs.). |
Cohen et al., A Comparison of String Metrics for Matching Names and Records, © 2003, American Association for Artificial Intelligence (www.aaai.org) (6 pgs.). |
Coleman et al., Medical Innovation—a diffusion study; The Bobbs-Merrill Company, Inc., 1966 (248 pgs.). |
Domingos et al., Mining High-Speed Data Streams, (2000) (10 pgs.). |
Greenhalgh et al., Diffusion of Innovations in Health Service Organisations—a systematic literature review, Blackwell Publishing, 2005 (325 pgs.). |
Jackson et al., The Evolution of Social and Economic Networks, Journal of Economic Theory 106, pp. 265-295, 2002 (31 pgs.). |
Jackson, Matthew O., Social and Economic Networks, Princeton University Press, 2008 (509 pgs.). |
Krempl et al., Open Challenges for Data Stream Mining Research, SIGKDD Explorations, vol. 16, Issue 1, Jun. 2014 (64 pgs.). |
Rebuge, Business Process Analysis in Healthcare Environments, 2011, Ellsevier Ltd., pp. 99-116 (18 pgs.). |
Wasserman et al., Social Network Analysis: Methods and Applications, Cambridge University Press; 1994 (434 pgs.). |
White et al., Algorithms for Estimating Relative Importance in Networks, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003 (10 pgs.). |
(MATHJAX), Naive Bayes Categorisation (with some help from Elasticsearch), blog post dated Dec. 29, 2013 (https://blog.wtf.sg/2013/12/29/naive-bayes-categorisation-with-some-help-from-elasticsearch/). (8 pgs.). |
Webpage: New Health Care Electronic Transactions Standards Versions 5010, D.0, and 3.0, Jan. 2010 ICN 903192; http://www.cms.gov/Regulations-and-Guidance/HIPAA-Adminstrative-Simplification/Versions5010and D0/downloads/w5010BasicsFctCht.pdf (4 pgs.). |
Webpage: U.S. Dept. of Health and Human Services, Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule, http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/De-identification/guidance.html printed Oct. 15, 2015 (14 pgs.). |
Anonymous: “Oauth—Wikipedia”, Sep. 23, 2013. Retrieved from the Internet URL:https://en.wikipedia.org/w/index.php?title+oAuth&oldid+574187532. |
Anonymous: “Oauth” Wikipedia—Retrieved from the Internet URL:https://en.wikipedia.org/wiki/Oauth (8 pgs.). |
Version 5010 and D.O, Center for Medicare & Medicaid Services (2 pgs). |
Number | Date | Country | |
---|---|---|---|
20160210423 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
62105503 | Jan 2015 | US |