Healthy building dashboard facilitated by hierarchical model of building control assets

Information

  • Patent Grant
  • 11815865
  • Patent Number
    11,815,865
  • Date Filed
    Friday, February 17, 2023
    a year ago
  • Date Issued
    Tuesday, November 14, 2023
    a year ago
Abstract
A spatial hierarchical model provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model. A method includes identifying non-compliance events detected by building control assets disposed at and below a particular hierarchical level of the spatial hierarchical model. The non-compliance events detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model over a period of time are aggregated and a healthy building dashboard that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model is generated and is displayed on a display.
Description
TECHNICAL FIELD

The present disclosure relates generally to displaying a healthy building dashboard. More particularly, the present disclosure relates to displaying a healthy building dashboard enabled by a hierarchal model of building control assets.


BACKGROUND

Building control systems can include a large number of control assets that are divided between parts of a building or other facility, between different buildings or facilities within a region, and/or between different geographic regions in which a particular enterprise has ongoing operations. The building control assets may be used to gather healthy building data across the building control system. However, presenting such healthy building data to a user in an intuitive way can be a challenge.


SUMMARY

The present disclosure relates to presenting healthy building data in a healthy building dashboard format that provides insight into overall compliance with healthy building guidelines as well as insight as to sources of non-compliance using a spatial hierarchal model. In one example, a method provides for monitoring compliance with healthy building guidelines within a spatial hierarchal model that provides spatial context to a plurality of building control assets that are disposed within a plurality of hierarchal levels of the spatial hierarchal model. The healthy building guidelines are based at least in part on one or more healthy building criteria. The illustrative method includes allowing a user to select a particular hierarchical level of the spatial hierarchical model. Non-compliance events that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model are identified. The non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model are aggregated. A healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model. The healthy building dashboard is displayed on a display. A user is allowed to select a different hierarchical level of the spatial hierarchical model. Non-compliance events are identified that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model. The non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model are aggregated. An updated healthy building dashboard that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model is generated and is displayed on a display.


Another example is a method of monitoring compliance with healthy building criteria within a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model. The method includes identifying non-compliance events that are non-compliant with one or more of the healthy building criteria of healthy building guidelines detected by building control assets disposed at and below a particular hierarchical level of the spatial hierarchical model. The non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model over a period of time are aggregated and a healthy building dashboard that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model is generated and is displayed on a display.


Another example is a method of monitoring compliance with healthy building criteria within a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model, at least some of the plurality of building control assets including video cameras. The method includes allowing a user to select a particular hierarchical level of the spatial hierarchical model and to obtain video streams over a period of time from video cameras disposed at or below the particular hierarchical level of the spatial hierarchical model. Video analytics are performed on the video streams over the period of time in order to identify non-compliance events that are non-compliant with one or more of the healthy building criteria of healthy building guidelines. The non-compliance events for each of the one or more of the healthy building criteria detected by the video cameras disposed at and below the particular hierarchical level of the spatial hierarchical model are aggregated. A healthy building dashboard that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by the video cameras disposed at and below the particular hierarchical level of the spatial hierarchical model is generated and is displayed.


The preceding summary is provided to facilitate an understanding of some of the innovative features unique to the present disclosure and is not intended to be a full description. A full appreciation of the disclosure can be gained by taking the entire specification, claims, figures, and abstract as a whole.





BRIEF DESCRIPTION OF THE FIGURES

The disclosure may be more completely understood in consideration of the following description of various examples in connection with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of an illustrative system for organizing and monitoring a variety of control assets;



FIG. 2 is a schematic block diagram of an illustrative monitoring system;



FIG. 3 is a schematic diagram of an illustrative spatial hierarchical model;



FIG. 4 is a flow diagram showing an illustrative method;



FIG. 5 is a flow diagram showing an illustrative method;



FIG. 6 is a flow diagram showing an illustrative method;



FIG. 7 is a flow diagram showing an illustrative method;



FIGS. 8A and 8B are flow diagrams that together show an illustrative method;



FIGS. 9A and 9B are flow diagrams that together show an illustrative method;



FIGS. 10A and 10B are flow diagrams that together show an illustrative method;



FIG. 11 is a flow diagram showing an illustrative method;



FIG. 12 is a flow diagram showing an illustrative method;



FIGS. 13 through 18 are screen shots showing an example method of creating a spatial hierarchical model;



FIG. 19 is a screen shot showing an example method of assigning an asset to a particular level of the spatial hierarchical model created in FIGS. 13 through 18;



FIGS. 20 and 21 are screen shots showing an example method of assigning a tag to a particular feature of the spatial hierarchical model created in FIGS. 13 through 18;



FIG. 22 is a screen shot showing the spatial hierarchy model created in FIGS. 13 through 18 displayed in a tabular format;



FIG. 23 is a screen shot showing an alternate way of forming a spatial hierarchy model;



FIG. 24 is a screen shot showing an illustrative healthy building dashboard; and



FIG. 25 is a screen shot showing an illustrative healthy building dashboard.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular examples described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict examples that are not intended to limit the scope of the disclosure. Although examples are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.


All numbers are herein assumed to be modified by the term “about”, unless the content clearly dictates otherwise. The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include the plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is contemplated that the feature, structure, or characteristic may be applied to other embodiments whether or not explicitly described unless clearly stated to the contrary.



FIG. 1 is a schematic block diagram of an illustrative system 10 for organizing and monitoring a variety of control assets. The illustrative system 10 includes a number of groups of assets 12, individually labeled as 12a, 12b and through 12n. A particular group of assets 12 may, for example, include at least some of the assets within a building or a portion of a building such as a wing of a building, or perhaps a particular floor of the building. A particular group of assets 12 may include at least some of the assets within two or more buildings that are grouped within a geographical region. A particular group of assets 12 may include at least some of the assets that are grouped within two or more different geographic regions within an enterprise such as a business. The assets may be grouped differently than shown. These are just examples.


The system 10 may include any number of groups of assets 12. Each group of assets 12 may include any of a variety of different assets. Examples of assets include but are not limited to devices such as cameras and access control devices, door alarms, window alarms and the like. Assets may include a variety of different types of sensors, such as but not limited to temperature sensors, humidity sensors, occupancy sensors, lighting sensors and the like. In some cases, the assets included within each of the groups of assets 12 may include Heating, Ventilating and Air Conditioning (HVAC) system components such as heating sources and cooling sources. In some cases, at least some of the assets within one or more of the groups of assets 12 may include environmental sensors such as but not limited to air temperature (both indoor and outdoor), air humidity (both indoor and outdoor), CO (carbon monoxide) sensors, CO2 (carbon dioxide) sensors, NOx (nitric acid) sensors, TVOC (total volatile organic compounds) sensors and the like. In some cases, the assets included within each of the groups of assets 12 may include industrial and/or manufacturing process control assets. These are just examples.


The illustrative system 10 may include a number of monitoring systems 14, individually labeled as 14a, 14b and through 14n. In some cases, a particular monitoring system 14 may be operably coupled with at least some of the assets within a particular group of assets 12, and may receive operational and/or other information from at least some of the assets within the particular group of assets 12. A particular monitoring system 14 may provide operational instructions to at least some of the assets within the particular group of assets 12. While FIG. 1 shows one monitoring system 14 coupled to one group of assets 12, it will be appreciated that this is merely illustrative. In some cases, one monitoring system 14 may be operationally coupled with two or more different groups of assets 12. One group of assets 12 may, for example, be operationally coupled with two or more different monitoring systems 14.


The monitoring systems 14 are shown as being operationally coupled with a cloud-based server 16. The cloud-based server 16 may represent one or more distinct computing sources such as one or more servers. In some cases, each of the monitoring systems 14 may receive operational instructions from the cloud-based server 16, and the monitoring systems 14 may pass those operational instructions or translations thereof down to the appropriate assets within the groups of assets 12. The monitoring systems 14 may pass operational data from assets within the groups of assets 12 up to the cloud-based server 16. While each of the monitoring systems 14 are shown as being distinct from both the cloud-based server 16 and their corresponding group of assets 12, it is contemplated that at least some of the functions of at least some of the monitoring systems 14 may be manifested within the cloud-based server 16. In some cases, at least some of the functions of at least some of the monitoring systems 14 may be manifested within one or more of the assets within the groups of assets 12. In some cases, the monitoring systems 14 may be implemented at least in part by an edge controller, such as an edge gateway or the like.


The cloud-based server 16 may be configured to monitor performance of the assets within the groups of assets 12. This may include any of a variety of different Industrial Internet of Things (IIOT) systems. This can include monitoring performance of security-related assets, including detecting alarms. Some alarms may be legitimate, while others may be false alarms that can be canceled once investigated. Alternatively, or in addition, this can include monitoring performance of HVAC, lighting, fire suppression, and/or industrial and/or manufacturing control systems. In some cases, the cloud-based server 16 may be configured to monitor or track various healthy building-related criterial that can be used to ascertain how well a facility or a portion of a facility, facilities within a geographic region and/or facilities within each of a number of geographic regions under the umbrella of a company are performing with respect to meeting healthy building guidelines.


In some cases, the cloud-based server 16 may be configured to organize the assets within the groups of assets 12 into a spatial hierarchical model that provides spatial context to the assets. This spatial hierarchical model can be helpful in being able to monitor and track assets at various hierarchical levels in the spatial hierarchical model, as will be discussed further herein.



FIG. 2 is a schematic block diagram of an illustrative monitoring system 18. The monitoring system 18 may be considered as being an example of the monitoring systems 14. The monitoring system 18 is configured to monitor and/or control a plurality of building control assets 20, individually labeled as 20a, 20b and through 20n. The building control assets 20 may be considered as being examples of the assets within the groups of assets 12. The monitoring system 18 may include an input/output 22 that is operably coupled to the plurality of building control assets 20. The input/output 22 may include one or more ports that are configured to send instructions and other data to each of the plurality of building control assets 20 and/or to receive information from each of the plurality of building control assets 20. In the example shown, the monitoring system 18 includes a display 24 and a processor 26 that is operatively coupled to the input/output 22 and to the display 24. While one processor 26 is shown, it will be appreciated that the processor 26 may represent two or more distinct processors within the monitoring system 18.


The processor 26 is configured to display one or more screens on the display 24 that allow a user to add and name each of one or more first level spaces at a first level of a spatial hierarchical model. The processor 26 is configured to display one or more screens on the display 24 that allow the user to select a selected one of the first level spaces of the spatial hierarchical model and add and name each of one or more child level spaces that are spatially part of the selected first level space at a second level of the spatial hierarchical model. The processor 26 is configured to display a graphical representation of one or more of the first level spaces and one or more corresponding child level spaces as well as to display a listing of at least some of the plurality of building control assets operatively coupled to the input/output. The processor 26 may be configured to accept user input to assign selected building control assets 20 from the listing of at least some of the plurality of building control assets 20 to a selected child level space and to accept user input to monitor and/or control at least some of the plurality of building control assets 20 using the spatial hierarchical model. In some cases, accepting user input to assign selected building control assets 20 from the listing of at least some of the plurality of building control assets 20 to the selected child level space comprises dragging and dropping selected building control assets from the listing of at least some of the plurality of building control assets 20 to the selected child level space. An particular example of such a system is shown and described with respect to FIGS. 13-19.


Reference has been made to hierarchical levels within a spatial hierarchical model. FIG. 3 is a schematic illustration of an illustrative spatial hierarchical model 30. It will be appreciated that the illustrative spatial hierarchical model 30 is highly schematic, as an actual spatial hierarchical model, even for a portion of a building, would likely include additional hierarchical levels relative to what is shown here, and at least some of the hierarchical levels may include a substantially greater number of assets located within those hierarchical levels. As illustrated, the spatial hierarchical model 30 may include a parent hierarchical level object 32. There may be additional higher level hierarchical level objects (not illustrated) above the parent hierarchical level object 32, if desired. Under the parent hierarchical level object 32, as indicated by relative indentation, are two child hierarchical level objects 34 and 36. In this example, the parent hierarchical level object 32 may refer to a campus of a company, and the two child hierarchical level objects 34 and 36 may each refer to specific building within that campus. In another example, the parent hierarchical level object 32 may refer to a company having operations within two geographic regions (east and west), and each of the child hierarchical level objects 34 and 36 refer to one of those two geographic regions within the company represented by the parent hierarchical level object 32. These are just examples.


The spatial hierarchical model 30, as shown, also includes grandchild hierarchical level objects 38 and 40. The grandchild hierarchical level object 38 and the grandchild hierarchical level object 40 are both at the same organizational level, and are both children of child hierarchical level object 36. In the previous example, if the child hierarchical level object 36 represents a geographic region, the grandchild hierarchical level object 38 and 40 may each represent particular buildings within the geographic region represented by the child hierarchical level object 36. Continuing with this example, it is contemplated that the spatial hierarchical model 30 may include a number of great grandchild hierarchical level objects below, for example, the grandchild hierarchical level object 38 that each represent a particular zone or space within the particular building represented by the grandchild hierarchical level object 38. This is just an example. It is contemplated that the spatial hierarchical model 30 may have any suitable number of hierarchical levels, depending on the application.


A number of assets have been placed within the spatial hierarchical model 30. In particular, an asset 34a and an asset 34b have been placed within the child hierarchical level object 34. Similarly, an asset 36a and an asset 36b have been placed within the child hierarchical level object 36. An asset 38a and an asset 38b have been placed within the grandchild hierarchical level object 38. An asset 40a and an asset 40b have been placed within the grandchild hierarchical level object 40. While only two assets are shown in each hierarchical level, it will be appreciated that each hierarchical level object 32, 34, 36, 38, 40 may include any number of assets, and depending on what a particular hierarchical level object 32, 34, 36, 38, 40 represents, may include a substantially greater number of assets.


An asset may be considered as belong to a hierarchical level object that it is assigned to, as well as to higher level hierarchical level objects (e.g. parent and grandparent hierarchical level object). For example, the asset 38a may be considered as belonging to the grandchild hierarchical level object 38, and also the child hierarchical level object 36 and the parent hierarchical level object 32. It will be appreciated that within the context of monitoring healthy building performance across any of a number of buildings, other facilities, geographic regions and even companies, the spatial hierarchical model 30 facilitates being able to compile and track aggregated data while also permitting easily drilling down to a lower hierarchical level objects in the model, and the particular assets at (and below) that lower hierarchical level objects in order to better ascertain performance with respect to healthy building guidelines.



FIG. 4 is a flow diagram showing an illustrative method 50 of building a spatial hierarchical model (such as the spatial hierarchical model 30) of a plurality of building control assets (such as the building control assets 20), the spatial hierarchical model configured to provide spatial context of the plurality of building control assets to an operator when the operator is monitoring and/or controlling the plurality of building control assets. In some cases, at least some of the plurality of building control assets include video cameras. In some instances, at least some of the plurality of building control asserts include HVAC system assets. These are just examples.


The method 50 includes accepting user input via one or more screens to add and name each of one or more first level spaces at a first level of the spatial hierarchical model, as indicated at block 52. In some cases, accepting user input via one or more screens to add and name each of one or more first level spaces at the first level of the spatial hierarchical model may include accepting a selection of an add new space icon, displaying a pop-up menu in response to the selection of the add new space icon, and accepting a name for at least one of the one or more first level spaces. The word “space” here may be considered to be a generic term, and may refer to any of the hierarchical level objects referenced in FIG. 3. For example, the spaces may correspond to a region, a campus, a building and/or a space/zone within a building, to name a few.


User input is accepted via one or more screens to select a selected one of the first level spaces of the spatial hierarchical model and add and name each of one or more child level spaces that are spatially part of the selected first level space at a second level of the spatial hierarchical model, as indicated at block 54. In some cases, accepting user input via one or more screens to select the selected one of the first level spaces of the spatial hierarchical model and add and name each of one or more child level spaces that are spatially part of the selected first level space at the second level of the spatial hierarchical model may include accepting a selection of the selected one of the first level spaces, accepting a selection of an add new space icon, displaying a pop-up menu in response to the selection of the add new space icon, and accepting a name for at least one of the one or more child level spaces. A graphical representation of one or more of the first level spaces and one or more corresponding child level spaces is displayed, as indicated at block 56.


In the example shown, a listing of at least some of the plurality of building control assets is displayed, as indicated at block 58. User input is accepted to assign selected building control assets from the listing of at least some of the plurality of building control assets to a selected child level space, as indicated at block 60. In some instances, accepting user input to assign selected building control asserts to the selected child level may include dragging and dropping selected building control asserts from the listing of at least some of the plurality of building control asserts to the selected child level space. In some cases, the displayed listing of at least some of the plurality of building control assets may include building control assets that are already connected and visible on a building control network that is to be monitored and/or controlled using the spatial hierarchical model. In some cases, the displayed listing of at least some of the plurality of building control assets may include building control assets that are not yet connected and visible on the building control network that is to be monitored and/or controlled using the spatial hierarchical model. Displaying the list of at least some of the plurality of building control asserts may include filtering the plurality of building control asserts using filter criteria and displaying only the building control assets that meet the filter criteria. In some cases, the method 50 may include deploying the spatial hierarchical model, as indicated at block 62. The method 50 may include monitoring and/or controlling at least some of the plurality of building control assets using the deployed spatial hierarchical model, as indicated at block 64.



FIG. 5 is a flow diagram showing an illustrative method 70 of building a spatial hierarchical model (such as the spatial hierarchical model 30) of a plurality of building control assets (such as the building control assets 20), the spatial hierarchical model configured to provide spatial context of the plurality of building control assets to an operator when the operator is monitoring and/or controlling the plurality of building control assets. In some cases, at least some of the plurality of building control assets include video cameras. In some instances, at least some of the plurality of building control asserts include HVAC system assets. These are just examples. The illustrative method 70 includes accepting user input via one or more screens to add and name each of one or more first level spaces at a first level of the spatial hierarchical model, as indicated at block 72. In some cases, accepting user input via one or more screens to add and name each of one or more first level spaces at the first level of the spatial hierarchical model may include accepting a selection of an add new space icon, displaying a pop-up menu in response to the selection of the add new space icon, and accepting a name for at least one of the one or more first level spaces.


User input is accepted via one or more screens to select a selected one of the first level spaces of the spatial hierarchical model and add and name each of one or more child level spaces that are spatially part of the selected first level space at a second level of the spatial hierarchical model, as indicated at block 74. In some cases, accepting user input via one or more screens to select the selected one of the first level spaces of the spatial hierarchical model and add and name each of one or more child level spaces that are spatially part of the selected first level space at the second level of the spatial hierarchical model may include accepting a selection of the selected one of the first level spaces, accepting a selection of an add new space icon, displaying a pop-up menu in response to the selection of the add new space icon, and accepting a name for at least one of the one or more child level spaces. A graphical representation of one or more of the first level spaces and one or more corresponding child level spaces is displayed, as indicated at block 76.


In the example shown, a listing of at least some of the plurality of building control assets is displayed, as indicated at block 78. An indication of which of the plurality of building control assets have not yet been assigned may be displayed, as indicated at block 80. In some cases, the unassigned building control assets may be displayed in a different color, for example, or may be bolded relative to how the assigned building control assets are displayed. In some cases, only unassigned building control assets are displayed, while those that have already been assigned are not displayed in the listing.


User input is accepted to assign selected building control assets from the listing of at least some of the plurality of building control assets to a selected child level space, as indicated at block 82. In some instances, accepting user input to assign selected building control asserts to the selected child level may include dragging and dropping selected building control asserts from the listing of at least some of the plurality of building control asserts to the selected child level space. The displayed listing of at least some of the plurality of building control assets may include building control assets that are already connected and visible on a building control network that is to be monitored and/or controlled using the spatial hierarchical model. Displaying the list of at least some of the plurality of building control asserts may include filtering the plurality of building control asserts using filter criteria and displaying only the building control assets that meet the filter criteria.


In some instances, the method 70 may further include assigning a unique identifier to each of the one or more first level spaces, the one or more child level spaces and the one or more building control assets that are assigned to a child level space, as indicated at block 84. This may be done automatically without user input. In some cases, the method 70 may include accepting user input via one or more screens to assign searchable tags to at least some of the first level spaces, child level spaces and/or assigned building control assets, as indicated at block 86. The searchable tags may allow a user to categorize and/or group at least some of the first level spaces, child level spaces and/or assigned building control assets for later reference.



FIG. 6 is a flow diagram showing an illustrative method 90. The method 90 includes displaying one or more screens that enable a user to create one or more geographic region-level folders of a hierarchical folder structure, as indicated at block 92. One or more screens are displayed that enable a user to create one or more location-specific folders within one or more of the geographic region-level folders of the hierarchical folder structure, as indicated at block 94. The folders referenced here may be analogous to the various hierarchical level objects referenced in FIG. 3.


In the example shown, one or more screens are displayed that enable a user to dispose one or more assets within one or more folders of the hierarchical folder structure, as indicated at block 96. In some cases, the one or more screens that enable the user to dispose one or more assets within one or more folders of the hierarchical folder structure allow the user to drag and drop selected assets from a listing of available assets to a selected folder of the hierarchical folder structure. The hierarchical folder structure is analyzed to determine relationships between the one or more geographic region-level folders, the one or more location-specific folders and the one or more assets in order to assign a unique identifier to each folder and to each asset in the hierarchical folder structure, as indicated at block 98. One or more screens are displayed that display the hierarchical folder structure, as indicated at block 100.


In some cases, the method 90 may further include generating a spatial hierarchical model based on the hierarchical folder structure, as indicated at block 102. The spatial hierarchical model may be deployed, as indicated at block 104. At least some of the assets may be monitored and/or controlled using the deployed spatial hierarchical model, as indicated at block 106.



FIG. 7 is a flow diagram showing an illustrative method 110. The method 110 includes displaying one or more screens that enable a user to create one or more geographic region-level folders of a hierarchical folder structure, as indicated at block 112. One or more screens are displayed that enable a user to create one or more location-specific folders within one or more of the geographic region-level folders of the hierarchical folder structure, as indicated at block 114. One or more screens are displayed that enable a user to dispose one or more assets within one or more folders of the hierarchical folder structure, as indicated at block 116. In some cases, the one or more screens that enable the user to dispose one or more assets within one or more folders of the hierarchical folder structure allow the user to drag and drop selected assets from a listing of available assets to a selected folder of the hierarchical folder structure.


The hierarchical folder structure is analyzed to determine relationships between the one or more geographic region-level folders, the one or more location-specific folders and the one or more assets in order to assign a unique identifier to each folder and to each asset in the hierarchical folder structure, as indicated at block 118. This may be performed automatically without user input. In the example shown, one or more screens are displayed that display the hierarchical folder structure, as indicated at block 120. In some instances, the method 110 may further include displaying one or more screens that enable the user to create one or more building-specific folders within one or more of the one or more location-specific folders, as indicated at block 122. The illustrative method 110 may further include displaying one or more screens that enable a user to dispose one or more assets within one or more of the building-specific folders, as indicated at block 124.



FIGS. 8A and 8B together provide a flow diagram showing an illustrative method 130 of monitoring compliance with healthy building guidelines using a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model. The healthy building guidelines may be based at least in part on one or more healthy building criteria. The illustrative method 130 includes allowing a user to select a particular hierarchical level of the spatial hierarchical model, as indicated at block 132. Non-compliance events are identified that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 134.


The non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 136. In some instances, aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model may include separately aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model over a period of time. The period of time may, for example, be user-selectable using a healthy building dashboard. A healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 138. The healthy building dashboard is displayed on a display, as indicated at block 140. A user is allowed to select a different hierarchical level of the spatial hierarchical model, as indicated at block 142.


Non-compliance events are identified that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 144. Control passes to an anchor 146, which is repeated at the top of FIG. 8B. The non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 148. Aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model may include separately aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model over a period of time. An updated healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 150. The updated healthy building dashboard is displayed on a display, as indicated at block 152.


In some instances, the method 130 may further include generating a first overall compliance score for the particular hierarchical level of the spatial hierarchical model based at least in part on the aggregated non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, and displaying the first overall compliance score on the healthy building dashboard, as indicated at block 154. In some instances, the method 130 may further include generating a second overall compliance score for the newly selected different particular hierarchical level of the spatial hierarchical model based at least in part on the aggregated non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, and displaying the second overall compliance score on the updated healthy building dashboard, as indicated at block 156.


In some cases, one or more of the building control assets may include video cameras, and at least some of the non-compliance events that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines may be detected by performing video analytics on video streams provided by one or more video cameras. The non-compliance events that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines may include one or more of non-compliance occupancy levels, non-compliant social distancing behavior and/or non-compliance mask behavior. The one or more of the building control assets may include a temperature sensor, and at least one of the non-compliance events that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines include a non-compliant space temperature. One or more of the building control assets may include a humidity sensor, and at least one of the non-compliance events that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines may include a non-compliant space humidity. One or more of the building control assets may include a thermal sensor for sensing a body temperature of an occupant, and at least one of the non-compliance events that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines may include a non-compliant body temperature.



FIGS. 9A and 9B together provide a flow diagram showing an illustrative method 160 of monitoring compliance with healthy building guidelines using a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model. The healthy building guidelines may be based at least in part on one or more healthy building criteria. The method 160 includes allowing a user to select a particular hierarchical level of the spatial hierarchical model, as indicated at block 162. Non-compliance events are identified that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 164.


In the example shown, the non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 166. In some instances, aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model may include separately aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model over a period of time. The period of time may, for example, be user-selectable using a healthy building dashboard. A healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 168. The healthy building dashboard is displayed on a display, as indicated at block 170. A user is allowed to select a different hierarchical level of the spatial hierarchical model, as indicated at block 172.


Non-compliance events are identified that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 174. Control passes to an anchor 176, which is repeated at the top of FIG. 9B. The non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 178. Aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model may include separately aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model over a period of time. An updated healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 180. The updated healthy building dashboard is displayed on a display, as indicated at block 182.


In some instances, the method 160 may further include determining a non-compliance trend over a trend time period of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 184. In some instances, the trend time period may be user-selectable. The non-compliance trend may be displayed on the healthy building dashboard, as indicated at block 186. In some instances, the method 160 may further include displaying a plurality of recent non-compliance events on the healthy building dashboard, as indicated at block 188.



FIGS. 10A and 10B together provide a flow diagram showing an illustrative method 190 of monitoring compliance with healthy building guidelines within a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model, the healthy building guidelines based at least in part on one or more healthy building criteria. The method 190 includes allowing a user to select a particular hierarchical level of the spatial hierarchical model, as indicated at block 192. Non-compliance events are identified that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 194.


The non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 196. In some instances, aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model may include separately aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model over a period of time. The period of time may, for example, be user-selectable using a healthy building dashboard. A healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 198. The healthy building dashboard is displayed on a display, as indicated at block 200. A user is allowed to select a different hierarchical level of the spatial hierarchical model, as indicated at block 202.


Non-compliance events are identified that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 204. Control passes to an anchor 206, which is repeated at the top of FIG. 10B. The non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 208. Aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model may include separately aggregating the non-compliance events for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model over a period of time. An updated healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the newly selected different particular hierarchical level of the spatial hierarchical model, as indicated at block 210. The updated healthy building dashboard is displayed on a display, as indicated at block 212.


In some instances, the method 190 further includes aggregating non-compliance events for each at least some of the one or more of the healthy building criteria for each of two or more hierarchical levels of the spatial hierarchical model, as indicated at block 214. In some instances, the method 190 may further include concurrently displaying a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria for each of the two or more hierarchical levels of the spatial hierarchical model, as indicated at block 216.


In some cases, the method 190 may further include forming the spatial hierarchical model. The spatial hierarchical model may be formed, as shown for example in FIGS. 4 through 7. As a particular example, the spatial hierarchical model may be formed by accepting user input via one or more screens to add and name each of one or more first level spaces at a first level of the spatial hierarchical model and accepting user input via one or more screens to select a selected one of the first level spaces of the spatial hierarchical model and add and name each of one or more child level spaces that are spatially part of the selected first level space at a second level of the spatial hierarchical model. A graphical representation may be displayed of one or more of the first level spaces and one or more corresponding child level spaces. A listing of at least some of the plurality of building control assets may be displayed. User input may be accepted to assign selected building control assets from the listing of at least some of the plurality of building control assets to a selected child level space.


In some instances, accepting user input to assign selected building control assets from the listing of at least some of the plurality of building control assets to the selected child level space may include dragging and dropping selected building control assets from the listing of at least some of the plurality of building control assets to the selected child level space. In some cases, accepting user input via one or more screens to add and name each of one or more first level spaces at the first level of the spatial hierarchical model may include accepting a selection of an add new space icon, displaying a pop-up menu in response to the selection of the add new space icon, and accepting a name for at least one of the one or more first level spaces.



FIG. 11 is a flow diagram showing an illustrative method 220 of monitoring compliance with healthy building criteria within a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model. The method 220 includes identifying non-compliance events that are non-compliant with one or more of the healthy building criteria of healthy building guidelines detected by building control assets disposed at and below a particular hierarchical level of the spatial hierarchical model, as indicated at block 222. The non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model over a period of time, as indicated at block 224. A healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by building control assets disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 226. The healthy building dashboard is displayed on a display, as indicated at block 228. In some cases, the non-compliance events that are non-compliant with one or more of the healthy building criteria of the healthy building guidelines may include one or more of non-compliance occupancy levels, non-compliant social distancing behavior, non-compliance mask behavior and elevated body temperatures.



FIG. 12 is a flow diagram showing an illustrative method 230 of monitoring compliance with healthy building criteria within a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model, at least some of the plurality of building control assets comprising video cameras. The method 230 includes allowing a user to select a particular hierarchical level of the spatial hierarchical model, as indicated at block 232. Video streams are obtained over a period of time from video cameras disposed at or below the particular hierarchical level of the spatial hierarchical model, as indicated at block 234. Video analytics are performed on the video streams over the period of time in order to identify non-compliance events that are non-compliant with one or more of the healthy building criteria of healthy building guidelines, as indicated at block 236.


The non-compliance events are aggregated for each of the one or more of the healthy building criteria detected by the video cameras disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 238. A healthy building dashboard is generated that includes a representation of the aggregated non-compliance events for each of at least some of the one or more of the healthy building criteria detected by the video cameras disposed at and below the particular hierarchical level of the spatial hierarchical model, as indicated at block 240. The healthy building dashboard is displayed, as indicated at block 242.



FIGS. 13 through 18 are screen shots illustrating creation of a spatial hierarchical model. In FIG. 13, a screen 250 is seen. The screen 250 includes a workspace 252 on which a user can build a spatial hierarchical model in an intuitive way. As illustrated, a hierarchical level object 254 labeled “Oracle” has been created on the workspace 252. The hierarchical level object 254 is accompanied by an ADD NEW FOLDER button 256 and an ADD MULTIPLE NEW FOLDERS button 258. These options are duplicated in a pop-up menu 260, along with a delete folder option. In some cases, the pop-up menu 260 may appear as a result of the hierarchical level object 254 being selected. It can be seen that the hierarchical level object 254 is highlighted, meaning that the hierarchical level object 254 has been selected. The screen 250 also includes an asset list 262. As can be seen, each asset within the asset list 262 includes a name of the asset, an IP address and may include a current assignment of that particular asset. FIGS. 14 through 18 will show step-by-step an example of creating a spatial hierarchical model, beginning with the hierarchical level object 254.



FIG. 14 shows a screen 270. The screen 270 is similar to the screen 250, but includes a pop-up box 272 that allows the user to create multiple new folders under the hierarchical level object 254. The rest of the screen 270, apart from the pop-up box 272, may be a grayed out version of the screen 250 to make it easier for the user to understand that they should be interacting with the pop-up box 272. The pop-up box 272 may appear as a result of the user having selected (with respect to FIG. 13) either the ADD MULTIPLE NEW FOLDERS button 258, or the appropriate option within the pop-up menu 260. It can be seen that the pop-up box 272 identifies the hierarchical level (hierarchical level 254, labeled “Oracle”) in which the new folders will be placed. The pop-up box 272 includes a space 274 in which the user can type the name of a new folder. The user has already entered a new folder named “Ground Floor” and a new folder named “First Floor”. The pop-up box 272 will allow a user to keep entering names of new folders to be created under the hierarchical level object 254 until the user either selects a CANCEL button 276 or selects a CREATE 2 FOLDERS button 278. It will be appreciated that the counter within the name of the button 278 will vary, depending on how many new folders are being created. It will be appreciated that a similar pop-up box may be displayed in response to the user having selected the ADD NEW FOLDER button 256 or the corresponding option within the pop-up menu 260, but would only be adding a single new folder.


When the user selects the CREATE 2 FOLDERS button 278, a screen 290 will be displayed, as seen in FIG. 15. The screen 290 includes the hierarchical level object 254, but now also includes a hierarchical level object 292 labeled “Ground Floor” and a hierarchical level object 292 labeled “First Floor”. It can be seen that the hierarchical level objects 292 and 294 are indented from the hierarchical level object 254, indicating that the hierarchical level objects 292 and 294 are child levels relative to the hierarchical level object 254, and the “Ground Floor” and the “First Floor” are both within the hierarchical level object labeled “Oracle”. In this example, “Oracle” may be the name of a building.



FIG. 16 shows a screen 310 that may be displayed as a result of the user selecting the hierarchical level object 292 labeled “Ground Floor” in the screen 290. It can be seen in FIG. 16 that the hierarchical level object 292 has been highlighted. As a result of the hierarchical level object 292 having been selected, a pop-up menu 312 has been displayed. The pop-up menu 312 includes options to create a New Folder in “Ground Floor”, create Multiple Folders in “Ground Floor” or to delete a folder. Selecting Multiple Folders causes a screen 320 to be displayed, as seen in FIG. 17.



FIG. 17 shows the screen 320. The screen 320 is similar to the screen 310, but includes a pop-up box 322. In some cases, apart from the pop-up box 322, the screen 320 is the same as the screen 310 but everything excluding the pop-up box 322 is grayed out to make it easier for the user to understand that they should be interacting with the pop-up box 322.


It can be seen that the pop-up box 322 identifies the hierarchical level (hierarchical level object 292, labeled “Ground Floor”) in which the new folders will be placed. The pop-up box 322 includes a space 324 in which the user can type the name of a new folder. The user has already entered a new folder named “Reception”, a new folder named “Server Room”, a new folder named “Office Supplies”, a new folder named “Healthcare” and a new folder named “Elevator Area”. The pop-up box 322 will allow a user to keep entering names of new folders to be created under the hierarchical level object 292 until the user either selects a CANCEL button 326 or selects a CREATE 5 FOLDERS button 328. It will be appreciated that the counter within the name of the button 328 will vary, depending on how many new folders are being created. It will be appreciated that a similar pop-up box may be displayed in response to the user having selected the ADD NEW FOLDER button 256 or the corresponding option within the pop-up menu 312, but would only be adding a single new folder. Selecting the CREATE 5 FOLDERS button 328 will cause a screen 340 to be displayed, as seen in FIG. 18.


It can be seen that the spatial hierarchical model displayed within the workspace 252 has grown. The spatial hierarchical model still includes the hierarchical level object 254 labeled “Oracle”, the hierarchical level object 292 labeled “Ground Floor” and the hierarchical level object 294 labeled “First Floor”, but also includes additional hierarchical levels objects that are child levels relative to the hierarchical level object 292 and are grandchild levels relative to the hierarchical level object 254. These new hierarchical levels include a hierarchical level object 342 labeled “Reception”, a hierarchical level object 344 labeled “Server Room”, a hierarchical level object 346 labeled “Office Supplies”, a hierarchical level object 348 labeled “Healthcare” and a hierarchical level object 350 labeled “Elevator Area”. It will be appreciated that additional child hierarchical level objects may be created relative to the hierarchical level object 294 labeled “First Floor”, and that additional hierarchical level object may be added relative to the hierarchical level object 254 labeled “Oracle” such as “Second Floor”, “Third Floor and so on, or perhaps Parking Garage.



FIG. 19 shows an illustrative screen 360 that illustrates assigning an asset to a particular level of the spatial hierarchical model created in FIGS. 13 through 18. In this example, an asset 362, which is included in the asset list 262, is being assigned to the hierarchical level object 342 labeled “Reception Area”. This may be achieved by dragging the asset 362 from the asset list 262 and dropping the asset 362 onto the desired hierarchical level, which in this case is the hierarchical level object 342. A pop-up box 364 identifies the asset 362, which serves as a double check that the correct asset has been assigned to the desired hierarchical level object. The asset 362 is also highlighted within the asset list 262 and the target hierarchical level object 342 is also highlighted. It will be appreciated that this process may be repeated until all desired assets have been properly assigned to the appropriate hierarchical level object. As the spatial hierarchical model is built up in this manner, a powerful tool is created that allows a user to capture global information while also being able to drill down to particular hierarchical levels or even particular installed and assigned assets.



FIG. 20 provides an example in which additional assets have been assigned. The spatial hierarchical model includes the same hierarchical level objects 254, 292, 294, 442, 344, 346, 348 and 350 as shown in previous Figures. An Entrance Camera 382 has been assigned to the hierarchical level object 342 labeled “Reception”. A Controller 384 and a Camera 386 have been assigned to the hierarchical level object 344 labeled “Server Room”. A Camera 388 has been assigned to the hierarchical level object 346 labeled “Office Supplies”. A Reader 390 and a Camera 392 have been assigned to the hierarchical level object 348 labeled “Healthcare”. A Camera 394 has been assigned to the hierarchical level object 350 labeled “Elevator Area”.


Once a spatial hierarchical model has been created and put into use, a user may have a desire to search within the spatial hierarchical model. Searches and/or filtering can be performed using the names or portions of names of the hierarchical level objects, for example. As an example, perhaps a user wants to see the assets assigned to every “Reception” area in the company, spread over multiple buildings in multiple geographic regions. The user could search and/or filter search results for “reception” to obtain this information. Searches and/or filtering may be performed using the names or portions of names of the assets that are assigned to the various hierarchical level objects. For example, a user could decide they want to see the location of every door access device in the building. They could search for “door access” or “card reader” or something similar, for example.


Another way that the user can search and/or filter search results is to use what can be referred to as tags. With reference to the FIGS. 13 through 20, it can be seen that each displayed hierarchical level object 254, 292, 294, 442, 344, 346, 348 and 350 includes an “Add Tags” icon as part of the displayed hierarchical level object. With particular reference to FIG. 20, it can be seen that the Camera 394, which is under the hierarchical level object 350, includes a tag 396 that reads “Elevator”. This provides a user an easy way to find all assets that are associated with an elevator, for example. In FIG. 20, it can be seen that the hierarchical level object 292 labeled “Ground Floor” includes an Add Tags icon 398. Actually, each of the displayed hierarchical level objects and assigned assets include an Add Tags icon 398, although for simplicity each Add Tags icon 398 is not labeled. Selecting one of the “Add Tags” icon 398 may cause a screen 400 to be displayed, as seen in FIG. 21.



FIG. 21 provides a screen 400 that is similar to the screen 380, but includes a pop-up box 402 that can be used to add a tag. A tag can be added that has already been used, or a tag can be newly created. The pop-up box 402 includes a box 404 that allows the user to enter the name of a tag they wish to assign to the particular hierarchical level object or assigned asset. The pop-up box 402 includes a listing 406 of recently used tags, which allows the user to easily select one of those tags, rather than having to retype the name into the box 404. The pop-up box 402 also includes a SAVE AND EXIT button 408, which when selected causes the new tag and its association with a hierarchical level object or an assigned asset. It will be appreciated that the pop-box 402 demonstrates creation and assignment of the tag 396 that reads “Elevator” in FIG. 20.



FIG. 22 is a screen shot providing a screen 420 that shows the spatial hierarchy model created in FIGS. 13 through 18 displayed in a tabular format. The screen 420 shows a portion of a spreadsheet that may be displayable using various software such as but not limited to Microsoft Excel, Apple Numbers, Google Sheets, Quip, EtherCalc, Zoho Sheets, LibreOffice, Apache OpenOffice Calc, Smartsheet and Airtable, among others. FIG. 22 provides an example displayed using Microsoft Excel, but of course other spreadsheet software or the like may be utilized as desired.


The screen 420 shows a number of columns, including a Type column 422, a Name column 424, a Parent column 426, a Device Type column 428, an IP column 430, and a Tag1 column 432. It will be appreciated that the screen 420 includes the same information regarding the spatial hierarchy model as does FIGS. 13 through 18, but simply in a different format. Row 434 of the spreadsheet has a Type of Folder and a name “Oracle”. This corresponds to the hierarchical level object 254 labeled “Oracle”. Row 436 has a Type of Folder, a name “Ground Floor and a parent of “Oracle”. This corresponds to the hierarchical level object 292 labeled “Ground Floor”. Row 438 of the spreadsheet has a Type of Folder, a name “First Floor” and a parent of “Oracle”. This corresponds to the hierarchical level object 294 labeled “First Floor”. Similarly, row 438 of the spreadsheet corresponds to the hierarchy level object 342 labeled “Reception”. Row 440 of the spreadsheet corresponds to the hierarchy level object 344 labeled “Server Room”. Row 442 of the spreadsheet corresponds to the hierarchy level object 346 labeled “Office Supplies”. Row 444 of the spreadsheet corresponds to the hierarchy level object 348 labeled “Healthcare”. Row 446 of the spreadsheet corresponds to the hierarchy level object 350 labeled “Elevator Area”. Row 448 of the spreadsheet corresponds to the hierarchy level object 294 labeled “First Floor”. It will be appreciated that similar corollaries may be made between the devices shown in FIG. 22 and those shown for example in FIG. 20. As an example, a device 450, with a name “Camera4” corresponds to the device 394 shown in FIG. 20. It can be seen that the illustrative spreadsheet even includes the tag “Elevator” that was assigned to the device 394.



FIG. 23 provides a screen 460 that shows an alternate way of creating a spatial hierarchy model. Much like the screen 420, the screen 460 may be displayed by any preferred spreadsheet software or the like. For this particular example, Microsoft Excel was used. The screen 460 includes a column 462 labeled “Space ID”. This column simply increments by one each row, and provides a numerical identifier for that row and the hierarchical level object or device included in that particular row. A column 464 is labeled “Space Name” and provides a space for a name to be entered along with a “\” character that indicates a depth. Use of a single “/” character represents a higher level than use of two “/” characters. Use of three “/” characters represents a lower level than use of two “/” characters. This is merely illustrative, as any particular character may be selected or used to indicate relative depth. A column 466 labeled “Space Type” provides a space for a user to enter this information.


In the spatial hierarchy model shown on the screen 460, there are two regions, named “US EAST” and “US WEST”, as indicated by these names having a single “/” character prefixing the name. There is a “ATLANTA” site within the US EAST region, and a “HONEYWELL MIDTOWN” building within the “ATLANTA” site. There is also a “NEW JERSEY” site within the “US EAST” region, with a “HONEYWELL NJ OFFICE” building within the “NEW JERSEY” site. Each of the sites has two “/” characters prefixing the site name, and each of the buildings has three “/” characters prefixing the building name. Similarly, the “US WEST” region includes a “SAN FRANCISCO” site with a “HONEYWELL SFD OFFICE” building within the “SAN FRANCISCO” site. The “US WEST” region also includes a “SAN DIEGO” site, but no buildings within the “SAN DIEGO” site have been entered yet.



FIG. 24 is a screen shot providing a screen 480 that provides a healthy building dashboard 482. The dashboard 482 includes a hierarchy level indicator 484 that informs the user that the dashboard 482 is displaying aggregated data from a particular hierarchy level. It will be appreciated that for displaying aggregated data from a particular hierarchy level, this will include data from any and all child and grandchild hierarchal levels relative to that particular hierarchy level. In this particular example, the hierarchy level 484 reads “All Spaces”. The dashboard 482 includes a time frame pull-down menu 486, which allows the user to display information for a desired time frame. The pull-down menu 486 may include any desired time frames to select from, such as “PAST 24 HOURS”, “PAST WEEK”, “PAST 15 DAYS”, “PAST 30 DAYS”, “PAST YEAR” and the like. In some cases, the pull-down menu 486 may instead provide a calendar that the user can select a starting point and an ending point from. The pull-down menu 486 may instead be a box in which the user can directly type in either a desired time frame, or specific starting and ending points. As illustrated, the pull-down menu 486 reads “LAST 15 DAYS”. The dashboard 482 includes a date indicator 488 that provides the actual dates corresponding to the time-frame selected using the pull-down menu 486.


Because the hierarchal level indicator 484 reads “All Spaces”, the aggregated data that is displayed within the dashboard 482 represents, for each particular healthy building criteria, a sum total of incidents relating to that particular healthy building criteria not only for the selected hierarchal level, but also for all child and grandchild hierarchal levels that are under the selected hierarchal level. For the sake of this example, assume that the spatial hierarchy model represented by the dashboard 482 is the same as that shown in FIG. 23.


The dashboard 482 includes a “COMPLIANCE OVERVIEW” section 490 that shows, for the selected hierarchal level (as indicated by the hierarchy level indicator 484), an aggregated total for each of the displayed healthy building criteria from the selected hierarchal level and all sub-levels. In this example, the COMPLIANCE OVERVIEW section 490 includes a CAPACITY indicator 490a, an INCIDENTS indicator 490b, a NO MASKS indicator 490c and an ELEVATED BODY TEMPERATURE indicator 490d. As indicated, in the last 15 days, in the time period “17 Jan. 2021-31 Jan. 2021”, there have been no incidents with average capacity exceeding capacity limits, there are a total of 250 open incidents, there were 30 incidents of people not wearing masks and there were 10 incidents of people being detected having elevated body temperatures.


The dashboard 482 may also display additional detail. For example, the dashboard 482 provides a graphical representation 492 that indicates that during the selected time period, and for the selected hierarchal level, average occupancy has been 80.7 percent of capacity. In this, capacity may indicate a summation of the actual capacity limits for each of the included facilities, such as but not limited to the capacity limits that fire departments set for particular facilities. Capacity may alternatively indicate a reduced capacity figure, such as a 25 percent capacity or a 50 percent capacity as directed by infectious disease protocols. For example, many local governments have directed such reduced capacity figures during the COVID19 pandemic. The dashboard 482 may also include a graphical representation 494, over time, of actual occupancy values. While there have been several transient periods in which the actual occupancy exceeded a capacity limit, it can be seen that overall, the average occupancy has not. In some cases, the graphical representation 494 may use a different color, for example, to indicate when the actual occupancy has exceeded capacity.


In some cases, selecting the hierarchy level indicator 484 may cause a screen 500 to be displayed, as seen in FIG. 25. The screen 500 includes the dashboard 482, although a pull-down menu 502 provides options for controlling what is displayed on the dashboard 482. The pull-down menu 502 includes a FILTER option 504 that can be used to filter what is displayed. The pull-down menu 502 includes a SEARCH option 506 that can be used to direct a search. The pull-down menu 502 also includes a spatial hierarchal model indicator 508. It will be appreciated that the spatial hierarchal model indicator 508 will typically be much larger than what is shown, and thus the spatial hierarchy model indicator 508 may include scroll-bars (not shown) that allow a user to move vertically within the spatial hierarchy model indicator 508. It will be appreciated that the spatial hierarchy model indicator 508 matches that shown in FIG. 23. As shown, the spatial hierarchy model indicator 508 also includes an indicator 510 displayed opposite the ATLANTA site and an indicator 512 that is displayed opposite the SAN FRANCISCO site. These indicators 510, 512, if displayed, may include a number displayed within the indicator 510, 512 that informs the user that these particular hierarchal levels may have a number of problems needing attention.


As seen, all of the boxes are checked, meaning that the aggregated data displayed within the dashboard 482 includes all data from the US EAST region and the US WEST region. The US EAST region includes the ATLANTA site, which itself includes the “Honeywell Midtown” building, and the NEW JERSEY site, which itself includes the “Honeywell NJ Office” building. The US WEST region includes the SAN FRANCISCO site, which itself includes the “Honeywell SF Office” building, and the SAN DIEGO site which does not yet have any buildings indicated.


If for example, the US EAST box was checked (instead of checking the “Select All” box), the ATLANTA site and the “Honeywell Midtown” buildings would also be checked as a matter of course. The aggregated data displayed on the dashboard 482 would only include data aggregated from each of the ATLANTA site and the “Honeywell Midtown” building. It will be appreciated that the ATLANTA site likely includes a plurality of buildings, but in this example only one building has been entered thus far. To continue the example, an occupancy sensor within the “Honeywell Midtown” building may provide a signal indicating that a particular room to which that occupancy sensor has been installed and assigned. That signal would indicate a potential problem for that particular room in the “Honeywell Midtown” building. That signal would also indicate a potential problem for the particular floor including that particular room, for example. The building may be further divided into areas or portions, and that signal would also indicate a problem within any area or portion that includes the particular room to which the particular sensor is assigned. That signal would also indicate a problem for the ATLANTA site and the US EAST region.


Occupancy data that might be displayed on the dashboard 482 if the US EAST box was checked would include, for the “Honeywell Midtown” building, an aggregation of signals from every occupancy sensor within the “Honeywell Midtown” building. Continuing the example, occupancy data that might be displayed on the dashboard 482 for the ATLANTA site would include the occupancy data from the “Honeywell Midtown” building as well as for any other buildings (not shown) that are within the ATLANTA site. Occupancy data that might be displayed on the dashboard 482 for the US EAST region would include the aggregated occupancy data for the ATLANTA site, the NEW JERSEY site and any other sites (not yet entered) that are assigned within the US EAST region.


Having thus described several illustrative embodiments of the present disclosure, those of skill in the art will readily appreciate that yet other embodiments may be made and used within the scope of the claims hereto attached. It will be understood, however, that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, arrangement of parts, and exclusion and order of steps, without exceeding the scope of the disclosure. The disclosure's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A method of monitoring compliance with healthy building guidelines using a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model, the healthy building guidelines based at least in part on one or more healthy building criteria, the method comprising: allowing a user to select via a user interface a first hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model;generating a first compliance score for the first hierarchical level of the spatial hierarchical model, the first compliance score representative of a measure of compliance with one or more of the healthy building criteria of the healthy building guidelines at and below the first hierarchical level of the spatial hierarchical model;after the user selects the first hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, displaying the first compliance score on a display;allowing the user to select via the user interface a second hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, wherein the second hierarchical level is different from the first hierarchical level;generating a second compliance score for the second hierarchical level of the spatial hierarchical model, the second compliance score representative of a measure of compliance with one or more of the healthy building criteria of the healthy building guidelines at and below the second hierarchical level of the spatial hierarchical model; andafter the user selects the second hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, displaying the second compliance score on a display.
  • 2. The method of claim 1, wherein displaying the first compliance score comprises displaying both a graphical representation that graphically represents the first compliance score and a numerical representation that numerically represents the first compliance score.
  • 3. The method of claim 2, wherein the graphical representation includes at least part of an annulus, with a proportion of the annulus visually highlighted, wherein the proportion of the annulus that is visually highlighted versus a remaining proportion of the annulus that is not visually highlighted is representative of the first compliance score.
  • 4. The method of claim 1, wherein one or more of the healthy building criteria include one or more infectious disease criteria.
  • 5. The method of claim 4, wherein the infectious disease criteria comprise an occupancy capacity threshold.
  • 6. The method of claim 1, wherein the healthy building guidelines include infectious disease risk guidelines.
  • 7. The method of claim 6 wherein the infectious disease risk guidelines include guidelines for one or more of maximum occupancy levels, social distancing behavior and mask behavior.
  • 8. The method of claim 1, wherein the healthy building guidelines include maximum occupancy capacity guidelines.
  • 9. The method of claim 1, further comprising: determining a trend over a trend time period of the first compliance score; anddisplaying an indication of the trend on the display.
  • 10. The method of claim 9, further comprising: allowing the user to select the trend time period.
  • 11. The method of claim 1, wherein the healthy building guidelines include a plurality of healthy building criteria, the method comprises: generating a separate first compliance score for each of two or more of the plurality of healthy building criteria of the healthy building guidelines, wherein each of the separate first compliance scores is representative of a measure of compliance with a corresponding one of the two or more healthy building criteria of the healthy building guidelines at and below the first hierarchical level of the spatial hierarchical model;after the user selects the first hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, displaying the separate first compliance scores for each of the two or more of the healthy building criteria of the healthy building guidelines on the display;generating a separate second compliance score for each of the two or more healthy building criteria of the healthy building guidelines, wherein each of the separate second compliance scores is representative of a measure of compliance with a corresponding one of the two or more healthy building criteria of the healthy building guidelines at and below the second hierarchical level of the spatial hierarchical model; andafter the user selects the second hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, displaying the separate second compliance scores for each of the two or more healthy building criteria of the healthy building guidelines on the display.
  • 12. The method of claim 11, comprising: displaying the separate first compliance scores for each of the two or more of the healthy building criteria of the healthy building guidelines concurrently on the display; anddisplaying the separate second compliance scores for each of the two or more of the healthy building criteria of the healthy building guidelines concurrently on the display.
  • 13. A method of monitoring compliance with healthy building guidelines using a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model, the healthy building guidelines based at least in part on one or more healthy building criteria, the method comprising: allowing a user to select via a user interface a first hierarchical level object at a first hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, wherein the first hierarchical level object has two or more first child hierarchical level objects;allowing the user to select via the user interface a first set of the two or more first child hierarchical level objects of the first hierarchical level object;generating a first compliance score, the first compliance score representative of a measure of compliance of the first hierarchical level object and the first set of the two or more first child hierarchical levels objects with one or more of the healthy building criteria of the healthy building guidelines;displaying the first compliance score on a display;allowing the user to select via the user interface a second set of the two or more first child hierarchical level objects of the first hierarchical level object, wherein the second set of the two or more first child hierarchical level objects of the first hierarchical level object is different from the first set of the two or more first child hierarchical level objects;generating a second compliance score, the second compliance score representative of a measure of compliance of the first hierarchical level object and the second set of the two or more first child hierarchical level objects of the first hierarchical level with one or more of the healthy building criteria of the healthy building guidelines; anddisplaying the second compliance score on the display.
  • 14. The method of claim 13, comprising: allowing the user to deselect via the user interface the first hierarchical level object and the two or more first child hierarchical level objects, and select a second hierarchical level object, wherein the second hierarchical level object is different from the first hierarchical level object;generating a second compliance score, the second compliance score representative of a measure of compliance of the second hierarchical level object with one or more of the healthy building criteria of the healthy building guidelines; anddisplaying the second compliance score on the display.
  • 15. The method of claim 14, wherein the first hierarchical level object and the second hierarchical level object are at the first hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model.
  • 16. The method of claim 14, wherein the first hierarchical level object is at the first hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, and the second hierarchical level object is at a second hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, wherein the first hierarchical level and the second hierarchical level are different hierarchical levels in the plurality of hierarchical levels of the spatial hierarchical model.
  • 17. A method of monitoring compliance with healthy building guidelines using a spatial hierarchical model that provides spatial context to a plurality of building control assets disposed within a plurality of hierarchical levels of the spatial hierarchical model, the healthy building guidelines based at least in part on one or more healthy building criteria, the method comprising: allowing a user to select via a user interface a first hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, wherein the first hierarchical level includes one or more first hierarchical level objects at the first hierarchical level;generating a first compliance score for the first hierarchical level of the spatial hierarchical model, the first compliance score representative of a measure of compliance of one or more of the first hierarchical level objects at the first hierarchical level with one or more of the healthy building criteria of the healthy building guidelines;displaying the first compliance score on a display;allowing the user to select via the user interface a second hierarchical level of the plurality of hierarchical levels of the spatial hierarchical model, wherein the second hierarchical level is different from the first hierarchical level and includes one or more second hierarchical level objects at the second hierarchical level;generating a second compliance score for the second hierarchical level of the spatial hierarchical model, the second compliance score representative of a measure of compliance of one or more of the second hierarchical level objects at the second hierarchical level with one or more of the healthy building criteria of the healthy building guidelines; anddisplaying the second compliance score on the display.
  • 18. The method of claim 17, wherein the first compliance score is representative of a measure of compliance collectively of all of the one or more first hierarchical level objects at the first hierarchical level with one or more of the healthy building criteria of the healthy building guidelines.
  • 19. The method of claim 17, comprising: allowing the user to select one or more of the first hierarchical level objects at the first hierarchical level; andwherein the first compliance score is representative of a measure of compliance collectively of the selected ones of the selected one or more of the first hierarchical level objects at the first hierarchical level with one or more of the healthy building criteria of the healthy building guidelines.
  • 20. The method of claim 17, wherein the second hierarchical level is below the first hierarchical level in the plurality of hierarchical levels of the spatial hierarchical model.
Parent Case Info

This is a continuation of co-pending U.S. patent application Ser. No. 17/833,207, filed Jun. 6, 2022, and entitled “HEALTHY BUILDING DASHBOARD FACILITATED BY HIERARCHICAL MODEL OF BUILDING CONTROL ASSETS”, which is a continuation of U.S. patent application Ser. No. 17/187,278, filed Feb. 26, 2021, now U.S. Pat. No. 11,372,383, and entitled “HEALTHY BUILDING DASHBOARD FACILITATED BY HIERARCHICAL MODEL OF BUILDING CONTROL ASSETS”, both of which are incorporated herein by reference.

US Referenced Citations (541)
Number Name Date Kind
191512 Bennett et al. Jun 1877 A
4009647 Howorth Mar 1977 A
4375637 Desjardins Mar 1983 A
4918615 Suzuki et al. Apr 1990 A
4939922 Smalley et al. Jul 1990 A
5566084 Cmar Oct 1996 A
5727579 Chardack Mar 1998 A
5745126 Jain et al. Apr 1998 A
5751916 Kon et al. May 1998 A
5777598 Gowda et al. Jul 1998 A
5973662 Singers et al. Oct 1999 A
6065842 Fink May 2000 A
6139177 Venkatraman et al. Oct 2000 A
6144993 Fukunaga et al. Nov 2000 A
6157943 Meyer Dec 2000 A
6229429 Horon May 2001 B1
6238337 Kambhatla et al. May 2001 B1
6334211 Kojima et al. Dec 2001 B1
6353853 Gravlin Mar 2002 B1
6369695 Horon Apr 2002 B2
6375038 Daansen et al. Apr 2002 B1
6429868 Dehner, Jr. et al. Aug 2002 B1
6473084 Phillips et al. Oct 2002 B1
6487457 Hull et al. Nov 2002 B1
6580950 Johnson et al. Jun 2003 B1
6598056 Hull et al. Jul 2003 B1
6619555 Rosen Sep 2003 B2
6704012 Lefave Mar 2004 B1
6720874 Fufido et al. Apr 2004 B2
6741915 Poth May 2004 B2
6796896 Laiti Sep 2004 B2
6801199 Wallman Oct 2004 B1
6816878 Zimmers et al. Nov 2004 B1
6876951 Skidmore et al. Apr 2005 B2
6882278 Winings et al. Apr 2005 B2
6904385 Budike, Jr. Jun 2005 B1
6907387 Reardon Jun 2005 B1
6911177 Deal Jun 2005 B2
6993403 Dadebo et al. Jan 2006 B1
6993417 Osann, Jr. Jan 2006 B2
7023440 Havekost et al. Apr 2006 B1
7031880 Seem et al. Apr 2006 B1
7062722 Carlin et al. Jun 2006 B1
7110843 Pagnano et al. Sep 2006 B2
7139685 Bascle et al. Nov 2006 B2
7164972 Imhof et al. Jan 2007 B2
7183899 Behnke Feb 2007 B2
7200639 Yoshida Apr 2007 B1
7222111 Budike, Jr. May 2007 B1
7222800 Wruck May 2007 B2
7257397 Shamoon et al. Aug 2007 B2
D552116 Kurian et al. Oct 2007 S
7280030 Monaco Oct 2007 B1
7292908 Borne et al. Nov 2007 B2
7295116 Kumar et al. Nov 2007 B2
7302313 Sharp et al. Nov 2007 B2
7308323 Kruk et al. Dec 2007 B2
7308388 Beverina et al. Dec 2007 B2
7313447 Hsiung et al. Dec 2007 B2
7346433 Budike, Jr. Mar 2008 B2
7356548 Culp et al. Apr 2008 B1
7379782 Cocco May 2008 B1
7383148 Ahmed Jun 2008 B2
7434742 Mueller et al. Oct 2008 B2
7447333 Masticola et al. Nov 2008 B1
7466224 Ward et al. Dec 2008 B2
7496472 Seem Feb 2009 B2
7512450 Ahmed Mar 2009 B2
7516490 Riordan et al. Apr 2009 B2
7548833 Ahmed Jun 2009 B2
7551092 Henry Jun 2009 B1
7557729 Hubbard et al. Jul 2009 B2
7567844 Thomas et al. Jul 2009 B2
7596473 Hansen et al. Sep 2009 B2
7610910 Ahmed Nov 2009 B2
7626507 LaCasse Dec 2009 B2
7664574 Imhof et al. Feb 2010 B2
7682464 Glenn et al. Mar 2010 B2
7702421 Sullivan et al. Apr 2010 B2
7729882 Seem Jun 2010 B2
7755494 Melker et al. Jul 2010 B2
7761310 Rodgers Jul 2010 B2
7774227 Srivastava Aug 2010 B2
7797188 Srivastava Sep 2010 B2
7819136 Eddy Oct 2010 B1
7822806 Frank et al. Oct 2010 B2
7856370 Katta et al. Dec 2010 B2
D640264 Fujii et al. Jun 2011 S
7978083 Melker et al. Jul 2011 B2
7984384 Chaudhri et al. Jul 2011 B2
7986323 Kobayashi et al. Jul 2011 B2
8024666 Thompson Sep 2011 B2
8086047 Penke et al. Dec 2011 B2
8099178 Mairs et al. Jan 2012 B2
8151280 Sather et al. Apr 2012 B2
8176095 Murray et al. May 2012 B2
8218871 Angell et al. Jul 2012 B2
8219660 McCoy et al. Jul 2012 B2
8271941 Zhang et al. Sep 2012 B2
8294585 Barnhill Oct 2012 B2
8302020 Louch et al. Oct 2012 B2
8320634 Deutsch Nov 2012 B2
8334422 Gutsol et al. Dec 2012 B2
8344893 Drammeh Jan 2013 B1
8375118 Hao et al. Feb 2013 B2
8473080 Seem et al. Jun 2013 B2
8476590 Stratmann et al. Jul 2013 B2
8516016 Park et al. Aug 2013 B2
8558660 Nix et al. Oct 2013 B2
8639527 Rensvold et al. Jan 2014 B2
8698637 Raichman Apr 2014 B2
8816860 Ophardt et al. Aug 2014 B2
8869027 Louch et al. Oct 2014 B2
8904497 Hsieh Dec 2014 B2
8936944 Peltz et al. Jan 2015 B2
8947437 Garr et al. Feb 2015 B2
8950019 Loberger et al. Feb 2015 B2
9000926 Hollock et al. Apr 2015 B2
9002532 Asmus Apr 2015 B2
9030325 Taneff May 2015 B2
9098738 Bilet et al. Aug 2015 B2
9105071 Fletcher et al. Aug 2015 B2
9175356 Peltz et al. Nov 2015 B2
9235657 Wenzel et al. Jan 2016 B1
9240111 Scott et al. Jan 2016 B2
9256702 Elbsat et al. Feb 2016 B2
9280884 Schultz et al. Mar 2016 B1
9292972 Hailemariam et al. Mar 2016 B2
9320662 Hayes et al. Apr 2016 B2
9322566 Wenzel et al. Apr 2016 B2
9355069 Elbsat et al. May 2016 B2
D760237 Sabadosh et al. Jun 2016 S
9370600 DuPuis et al. Jun 2016 B1
9373242 Conrad et al. Jun 2016 B1
9396638 Wildman et al. Jul 2016 B2
9311807 Schultz et al. Aug 2016 B2
9406212 De Luca et al. Aug 2016 B2
9418535 Felch et al. Aug 2016 B1
9418536 Felch et al. Aug 2016 B1
9436179 Turney et al. Sep 2016 B1
9449219 Bilet et al. Sep 2016 B2
9477543 Henley et al. Oct 2016 B2
9497832 Verberkt et al. Nov 2016 B2
D774060 Dias et al. Dec 2016 S
9513364 Hall et al. Dec 2016 B2
9526380 Hamilton et al. Dec 2016 B2
9526806 Park et al. Dec 2016 B2
D776693 Linares et al. Jan 2017 S
9536415 De Luca et al. Jan 2017 B2
9558648 Douglas Jan 2017 B2
9568204 Asmus et al. Feb 2017 B2
9581985 Walser et al. Feb 2017 B2
9591267 Lipton et al. Mar 2017 B2
9606520 Noboa et al. Mar 2017 B2
9612601 Beyhaghi et al. Apr 2017 B2
9613518 Dunn et al. Apr 2017 B2
9618224 Emmons et al. Apr 2017 B2
9619989 Ewing Apr 2017 B1
9640059 Hyland May 2017 B2
9672360 Barkan Jun 2017 B2
9696054 Asmus Jul 2017 B2
9710700 Bilet et al. Jul 2017 B2
9715242 Pillai et al. Jul 2017 B2
9721452 Felch et al. Aug 2017 B2
9729945 Schultz et al. Aug 2017 B2
9778639 Boettcher et al. Oct 2017 B2
9784464 Yamamoto et al. Oct 2017 B2
9798336 Przybylski Oct 2017 B2
9843743 Lewis et al. Dec 2017 B2
9852481 Turney et al. Dec 2017 B1
9856634 Rodenbeck et al. Jan 2018 B2
9872088 Fadell et al. Jan 2018 B2
9875639 Bone et al. Jan 2018 B2
9911312 Wildman et al. Mar 2018 B2
9940819 Ferniany Apr 2018 B2
D818474 Kato et al. May 2018 S
9956306 Brais et al. May 2018 B2
9982903 Ridder et al. May 2018 B1
9986175 Frank et al. May 2018 B2
10007259 Turney et al. Jun 2018 B2
10031494 Holaso Jul 2018 B2
10055114 Shah et al. Aug 2018 B2
10087608 Dobizl et al. Oct 2018 B2
10101730 Wenzel et al. Oct 2018 B2
10101731 Asmus et al. Oct 2018 B2
10175681 Wenzel et al. Jan 2019 B2
10222083 Drees et al. Mar 2019 B2
10222767 Holaso Mar 2019 B2
10223894 Raichman Mar 2019 B2
10228837 Hua Mar 2019 B2
10235865 Thyroff Mar 2019 B2
10251610 Parthasarathy et al. Apr 2019 B2
10282796 Elbsat et al. May 2019 B2
10288306 Ridder et al. May 2019 B2
10303843 Bitran et al. May 2019 B2
10307060 Tran Jun 2019 B2
10317864 Boettcher et al. Jun 2019 B2
10332382 Thyroff Jun 2019 B2
10359748 Elbsat et al. Jul 2019 B2
10386820 Wenzel et al. Aug 2019 B2
10402767 Noboa et al. Sep 2019 B2
10514178 Willmott et al. Dec 2019 B2
10514817 Hua et al. Dec 2019 B2
10520210 Park et al. Dec 2019 B2
10544955 Przybylski Jan 2020 B2
10558178 Willmott et al. Feb 2020 B2
10559180 Pourmohammad et al. Feb 2020 B2
10559181 Pourmohammad et al. Feb 2020 B2
10565844 Pourmohammad Feb 2020 B2
10600263 Park et al. Mar 2020 B2
10602474 Goldstein Mar 2020 B2
10605477 Ridder Mar 2020 B2
10607147 Raykov et al. Mar 2020 B2
10619882 Chatterjee et al. Apr 2020 B2
10627124 Walser et al. Apr 2020 B2
10673380 Wenzel et al. Jun 2020 B2
10678227 Przybylski et al. Jun 2020 B2
10706375 Wenzel et al. Jul 2020 B2
10726711 Subramanian et al. Jul 2020 B2
10732584 Elbsat et al. Aug 2020 B2
10767885 Przybylski et al. Sep 2020 B2
10775988 Narain et al. Sep 2020 B2
10796554 Vincent et al. Oct 2020 B2
10809682 Patil et al. Oct 2020 B2
10809705 Przybylski Oct 2020 B2
10824125 Elbsat et al. Nov 2020 B2
10854194 Park et al. Dec 2020 B2
10871298 Ridder et al. Dec 2020 B2
10876754 Wenzel et al. Dec 2020 B2
10890904 Turney et al. Jan 2021 B2
10900686 Willmott et al. Jan 2021 B2
10901446 Nesler et al. Jan 2021 B2
10909642 Elbsat et al. Feb 2021 B2
10915094 Wenzel et al. Feb 2021 B2
10917740 Scott et al. Feb 2021 B1
10921972 Park et al. Feb 2021 B2
10921973 Park et al. Feb 2021 B2
10928790 Mueller et al. Feb 2021 B2
10936982 Ghosh Mar 2021 B1
10948884 Beaty et al. Mar 2021 B2
10949777 Elbsat et al. Mar 2021 B2
10955800 Burroughs et al. Mar 2021 B2
10956842 Wenzel et al. Mar 2021 B2
10962945 Park et al. Mar 2021 B2
10969135 Willmott et al. Apr 2021 B2
11002457 Turney et al. May 2021 B2
11009252 Turney et al. May 2021 B2
11010846 Elbsat et al. May 2021 B2
11016648 Fala et al. May 2021 B2
11016998 Park et al. May 2021 B2
11022947 Elbsat et al. Jun 2021 B2
11024292 Park et al. Jun 2021 B2
11036249 Elbsat Jun 2021 B2
11038709 Park et al. Jun 2021 B2
11042139 Deshpande et al. Jun 2021 B2
11042924 Asmus et al. Jun 2021 B2
11061424 Elbsat et al. Jul 2021 B2
11068821 Wenzel et al. Jul 2021 B2
11070389 Schuster et al. Jul 2021 B2
11073976 Park et al. Jul 2021 B2
11080289 Park et al. Aug 2021 B2
11080426 Park et al. Aug 2021 B2
11086276 Wenzel et al. Aug 2021 B2
11094186 Razak Aug 2021 B2
11108587 Park et al. Aug 2021 B2
11131473 Risbeck et al. Aug 2021 B2
11113295 Park et al. Sep 2021 B2
11119458 Asp et al. Sep 2021 B2
11120012 Park et al. Sep 2021 B2
11150617 Ploegert et al. Oct 2021 B2
11151983 Park et al. Oct 2021 B2
11156996 Schuster et al. Oct 2021 B2
11158306 Park et al. Oct 2021 B2
11182047 Nayak et al. Nov 2021 B2
11188093 Ko et al. Nov 2021 B2
11195401 Pourmohammad Dec 2021 B2
11217087 Pelski Jan 2022 B2
11226126 Przybylski et al. Jan 2022 B2
11243523 Llopis et al. Feb 2022 B2
11268715 Park et al. Mar 2022 B2
11268996 Vitullo et al. Mar 2022 B2
11269505 Fala et al. Mar 2022 B2
11272011 Laughton et al. Mar 2022 B1
11272316 Scott et al. Mar 2022 B2
11275348 Park et al. Mar 2022 B2
11275363 Przybylski et al. Mar 2022 B2
11281169 Chatterjee et al. Mar 2022 B2
11288754 Elbsat et al. Mar 2022 B2
11314726 Park et al. Apr 2022 B2
11314788 Park et al. Apr 2022 B2
11334044 Goyal May 2022 B2
11353834 Mueller et al. Jun 2022 B2
11356292 Ploegert et al. Jun 2022 B2
11360451 Pancholi et al. Jun 2022 B2
11361123 Ploegert et al. Jun 2022 B2
11372383 Hughley Jun 2022 B1
20020111698 Graziano et al. Aug 2002 A1
20020130868 Smith Sep 2002 A1
20030028269 Spriggs et al. Feb 2003 A1
20030030637 Grinstein et al. Feb 2003 A1
20030046862 Wolf et al. Mar 2003 A1
20030071814 Jou et al. Apr 2003 A1
20030078677 Hull et al. Apr 2003 A1
20030083957 Olefson May 2003 A1
20030103075 Rosselot Jun 2003 A1
20030171851 Brickfield et al. Sep 2003 A1
20030214400 Mizutani et al. Nov 2003 A1
20030233432 Davis et al. Dec 2003 A1
20040001009 Winings et al. Jan 2004 A1
20040064260 Padmanabhan et al. Apr 2004 A1
20040143474 Haeberle et al. Jul 2004 A1
20040153437 Buchan Aug 2004 A1
20040168115 Bauernschmidt et al. Aug 2004 A1
20040233192 Hopper Nov 2004 A1
20040260411 Cannon Dec 2004 A1
20050010460 Mizoguchi et al. Jan 2005 A1
20050119767 Kiwimagi et al. Jun 2005 A1
20050143863 Ruane et al. Jun 2005 A1
20050267900 Ahmed et al. Dec 2005 A1
20060004841 Heikkonen et al. Jan 2006 A1
20060009862 Imhof et al. Jan 2006 A1
20060017547 Buckingham et al. Jan 2006 A1
20060020177 Seo et al. Jan 2006 A1
20060028471 Kincaid et al. Feb 2006 A1
20060029256 Miyoshi et al. Feb 2006 A1
20060058900 Johanson et al. Mar 2006 A1
20060067545 Lewis et al. Mar 2006 A1
20060067546 Lewis et al. Mar 2006 A1
20060077255 Cheng Apr 2006 A1
20060184326 McNally et al. Aug 2006 A1
20060231568 Lynn et al. Oct 2006 A1
20060265664 Simons et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070016955 Goldberg et al. Jan 2007 A1
20070055757 Mairs Mar 2007 A1
20070055760 McCoy et al. Mar 2007 A1
20070061046 Mairs Mar 2007 A1
20070067062 Mairs Mar 2007 A1
20070088534 MacArthur et al. Apr 2007 A1
20070090951 Chan et al. Apr 2007 A1
20070091091 Gardiner et al. Apr 2007 A1
20070101433 Louch May 2007 A1
20070114295 Jenkins May 2007 A1
20070120652 Behnke May 2007 A1
20070139208 Kates Jun 2007 A1
20070216682 Navratil et al. Sep 2007 A1
20070219645 Thomas Sep 2007 A1
20070239484 Arond et al. Oct 2007 A1
20070268122 Kow et al. Nov 2007 A1
20080001735 Tran Jan 2008 A1
20080001763 Raja et al. Jan 2008 A1
20080027885 Van Putten et al. Jan 2008 A1
20080036593 Rose-Pehrsson et al. Feb 2008 A1
20080046388 Budike Feb 2008 A1
20080062167 Boggs et al. Mar 2008 A1
20080099045 Glenn et al. May 2008 A1
20080103798 Domenikos May 2008 A1
20080120396 Jayaram et al. May 2008 A1
20080144885 Zucherman et al. Jun 2008 A1
20080183424 Seem Jul 2008 A1
20080194009 Marentis Aug 2008 A1
20080198231 Ozdemir et al. Aug 2008 A1
20080209342 Taylor Aug 2008 A1
20080222565 Taylor et al. Sep 2008 A1
20080224862 Cirker Sep 2008 A1
20080242945 Gugliotti Oct 2008 A1
20080250800 Wetzel Oct 2008 A1
20080279420 Masticola et al. Nov 2008 A1
20080280275 Collopy Nov 2008 A1
20080303658 Melker et al. Dec 2008 A1
20080306985 Murray Dec 2008 A1
20080320552 Kumar Dec 2008 A1
20090001181 Siddaramanna et al. Jan 2009 A1
20090024944 Louch et al. Jan 2009 A1
20090065596 Seem et al. Mar 2009 A1
20090083120 Strichman et al. Mar 2009 A1
20090096791 Abshear et al. Apr 2009 A1
20090125337 Abri May 2009 A1
20090125825 Rye et al. May 2009 A1
20090144023 Seem Jun 2009 A1
20090157744 McConnell Jun 2009 A1
20090160673 Cirker Jun 2009 A1
20090322782 Kimchi Dec 2009 A1
20100048167 Chow et al. Feb 2010 A1
20100058248 Park Mar 2010 A1
20100064001 Daily Mar 2010 A1
20100070089 Harrod Mar 2010 A1
20100073162 Johnson et al. Mar 2010 A1
20100123560 Nix et al. May 2010 A1
20100134296 Hwang Jun 2010 A1
20100156628 Ainsbury et al. Jun 2010 A1
20100156630 Ainsbury Jun 2010 A1
20100188228 Hyland Jul 2010 A1
20100223198 Noureldin et al. Sep 2010 A1
20100249955 Sitton Sep 2010 A1
20100286937 Hedley Nov 2010 A1
20100318200 Foslien Dec 2010 A1
20100324962 Nesler Dec 2010 A1
20110010654 Raymond Jan 2011 A1
20110057799 Taneff Mar 2011 A1
20110077779 Fuller et al. Mar 2011 A1
20110083094 Laycock et al. Apr 2011 A1
20110087988 Ray et al. Apr 2011 A1
20110112854 Koch et al. May 2011 A1
20110126111 Gill May 2011 A1
20110154426 Doser et al. Jun 2011 A1
20110161124 Lappinga Jun 2011 A1
20110169646 Raichman Jul 2011 A1
20110184563 Foslien et al. Jul 2011 A1
20110202467 Hilber Aug 2011 A1
20110273298 Snodgrass et al. Nov 2011 A1
20110291841 Hollock et al. Dec 2011 A1
20110298301 Wong Dec 2011 A1
20110316703 Butler et al. Dec 2011 A1
20110320054 Brzezowski Dec 2011 A1
20120022700 Drees et al. Jan 2012 A1
20120039503 Chen et al. Feb 2012 A1
20120062382 Taneff Mar 2012 A1
20120075464 Derenne et al. Mar 2012 A1
20120109988 Li et al. May 2012 A1
20120112883 Wallace May 2012 A1
20120131217 Delorme May 2012 A1
20120158185 El-Mankabady et al. Jun 2012 A1
20120216243 Gill Aug 2012 A1
20120224057 Gill Sep 2012 A1
20120259466 Ray et al. Oct 2012 A1
20120262472 Garr et al. Oct 2012 A1
20120272146 D'souza et al. Oct 2012 A1
20120291068 Khushoo Nov 2012 A1
20120303652 Tseng Nov 2012 A1
20120310418 Harrod et al. Dec 2012 A1
20130055132 Foslien Feb 2013 A1
20130060794 Puttabasappa et al. Mar 2013 A1
20130082842 Balazs et al. Apr 2013 A1
20130086152 Hersche et al. Apr 2013 A1
20130091631 Hayes et al. Apr 2013 A1
20130110295 Zheng May 2013 A1
20130169681 Rasane et al. Jul 2013 A1
20130184880 McMahon Jul 2013 A1
20130187775 Marsden et al. Jul 2013 A1
20130204570 Mendelson et al. Aug 2013 A1
20130229276 Hunter Sep 2013 A1
20130268293 Knudson et al. Oct 2013 A1
20130289774 Day et al. Oct 2013 A1
20130338837 Hublou et al. Dec 2013 A1
20140032157 Khiani Jan 2014 A1
20140040998 Hsieh Feb 2014 A1
20140046490 Foslien et al. Feb 2014 A1
20140046722 Rosenbloom Feb 2014 A1
20140058539 Park Feb 2014 A1
20140078151 Garr et al. Mar 2014 A1
20140167917 Wallace et al. Jun 2014 A2
20140207291 Golden Jul 2014 A1
20140292518 Wildman Oct 2014 A1
20140307076 Deutsch Oct 2014 A1
20140309757 Le Sant Oct 2014 A1
20140316582 Berg-Sonne Oct 2014 A1
20140320289 Raichman Oct 2014 A1
20140342724 Hill Nov 2014 A1
20150025329 Amarasingham et al. Jan 2015 A1
20150032264 Emmons Jan 2015 A1
20150056909 Chien Feb 2015 A1
20150070174 Douglas Mar 2015 A1
20150077258 Nelson et al. Mar 2015 A1
20150113462 Chen et al. Apr 2015 A1
20150153918 Chen Jun 2015 A1
20150161874 Thyroff et al. Jun 2015 A1
20150167995 Fadell et al. Jun 2015 A1
20150168949 Hua Jun 2015 A1
20150194043 Dunn et al. Jul 2015 A1
20150198707 Al-Alusi Jul 2015 A1
20150212717 Nair Jul 2015 A1
20150213222 Amarasingham Jul 2015 A1
20150213379 Nair Jul 2015 A1
20150216369 Hamilton et al. Aug 2015 A1
20150253748 Brun et al. Sep 2015 A1
20150281287 Gill et al. Oct 2015 A1
20160054023 Baker et al. Feb 2016 A1
20160061476 Schultz et al. Mar 2016 A1
20160061477 Schultz et al. Mar 2016 A1
20160061794 Schultz et al. Mar 2016 A1
20160061795 Schultz et al. Mar 2016 A1
20160063833 Schultz et al. Mar 2016 A1
20160066067 Schultz et al. Mar 2016 A1
20160116181 Aultman Apr 2016 A1
20160139067 Grace May 2016 A1
20160253897 Wildman et al. Sep 2016 A1
20160255516 Hill et al. Sep 2016 A1
20160298864 Ekolind et al. Oct 2016 A1
20160306934 Sperry et al. Oct 2016 A1
20160314683 Felch et al. Oct 2016 A1
20160328948 Ferniany Nov 2016 A1
20160335731 Hall Nov 2016 A1
20160367925 Blackley Dec 2016 A1
20170024986 Austin Jan 2017 A1
20170193792 Bermudez Rodriguez et al. Jul 2017 A1
20170256155 Sengstaken, Jr. Sep 2017 A1
20170280949 Wildman et al. Oct 2017 A1
20170294106 Thyroff Oct 2017 A1
20170365024 Koch et al. Dec 2017 A1
20180016773 Chandler et al. Jan 2018 A1
20180062941 Brown Mar 2018 A1
20180151054 Pi May 2018 A1
20180218591 Easter Aug 2018 A1
20180259927 Przybylski et al. Sep 2018 A1
20180259934 Piaskowski et al. Sep 2018 A1
20180293038 Meruva et al. Oct 2018 A1
20180301014 Worral et al. Oct 2018 A1
20180313695 Shim et al. Nov 2018 A1
20180330815 Demir Nov 2018 A1
20180365957 Wright et al. Dec 2018 A1
20190051138 Easter Feb 2019 A1
20190139395 Rogachev et al. May 2019 A1
20190155268 Cohen et al. May 2019 A1
20190156443 Hall May 2019 A1
20190209719 Andersen et al. Jul 2019 A1
20200009280 Kupa et al. Jan 2020 A1
20200074836 Kolavennu et al. Mar 2020 A1
20200090089 Aston et al. Mar 2020 A1
20200146557 Cheung et al. May 2020 A1
20200152047 Pelski May 2020 A1
20200187336 Verberkt et al. Jun 2020 A1
20200200420 Nayak et al. Jun 2020 A1
20200225655 Cella Jul 2020 A1
20200348662 Cella Nov 2020 A1
20210010701 Suindykov et al. Jan 2021 A1
20210011443 Mcnamara et al. Jan 2021 A1
20210011444 Risbeck et al. Jan 2021 A1
20210157312 Cella May 2021 A1
20210192412 Krishnaswamy Jun 2021 A1
20210319887 Derrick, Jr. Oct 2021 A1
20210364181 Risbeck et al. Nov 2021 A1
20210373519 Risbeck et al. Dec 2021 A1
20220011731 Risbeck et al. Jan 2022 A1
20220036302 Cella Feb 2022 A1
20220044204 Cella Feb 2022 A1
20220102007 Palanivel Mar 2022 A1
20220113045 Gamroth et al. Apr 2022 A1
20220137580 Burroughs et al. May 2022 A1
20220253023 Morton Aug 2022 A1
20220275959 Hughley Sep 2022 A1
Foreign Referenced Citations (41)
Number Date Country
2387100 Nov 2003 CA
2538139 Mar 2005 CA
103110410 May 2013 CN
103970977 Aug 2014 CN
105116848 Dec 2015 CN
108961714 Dec 2018 CN
110009245 Jul 2019 CN
110084928 Aug 2019 CN
110827457 Feb 2020 CN
1669912 Jun 2006 EP
2310981 Apr 2011 EP
7085166 Mar 1995 JP
11024735 Jan 1999 JP
11317936 Nov 1999 JP
2001356813 Dec 2001 JP
2005242531 Sep 2005 JP
2005311563 Nov 2005 JP
1172747 Aug 2012 KR
101445367 Oct 2014 KR
1499081 Mar 2015 KR
9621264 Nov 1996 WO
2004029518 Apr 2004 WO
2005045715 May 2005 WO
2008152433 Dec 2008 WO
2008157755 Dec 2008 WO
2009012319 Jan 2009 WO
2009079648 Jun 2009 WO
2010106474 Sep 2010 WO
2011025085 Mar 2011 WO
2011043732 Apr 2011 WO
2011057173 May 2011 WO
2011123743 Oct 2011 WO
2013062725 May 2013 WO
2013178819 Dec 2013 WO
2014009291 Jan 2014 WO
2014098861 Jun 2014 WO
2014135517 Sep 2014 WO
2016123536 Aug 2016 WO
2017057274 Apr 2017 WO
2019046580 Mar 2019 WO
2020024553 Feb 2020 WO
Non-Patent Literature Citations (147)
Entry
Bocicor et al. “Wireless Sensor Network based System for the Prevention of Hospital Acquired Infections”, arxiv.org, Cornell University Ithaca, NY 14853, May 2, 2017, XP080947042, (Abstract).
Shhedi et al., “Traditional and ICT Solutions for Preventing the Hospital Acquired Infection”, 2015 20th International Conference on Control Systems and Computer Science, IEEE, May 27, 2015, pp. 867-873, XP033188038.
Extended European Search Report, EP Application No. 20151295.1, pp. 13, dated May 26, 2020.
Sinha et al., “Balance Infection Risk, Sustainablity and Comfort with Open Blue,” Johnson Controls, 2 pages, 2021.
“What is the GE Nucleus Home Manager? How can a Home Manager Help with Energy Conservation?” GE Nucleus, 2 pages, printed Jan. 15, 2013. www.geappliances.com/home-energy-manager/about-energy-monitors.htm.
“Lucid Design Group—Building Dashboard Network—Apps,” 7 pages, Jan. 15, 2013. www.luciddesigngroup.com/network/apps.php#homepage.
Preuveneers et al., “Intelligent Widgets for Intuitive Interaction and Coordination in Smart Home Environments,” IEEE Eighth International Conference on Intelligent Environments, pp. 157-164, 2012.
Wu et al., “A Web 2.0 Based Scientific Application Framework,” 7 pages, prior to Jul. 24, 2014.
“The Home Dashboard,” CRBM info@hand website, 46 pages, prior to Apr. 25, 2013.
“Free Facilities Dashboards,” eSight Energy Website, 2 pages, prior to Apr. 25, 2013.
Alerton Building Controls, Gallery Prints, 7 pages, Dec. 19, 2013.
Carter, “Industrial Energy Management Dashboards Require a Toolkit,” Cross Automation, 11 pages, Nov. 4, 2013.
Open Blue Enterprise Manager, Optimize Building Portfolio Performance with Advanced Data Analytics and AI, Johnson Controls, 20 pages, Accessed Sep. 29, 2022.
Open Blue, Now, Spaces have Memory and Identity, Johnson Controls, 20 pages, 2022. Accessed Feb. 10, 2022.
Open Blue Enterprise Manager User Guide, Johnson Controls, 108 pages, Release 4.1.3, 2022, Accessed Aug. 29, 2022.
Risbeck et al.; “Modeling and Multiobjective Optimization of Indoor Airborne Disease Transmission Risk and Associated Energy Consumption for Building HVAC Systems,” Energy and Buildings, vol. 253, 24 pages, 2021.
e-homecontrols.com, “e-Home Controls Website,” link to actual website no longer works, 1 page, prior to Dec. 19, 2013.
“C&C (/)—Omniboard,” 5 pages, Dec. 19, 2013. http://www.ccbac.com.
“DomController Home Automation Software—Control Anything from Anywhere,” 11 pages, printed Jan. 6, 2015. http://www.domcontroller.com/en/.
“Novar Opus Bas,” 1 page, prior to Feb. 13, 2013. http://www.novar.com/ems-bas/opus-building-automation-system.
“A 3D Interactive Environment for Automated Building Control,” Master's Dissertation, Instituto Superior Tecnico, 120 pages, Nov. 2012.
Panduit Corp., “Enable a Building Automation with Panduit Enterprise Solutions,” 4 pages, Nov. 2012.
Honeywell, “WEBs-AX Web-Enabled Building Solutions,” sales brochure, Honeywell International Inc., Mar. 2009.
Honeywell, “Attune Advisory Services,” press release, Honeywell International Inc., Mar. 20, 2012.
EnteliWEB Overview, web pages retrieved on May 9, 2013 from http://deltacontrols.com/products/facilities-management/supervisory-software et seq. by the Internet Archive at web.archive.org.
“BACnet Protocol Implementation Conformance Statement” for enteliWEB, Delta Controls, Jul. 17, 2013.
Castle, “7 Software Platforms that Make Building Energy Management Easy,” http://greentechadvocates.com/2012/11/28/7-software-platforms-that-make-building-energy-managment-easy/, Nov. 28, 2012.
EnteliWEB “Software: Enterprise Energy Management”, catalog sheet, Delta Controls, 2012.
EnteliWEB “Software: Enterprise Energy Management”, catalog sheet, Delta Controls., 2010.
“Intelligent Building Management Systems in Miami,” Advanced Control Corp., Mar. 7, 2013.
“The Ohio State University,” BACnet International Journal, vol. 5, p. 4, Jan. 2013.
Bobker et al., “Operational Effectiveness in Use of BAS,” Proceedings of the 13th International Conference for Enhanced Building Operations, Oct. 8, 2013.
Castelo, “A 3D Interactive Environment for Automated Building Control,” Elsevier, Nov. 8, 2012.
“Creston Special Report: How Intelligent building management solutions are reducing operational costs,” Creston, 2012.
“Building Automation Software Solutions,” Iconics, 2013.
Lacey, “The Top 10 Software Vendors Connecting Smart Buildings to the Smart Grid,” http://www.greentechmedia.com/articles/read/the-top-10-companies-in-enterprise-smart-grid, Jul. 18, 2013.
“NiagraAX Product Model Overview,” Tridium, Inc., 2005.
“An Overview of NiagraAX: A comprehensive software platform designed to create smart device applications,” Tridium, Inc., 2005.
“Phoenix Controls Portal,” Phoenix Controls, Inc., 2013.
Quirk, “A Brief History of BIM,” Arch Daily, Dec. 7, 2012.
Samad et al., “Leveraging the Web: A Universal Framework for Building Automation,” Proceedings of the 2007 American Control Conference, Jul. 11, 2007.
Sinha et al., “9 Key attributes of energy dashboards and analytics tools,” Aug. 28, 2013, https://www.greenbiz.com/blog/2013/08/28/9-key-attributes-energy-dashboards-and=analytics-tools.
Sinopoli, “Dashboards For Buildings,” http://www/automatedbuildings.com/news/dec10/articles/sinopoli/101119034404sinopoli.html, Dec. 2010.
Sinopoli, “Modeling Building Automation and Control Systems,” http://www.automatedbuildings.com/news/jun13/articles/sinopoli/130521122303sinopoli.html, Jun. 2013.
Zito, “What is Tridium Part 1,” http://blog.buildingautomationmonthly.com/what-is-tridium/, May 12, 2013.
Zito, “What is Tridium Part 2,” http://blog.buildingautomationmonthly.com/tridium-part-2/, Sep. 10, 2013.
International Search Report and Written Opinion dated Jul. 17, 2018 for International PCT Application No. PCT/US2018/025189 (12 pages).
“Data analytics and smart buildings increase comfort and energy efficiency”, https://www.microsoft.com/itshowcase/Article/Content/845/Data-analytics-and-smart-buildings-increase-comfort-and-energy-efficiency, Dec. 19, 2016, 8 pages.
Donnelly, “Building Energy Management: Using Data as a Tool”, http://www.buildingefficiencyinitiative.org/sites/default/files/legacy/InstituteBE/media/Library/Resources/Existing-Building-Retrofits/Using-Building-Data-as-a-Tool.pdf, Oct. 2012, 9 pages.
“ASHRAE Dashboard Research Project,” 29 pages, Aug. 28, 2008.
Olken et al., “Object Lessons Learned from a Distributed System for Remote Building Monitoring and Operation,” ACM SIGPLAN Notices, vol. 33, No. 10, pp. 284-295, Oct. 1998.
Proliphix, Inc., “Proliphix IP Devices: HTTP API,” 28 pages, Jan. 23, 2006.
Proliphix, Inc., “Remote Management User Guide,” 12 pages, prior to Aug. 27, 2007.
Rogan et al., “Smart and Final Food Stores: A Case Study in Web Based Energy Information and Collection,” Web Based Energy Information and Control Systems: Case Studies and Application, Chapter 6, p. 59-64, 2005.
Sharp, “Actius AL3DU 3D Lc Display High Performance 3D Visualization,” 2 pages, prior to Mar. 17, 2006.
So et al., “Building Automation on the Information Superhighway,” ASHRAE Transactions, vol. 104, Part 2, pp. 176-191, 1998.
So et al., “Building Automation Systems on the Internet,” Facilities vol. 15, No. 5/6, pp. 125-133, May/Jun. 1997.
Talon, “Raptor Controller,” 6 pages, Oct. 2003.
Talon, “Workstation Software,” 4 pages, Nov. 2002.
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002.
Lucid Design Group, Inc., “Building Dashboard,” 2 pages, Printed 5/30/2013.
“America's Largest Managed Security Services Provider Launches Comprehensive, Integrated Covid-19 Safety Program for Office Buildings and Suites,” KastleSafeSpaces, 5 pages, May 11, 2020.
“Biometric Door Reader With Body Temperature Detection,” Kintronics, 9 pages, accessed May 21, 2020.
“Body Surface Temperature Screening with Alarm Function TVS-200IS-TVS-500IS,” Nippon Avionics Co., 3 pages, accessed May 21, 2020.
“BriefCam announces video analytics innovation for contact tracing, physical distancing, occupancy management and face mask detection,” BriefCam LTD, 11 pages, Jun. 5, 2020.
“Thermal Imaging SmartPhone Can Be used For Temperature Screening of People,” CAT, 3 pages, accessed Jul. 13, 2020.
“Contact Tracing Now Available on Identiv's Hirsch Access Control Platform,” IDENTIV, 5 pages, May 21, 2020.
Silva et al., “Cough localization for the detection of respiratory diseases in pig houses,” ScienceDirect, 7 pages, May 28, 2008.
Oey et al., “Evaluation of Isolation Compliance Using Real Time Video In Critical Care,” North Shore University Hospital, 1 page, Oct. 9, 2015.
“Facial Attendace System With Temperature Screening Now In India,” IANS, 5 pages, Mar. 19, 2020.
“Plan to Re-Open,” EHIGH, 16 pages, accessed Jun. 13, 2020.
“How Smarter AI-Powered Cameras Can Mitigate the Spread of Wuhan Novel,” AnyConnect, 22 pages, 2020.
“How to fight COVID-19 with machine learning,” DataRevenue, 20 pages, accessed May 25, 2020.
Honeywell, “INNCONTROL 5,” 2 pages, Aug. 8, 2018.
“IP Door Access Control,” KINTRONICS, 21 pages, 2014.
“Kogniz AI Health Response Platform,” KOGNIZ, 9 pages, accessed May 21, 2020.
“Machine Learning Could Check If You're Social Distancing Properly at Work,” MIT Technology Review, 7 pages, Apr. 17, 2020.
Punn et al., “Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort techniques,” 10 pages, May 6, 2020.
Burt, “NEC launches dual face biometric and fever detection system for access control,” BIOMETRIC Update, 4 pages, May 8, 2020.
“Remote temperature monitoring,” AXIS Communication, 10 pages, 2014.
“FebriEye-AI Based Thermal Temperature Screening System,” vehant, 1 page, 2020.
“See The World In A New Way Hikvision Thermal Cameras,” HIKVISION, 12 pages, 2017.
Allain, “Trying out the iPhone Infrared Camera: The FLIR One,” WIRED, 15 pages, 2014.
Dasgupta, “Your voice may be able to tell you if you have Covid,” Hindustan Times, 4 pages, Apr. 16, 2020.
Ganguty, “Gurugram-based startup Staqu has modified AI-powered JARVIS to battle coronavirus,” YOURSTORY, 7 pages, Mar. 31, 2020.
Trane, “Creating Input/Output Objects,” 196 pages, retrieved Jul. 10, 2020.
Trane, “Using the Graphing Control Editor,” 181 pages, retrieved Jul. 10, 2020.
Genetec, Feature note, “Dashboards, A comprehensive view of your security and operations”, pp. 2, 2019 Genetec Inc.
Extended European Search Report, EP Application No. 22155368.8, European Patent Office, dated Jun. 30, 2022 (10 pages).
Johnson Controls Develops Industry-first AI Driven Digital Solution to Manage Clean Air, Energy, Sustainability, Comfort and Cost in Buildings, 7 pages, 2022. Accessed Aug. 29, 2022.
Johnson Controls and Microsoft Announce Global Collaboration, Launch Integration between Open Blue Digital Twin and Azure Digital Twins, 7 pages, 2022. Accessed Aug. 29, 2022.
Open Blue Companion Desktop User Guide, Johnson Controls, 18 pages, 2022.
Open Blue Digital Twin:Designed for Buildings. Infused with AI, Johnson Controls, 17 pages, 2022. Accessed Mar. 29, 2022.
Open Blue Enterprise Manager User Guide, Johnson Controls, Release 3.1, 72 pages, Jan. 28, 2021.
Open Blue Enterprise Manager User Guide, Johnson Controls, Release 4.0, 78pages, Nov. 29, 2021.
Open Blue Location Manager User Guide, Johnson Controls, Release 2.4.7, 28 pages, Jul. 20, 2022.
Open Blue Platform, Make Smarter, Faster, More Data-Driven Decisions, Johnson Controls, 15 pages, 2022. Accessed Aug. 29, 2022.
Honeywell, “Energy Manager User Guide,” Release 3.2, 180 pages, 2008.
“Fuzzy Logic Toolbox 2.1, Design and Stimulate Fuzzy Logic Systems,” The MathWorks, 2 pages, May 2004.
“Junk Charts, Recycling Chartjunk as junk art,” 3 pages, Oct. 2, 2006.
“Model Predictive Control Toolbox 2, Develop Internal Model-Based Controllers for Constrained Multivariable Processes,” The MathWorks, 4 pages, Mar. 2005.
Honeywell, “Product Guide 2004,” XP-002472407, 127 pages, 2004.
“Statistics Toolbox, for Use with Matlab,” User's Guide Version2, The MathWorks, 408 pages, Jan. 1999.
“Vykon Energy Suite Student Guide,” Tridium Inc., 307 pages, Mar. 3, 2006.
“Web Based Energy Information Systems for Energy Management and Demand Response in Commercial Buildings,” California Energry Commission, 80 pages, Oct. 2003.
Andover Controls, Network News, vol. 2, No. 2, 8 pages, 1997.
Andover Controls World, 4 pages, Spring 1997.
Bell et al., “Early Event Detection—Results from A Prototype Implementation,” AICHE Spring National Meeting, 15 pages, Apr. 2005.
CADGRAPHICS, “The CADGRAPHICS User's Guide,” 198 pages, 2003.
Carrier Comfort Network CCN Web, “Web Browser User Interface to the Carrier Comfort Network,” 2 pages, 2002.
Carrier Comfort Network CCN Web, Overview and Configuration Manual, 134 Manual, Apr. 2006.
Carrier Comfort Network CCN Web, Product Data, 2 pages, Apr. 2006.
Carrier, “i-Vu Powerful and Intuitive Front End for Building Control,” 2 pages, Aug. 2005.
Carrier, “i-Vu Web-Based Integrated Control System,” 3 pages, 2005.
Carrier, Demo Screen Shots, 15 pages, prior to Aug. 27, 2007.
Carrier, i-Vu CCN 4.0, Owner's Guide, 20 pages, Jul. 2007.
Carrier, i-Vu CCN, 7 pages, 2007.
Chan, “Rank Revealing QR Factorizations,” Linear Algebra and It's Applications, vol. 88-89, p. 67-82, Apr. 1987.
Circon, “i-Browse Web-Based Monitoring and Control for Facility Management,” 2 pages, prior to Aug. 27, 2007.
Australian Application 2009904740, Published copy, 28 pages, Application Filed on Sep. 29, 2009.
Echelon, “Energy Control Solutions with the i.Lon SmartServer,” 4 pages, 2007.
Echelon, “i.Lon 100e3 Internet Server Models 72101R-300, 72101R-308, 72102R-300, 72103-R300 . . . ” 5 pages, copyright 2002-2007.
Echelon, “i.Lon 100e3 Internet Server New Features,” 15 pages, Sep. 2006.
Echelon, “i.Lon SmartServer,” 5 pages, 2007.
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995.
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995.
Honeywell Home and Building Control Bulletin, “Introduction of the S7350A Honeywell WebPAD Information Appliance,” 2 pages, Aug. 29, 2000; Picture of WebPad Device with touch screen, 1 Page; and screen shots of WebPad Device, 4 pages.
Honeywell, Excel 15B W7760B Building Manager Release 2.02.00, Installation Instructions, 28 pages, Dec. 2004.
Honeywell, The RapidZone Solution, Excel 5000 Open System, Application Guide, 52 pages, Jan. 2004.
“Remote Building Monitoring and Operations Home Page,” 5 pages, prior to Aug. 27, 2007.
“Carrier: i-Vu CCN,” 1 page, printed Mar. 11, 2008.
Carrier: 33CSCCNWEB-01 CCN Web Internet Connection to the Carrier Comfort Network, 1 page, printed Mar. 11, 2008.
“Products,” 5 pages, printed Jul. 3, 2007. http://www.docs.hvacpartners.com/idc/groups/public/documents/techlit/gs-controls-ivuccn.rtf.
Lightstat Incorporated, “Internet Programmable Communicating Thermostats,” 1 page, printed Mar. 13, 2007. http://www.lightstat.com/products/istat.asp.
Sharp, “Actius RD3D Desktop Replacement Notebook with Industry-Breakthrough 3D Screen,” 1 page, printed Jun. 16, 2005. http://www.sharpsystems.com/products/pc_notebooks/actius/rd/3d/.
“Lights On A Wireless Lighting Control System,” 11 pages, printed Mar. 22, 2007 http://www2.sims.berkeley.edu/courses/is213/s06/projects/lightson;final.html.
I.Lon 100e3 Internet Server, 1 page, prior to Aug. 27, 2007.
I.Lon, SmartServer, 2 pages, prior to Aug. 27, 2007.
I-stat, Demo Screen Shots, 9 pages, printed Mar. 13, 2007.
I-stat, The Internet Programmable Thermostat, 2 pages, prior to Aug. 27, 2007.
Ball, “Green Goal of ‘Carbon Neutrality’ Hits Limit,” TheWall Street Journal, 7 pages, Dec. 30, 2008.
Network Integration Engine (NIE), Johnson Controls, 3 pages, Nov. 9, 2007.
Network Integration Engine (NIE), Product Bulletin, Johnson Controls, pp. 1-11, Jan. 30, 2008.
Kourti, “Process Analysis and Abnormal Situation Detection: From Theory to Practice,” IEEE Control Systems Magazine, p. 10-25, Oct. 2002.
Mathew, “Action-Oriented Benchmarking, Using CEUS Date to Identify and Prioritize Efficiency Opportunities in California Commercial Buildings,” 26 pages, Jun. 2007.
Morrison et al., “The Early Event Detection Toolkit,” Honeywell Process Solutions, 14 pages, Jan. 2006.
Narang, “WEBARC: Control and Monitoring of Building Systems Over the Web,” 53 pages, May 1999.
Related Publications (1)
Number Date Country
20230205153 A1 Jun 2023 US
Continuations (2)
Number Date Country
Parent 17833207 Jun 2022 US
Child 18171075 US
Parent 17187278 Feb 2021 US
Child 17833207 US