Hearing aid assembly having external directional microphone

Information

  • Patent Grant
  • 6704423
  • Patent Number
    6,704,423
  • Date Filed
    Wednesday, December 20, 2000
    24 years ago
  • Date Issued
    Tuesday, March 9, 2004
    20 years ago
Abstract
A hearing aid assembly having a directional microphone mounted externally to a hearing aid body is disclosed. The hearing aid, which may be, for example, an in-the-canal (ITC) or completely-in-the-canal (CIC) hearing aid, has a mounting arm attached to an external surface of the hearing aid body, and the mounting arm in turn has a directional microphone mounted therewith. The mounting arm provides mechanical and electrical connection between the directional microphone and the hearing aid. The mounting arm is also configured such that, upon insertion of the ITC or CIC hearing aid into the ear canal of a wearer, the microphone is located in the region above the tragion portion of the ear.
Description




INCORPORATION BY REFERENCE




The above-referenced United States provisional application Ser. No. 60/173,427 is hereby incorporated herein by reference in its entirety.




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




N/A




BACKGROUND OF THE INVENTION




Numerous types of hearing aids are known and are currently in use. Hearing aid users generally prefer hearing aid types that are minimally visible to third parties, but provide maximum performance in noisy environments. One common hearing aid type is worn behind-the-ear (BTE) and is quite visible to third parties. Such BTE hearing aids also generally do not perform well in noisy environments. For example, typical BTE hearing aids demonstrate Articulation-Index-weighted average Directivity Index (AIDI) values in the range of 2-3 dB (due to the high frequency shadowing of the Pinna, or earflap). For many users, BTE hearing aids simply do not provide the directivity performance sufficient to make the BTE viable in noisy environments.




In-the-ear (ITE) hearing aid solutions that are less visible and also provide improved performance in noisy environments have therefore been developed using directional microphone technology. One directional microphone for ITE applications is the D-MIC® of Etymoic Research, Inc. The D-MIC® directional microphone in an ITE hearing aid provides typical AIDI values in the range of 5+dB, a substantial improvement over BTE applications.




Despite the fact, however, that ITE hearing aids as such are less visible and provide substantial improvement in directivity performance, ITE hearing aids still require that the entire concha of the wearer's ear be filled, and that the directional microphone be located on the near flat outer surface of the hearing aid. Such an arrangement is still quite visible.




Consequently, even less visible hearing aids have been developed for in the ear applications, namely in the canal (ITC) and completely in the canal (CIC) hearing aids. ITC and CIC hearing aids are discreetly located in the resonant portion of the ear canal, and thus do not require that the entire concha of the ear be filled. Hearing aid wearers, therefore, generally prefer the less visible ITC and CIC hearing aids over ITE hearing aids.




ITC and CIC hearing aids, however, do not perform as well as ITE hearing aids, or even BTE hearing aids, in noisy environments. Directional microphones simply do not provide useful directionality in ITC and CIC hearing aid applications because of the location of the hearing aid in the resonant portion of the wearer's ear canal. The sound field at such a location has no detectable frequency dependent phase shift as is found in free space or on a surface in free space (as with an ITE hearing aid). Currently available ITC and CIC hearing aids therefore use only omni-directional microphones, and provide typical AIDI values in the range of −0.5 to 0.2 dB. Such directionality performance is not adequate for most users in noisy environments.




It is thus an object of the invention to provide the improved directionality performance similar to ITE solutions for the less visible ITC and CIC hearing aids.




It is a further object of the invention to provide the improved directionality performance similar to ITE solutions for BTE hearing aids with little or no visual impact or prior art BTE hearing aid designs.




It is still a further object of the invention to provide an overall improved directivity performance for ITE hearing aid applications.




BRIEF SUMMARY OF THE INVENTION




These and other objects of the invention are achieved in a microphone system having a hearing aid housing and a directional microphone mounted externally to the hearing aid housing. A link operatively couples the directional microphone to a component, such as, for example, a hearing aid amplifier or speaker, located internally to the hearing aid housing. The link may also be configured to mechanically mount the directional microphone to an external surface of the hearing aid housing, which surface may be, for example, a hearing aid faceplate.




In one embodiment, the link is a mounting arm that effectively mounts the directional microphone to a hearing aid faceplate and enables electrical connection of the directional microphone to the component within the hearing aid housing. For example, the mounting arm may be a rigid tube that mounts the directional microphone on one and is mounted to a faceplate on the other. Wires connecting the directional microphone to the internal component may therefore travel through the tube and faceplate.




The directional microphone may be configured externally to the hearing aid housing such that, when the hearing aid housing is inserted into the ear of a wearer, the microphone is located between the helix and tragus portions of the ear.




The directional microphone may comprise a directional microphone cartridge having a front inlet tube and a rear inlet tube both operatively coupled to the microphone cartridge. In one embodiment, the front tube is empty. In another embodiment, an acoustical impedance, such as, for example, a plurality of rods are placed longitudinally in the front inlet tube to improve the polar performance of the directional microphone. The rods may be, for example, monofilament fishing line.











These and other advantages and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.




BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING





FIG. 1

is a block diagram of a hearing aid assembly of the present invention.





FIG. 2

is one embodiment of the hearing aid assembly of the present invention for ITC and CIC hearing aid applications.





FIG. 3

is another embodiment of the hearing aid assembly of the present invention for BTE hearing aid applications.





FIG. 4

illustrates an exploded side view of one embodiment of a directional microphone assembly for use in the hearing aid assembly embodiments of

FIGS. 2 and 3

.





FIG. 5

is an end view of the front tube portion of the microphone assembly of

FIG. 4

having rods placed longitudinally in the front tube portion.





FIG. 6

is a plot of the frequency response for each of the directional microphone assembly embodiments of

FIGS. 4 and 5

.





FIG. 7

illustrates plots of the polar response of the directional microphone assembly of FIG.


4


.





FIG. 8

illustrates plots of the polar response of the directional microphone assembly of FIG.


5


.





FIG. 9

depicts an upper mounting portion and tube portion of a link or mounting arm according to the present invention.





FIG. 10

illustrates the directional microphone assembly of

FIG. 4

mounted in the upper mounting portion of FIG.


9


.





FIG. 11

illustrates a side cross-sectional view of one embodiment of connection of the link or mounting arm of

FIG. 2

with a hearing aid faceplate.





FIG. 12

is a top view of one embodiment of an elbow and nut depicted in FIG.


11


.





FIG. 13

illustrates one embodiment of the hearing aid assembly of the present invention inserted into the ear canal of a wearer.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

is a block diagram of a hearing aid assembly of the present invention. Hearing aid assembly


1


comprises a hearing aid


3


that is mechanically and electrically connected to an external directional microphone


5


via a link


7


. Directional microphone


5


may be a first or higher order directional microphone. Directional microphone


5


may comprise, for example, a single directional microphone cartridge as shown in

FIG. 1

or an array microphone as described in copending application Ser. No. 09/517,848 of Soede et al., which application is incorporated by reference herein in its entirety. Directional microphone


5


may also comprise a dual omnidirectional directional microphone. Directional microphone


5


may also incorporate an omni-directional microphone for switching between directional and omni-directional modes. Hearing aid


3


may be a BTE, ITE, ITC or CIC hearing aid, and may include internal components such as an amplifier


9


and a receiver


11


, as is known in the art.




During operation of the hearing aid assembly


1


, sound energy impinges on the externally located directional microphone


5


, and is transduced by the directional microphone


5


into electrical signals. The electrical signals are then transmitted to the hearing aid


3


via the link


7


, where the signals are amplified by the amplifier


9


, transduced to sound energy by the receiver


11


, and then transmitted into the ear canal of a wearer.





FIG. 2

is one embodiment of the hearing aid assembly of the present invention for ITC and CIC hearing aid applications. Hearing aid assembly


13


comprises a directional microphone


15


that is mechanically and electrically connected to an ITC hearing aid


17


via link (or mounting arm)


19


. Alternatively, directionally microphone


15


is mechanically and electrically connected to a CIC hearing aid


21


(shown smaller by a dotted outline) via the links


19


. As can be seen, the CIC hearing aid


21


, as well as the additional length of the link


19


needed for the location of the CIC hearing aid


21


further in the ear canal (relative to ITC hearing aid


17


), are depicted by dashed lines. In either the ITC or CIC application, the directional microphone


15


is located, as generally shown in

FIG. 2

, in the notch between the helix


18


and tragus


20


portions of the ear, with a front sound inlet port


23


of the microphone


15


facing generally forward.





FIG. 3

illustrates another embodiment of the hearing aid assembly of the present invention for BTE hearing aid applications. Hearing aid assembly


25


comprises a directional microphone


27


that is electrically and mechanically connected to a BTE hearing aid body


29


via a link (or mounting arm)


31


. BTE hearing aid body


29


is also acoustically connected to an earmold


33


via a tube


35


. Connection between BTE hearing aid body


29


and tube


35


is not shown in

FIG. 3

because the connection is located behind, and is obscured by, directional microphone


27


and link


31


. However, connection between BTE hearing aid bodies and earmolds are known in the art.




As can be seen from

FIG. 3

, the directional microphone


27


is located on the side of the head near the notch between the helix and tragus portions of the ear like the directional microphones in the embodiments illustrated in FIG.


2


. Such a location of the directional microphone provides the desired results, as will become more apparent below. However, other locations of the microphone are also possible, such as, for example, in the space


36


below the tragus of the ear. In general, acceptable results may be achieved by, for example, locating the directional microphone with the front sound entry port positioned over the occluded ear canal, and the rear sound entry port positioned approximately in the range of 4-9 millimeters toward the back of the head, in the “bowl” or concha


34


of the ear.





FIG. 4

illustrates an exploded side view of one embodiment of a directional microphone assembly for use in the hearing aid embodiments of

FIGS. 2 and 3

. Directional microphone assembly


37


comprises a directional microphone cartridge


39


having a front sound inlet port


41


, a rear sound inlet port


43


and electrical terminals


45


. The directional microphone cartridge may be, for example, a variation of a Model TM directional microphone cartridge available from Knowles Electronics.




Directional microphone assembly


37


further comprises a hollow tube


47


. Tube


47


may be, for example, #15 hypodermic tubing having an inner diameter of 0.054 inches, and may have, for example, an overall length of approximately 0.23 inches. Tube


47


has saddle notch


49


cut or formed therein, forming a front sound inlet tube portion


51


on the front end of the tube


47


, and a rear sound inlet tube portion


53


on the rear end of tube


47


. Saddle notch


49


may be, for example, 0.070 inches long (see dimension A in FIG.


4


), front sound inlet tube portion


51


may be, for example, 0.110 inches long (see dimension B in FIG.


4


), and rear sound inlet tube portion


53


may be, for example, 0.050 inches long (see dimension C in FIG.


4


). While a notch


49


is shown in single tube


47


to form the tube portions


51


and


53


(for ease of assembly), it should be understood that two separate tubes could be attached on either side of microphone cartridge


39


to form front and rear sound inlets.




During assembly of the microphone assembly


37


, the microphone cartridge


39


is placed in the saddle notch


49


so that the front sound inlet port


41


communicates with the front sound inlet tube portion


51


of the tube


47


, and the rear sound inlet port


43


communicates with the rear sound inlet tube portion


53


of the tube


47


. Rear sound inlet tube portion


53


may also have an acoustic resistor


55


placed therein for determining, for example, the polar pattern of the directional microphone assembly


37


. Epoxy may also be used on surface(s) in the saddle notch


49


to seal around edges of tube portions


51


and


53


that mate with microphone cartridge


39


, to solidify the microphone assembly


37


.




In the embodiment of

FIG. 4

, front sound inlet tube portion


51


of the tube


47


is shown as an open tube. In an alternate embodiment, the microphone assembly of

FIG. 4

may be modified by adding an acoustical impedance into the front sound inlet tube portion


51


to reduce its diameter and improve the polar performance of the directional microphone assembly. For example, a single sleeve, plural vinyl tubes, pieces of enameled wire, or rods may be placed in the front tube portion


51


.

FIG. 5

is an end view of the front tube portion of the microphone assembly of

FIG. 4

having


11


rods


57


placed longitudinally in the front tube portion


51


. The rods


57


may be, for example, 0.014 inch monofilament fishing line.





FIG. 6

is a plot of the frequency response for each of the embodiments of

FIGS. 4 and 5

. Curve


59


is the response for the embodiment of

FIG. 4

(i.e., having an open front tube portion), and curve


61


is the response for the embodiment of

FIG. 5

(i.e., having an acoustic impedance located in the front tube portion). A value of 1200 Ω was used for the acoustic resistor


55


in both embodiments. In the case of curve


61


, the


11


rods


57


of

FIG. 5

are 0.014 inch monofilament fishing line. As can be seen in

FIG. 6

, the response curve


61


at 3-4 KHz is lower than response curve


59


by about 5 dB, and at 10 KHz is lower than response curve


59


by about 11 dB. Thus, the peak generated by the open tube arrangement is flattened or is rolled off by the addition of an acoustic impedance. While such a roll-off may not be desirable, the addition of the acoustic impedance improves the polar response of the directional microphone assembly.




More specifically,

FIG. 7

illustrates plots of the polar response of the directional microphone assembly having an open tube arrangement as in

FIG. 4

, while

FIG. 8

illustrates plots of the polar response of the directional microphone assembly of

FIG. 4

having the rods of FIG.


5


. Again, a value of 1200 Ω was used for the acoustic resistor


55


in both embodiments. A comparison of

FIGS. 7 and 8

shows that the directional microphone assembly having the acoustic impedance maintains its directionality better (longer) as the frequency increases. In addition, the directional microphone assembly having the acoustic impedance has a higher overall AIDI value (5.99 as compared to 5.33). In either embodiment, however, the AIDI values achieved are comparable to those achieved by prior art ITE hearing aids (mentioned above).





FIG. 9

depicts an upper mounting portion


63


and a tube portion


65


of the link


19


of

FIG. 2

for mounting the directional microphone assembly of FIG.


4


. Upper mounting portion


63


may be formed by flattening and shaping a single tube (and thus creating the upper mounting portion


63


and tube portion


65


). Upper mounting portion


63


comprises notches


67


that receive the front sound inlet tube portion


51


and the rear sound inlet tube portion


53


of the tube


47


when, upon assembly, the microphone cartridge


39


is seated within the upper mounting portion


63


. Tube portion


65


is hollow, so that electrical connection between the microphone cartridge


39


and the hearing aid amplifier can be made by wires running through the link


19


.





FIG. 10

illustrates the directional microphone assembly of

FIG. 4

mounted in the upper mounting portion


63


(

FIG. 9

) of the link


19


of FIG.


2


. The microphone assembly as depicted in

FIG. 4

has been rotated 90 degrees and mounted with the upper mounting portion


63


. Microphone cartridge


39


is seated within the upper mounting portion


63


, such that rear sound inlet tube portion


53


rests partially within a notch


67


. Front sound inlet tube portion


51


(not shown) likewise partially rests within a notch


67


(not shown) on the opposite side of the upper mounting portion


63


. Glue may be used to rigidly attach the directional microphone assembly and the upper mounting portion


63


. Each of the three electrical terminals


45


on the microphone cartridge


39


is connected to a wire, and the three wires


69


run through the tube portion


65


for electrical connection to the hearing aid amplifier or other hearing aid component(s) (not shown).




FIG.


11


. illustrates a side cross-sectional view of one embodiment of connection of the link (or mounting arm)


19


of

FIG. 2

with a hearing aid faceplate


71


via an elbow


73


. For a right ear hearing aid model with mounting in the notch between the helix and tragus, the elbow


73


is, for example, approximately 90 degrees, and the link


19


is mounted generally parallel with the faceplate


71


. In addition, the microphone assembly


37


is mounted, for example, approximately 45 degrees to the faceplate


71


.




The link


19


is mounted within an opening in the elbow


73


. The length of the link


19


may be adjusted by moving the link


19


further into or out of the opening in the elbow, and the link


19


may then be glued in place. The length of the link


19


may also be adjusted further by bending it once it has been glued in place. The microphone assembly


37


may also be oriented by rotating the link


19


within the opening of the elbow


73


prior to application of the glue.




Elbow


73


is mounted on an outer surface


74


of faceplate


71


and includes a threaded stem


75


that passes through an opening


77


in the faceplate


71


. The threaded stem


75


mates with a nut


79


. When tightened, the nut


79


rests against an inner surface


80


of the faceplate


71


to firmly mount the elbow


73


, and thus the link


19


, on the hearing aid faceplate


71


. The threaded stem


75


is also hollow to allow the microphone wires to pass from the link


19


to the hearing aid amplifier or other hearing aid component(s) (not shown).




Elbow


73


may also include an omni-directional microphone


81


mounted in a recess in the elbow


73


. Wires from the omni-directional microphone


81


can likewise pass through the threaded stem


75


to the hearing aid amplifier or other hearing aid component(s) (not shown). Omni-directional microphone


81


may be, for example, a Model FG microphone from Knowles Electronics.





FIG. 12

is a top view of one embodiment of the elbow


73


and nut


79


of FIG.


11


. Elbow


73


includes an opening


83


for receiving the link or mounting arm


19


, as well as a recess


85


for receiving the omni-directional microphone


81


. Opening


83


may have, for example, a diameter of approximately 0.065 inches. From the location of the opening


83


and the recess


85


in

FIG. 12

, it appears that an interference may occur between the link


19


and omni-directional microphone


81


when they are respectively placed in the opening


83


and the recess


85


. However, this apparent interference may be resolved by notching the end of the link


19


inserted into the opening


83


.




As mentioned above, threaded stem


75


is hollow to enable wires to pass therethrough. The threaded stem may have, for example, an outer diameter of approximately 0.087 inches and an inner diameter of approximately 0.038 inches. Such an inner diameter enables


6


wires to fit through the threaded stem


75


(3 from the directional microphone cartridge and 3 from the omni-directional microphone).




Also as mentioned above, the threaded stem


75


mates with a nut


79


which, when tightened, rests against an inner surface


80


of the hearing aid faceplate


71


. To conserve space within the hearing aid, the nut


79


may be modified by cutting off portions


87


and


89


of the nut


79


.





FIG. 13

illustrates one embodiment of the hearing aid assembly of the present invention inserted into the ear canal of a wearer. As can be seen, when the hearing aid is seated in the ear canal, the directional microphone is located in the notch between the helix and tragus of the ear. It should be understood that the cable


91


and wire


93


shown in

FIG. 13

exist solely for test and hearing aid removal purposes, respectively, and are not a necessary part of the operable device. The mounting arm


19


may instead be used as a lever for insertion and removal of the hearing aid.




Many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as described hereinabove.



Claims
  • 1. A hearing aid assembly comprising:a hearing aid housing having at least one internal component; a mounting arm mounted to an external surface of the hearing aid housing; and a directional microphone mounted on the mounting arm and externally to the hearing aid housing, the directional microphone being located outside the ear canal passage when the hearing aid housing is worn by a user, said mounting arm enabling electrical connection between the external directional microphone and the at least one internal component, the mounting arm being configured such that the directional microphone is located between the helix and tragus portions of the ear and is oriented in a direction that a user is facing, when the hearing aid housing is worn by the user.
  • 2. The hearing aid assembly of claim 1 wherein the external surface of the hearing aid housing comprises a hearing aid faceplate.
  • 3. The hearing aid assembly of claim 1 further comprising an elbow mounted between the mounting ann and the external surface of the hearing aid housing.
  • 4. The hearing aid assembly of claim 3 wherein the elbow is approximately 90 degrees, and the mounting arm is mounted approximately parallel to the external surface of the hearing aid housing.
  • 5. The hearing aid assembly of claim 4 wherein the directional microphone is mounted approximately 45 degrees to the external surface of the hearing aid housing.
  • 6. The hearing aid assembly of claim 1 wherein the directional microphone comprises one of a single directional microphone cartridge, an array microphone or a dual omnidirectional microphone.
  • 7. The hearing aid assembly of claim 6 wherein the directional microphone further comprises front and rear sound inlet tubes operatively coupled to the directional microphone cartridge.
  • 8. The hearing aid assembly of claim 7 wherein the front and rear sound inlet tubes are formed by a single tube having a notch, and wherein at least a portion of the microphone cartridge rests within the notch.
  • 9. The hearing aid assembly of claim 1 wherein the mounting arm includes a mounting portion for receiving and mounting the directional microphone therein.
  • 10. The hearing aid assembly of claim 7 further comprising a plurality of rods mounted longitudinally in the front inlet tube.
  • 11. The hearing aid assembly of claim 10 wherein the plurality of rods are comprised of monofilament fishing line.
  • 12. The hearing aid assembly of claim 1 wherein the directional microphone comprises one of a first order or a higher order directional microphone.
  • 13. A hearing aid system comprising:a hearing aid housing having at least one internal component; a directional microphone mounted externally to the hearing aid housing, the directional microphone being located outside the ear canal passage and between the helix and tragus portions of the ear and is oriented in a direction that a user is facing, when the hearing aid housing is worn by the user, the directional microphone being supported without requiring a mounting assembly coupled to an external portion of the car; and a link operatively coupling the directional microphone to the at least one internal component.
  • 14. The hearing aid assembly of claim 13 wherein the directional microphone comprises one of a single directional microphone cartridge, an array-microphone or a dual omnidirectional microphone.
  • 15. The hearing aid system of claim 14 wherein the directional microphone further comprises front and rear inlet tubes operatively coupled to the directional microphone cartridge.
  • 16. The hearing aid system of claim 13 wherein the link is configured to mechanically mount the directional microphone to an external surface of the hearing aid housing.
  • 17. The hearing aid system of claim 13 wherein the link comprises a mounting arm.
  • 18. The hearing aid system of claim 17 wherein the mounting arm mounts the directional microphone to an external surface of the hearing aid housing.
  • 19. The hearing aid system of claim 18 wherein the external surface of the hearing aid hocusing comprises a hearing aid faceplate.
  • 20. The hearing aid assembly of claim 13 wherein the directional microphone comprises one of a first order or a higher order directional microphone.
  • 21. A hearing aid system comprising:a directional microphone cartridge; a front inlet tube operatively coupled to the directional microphone cartridge; and a plurality of non-hollow rods mounted longitudinally in the front inlet tube; said directional microphone cartridge being located outside the ear canal passage and between the helix and tragus portions of the ear and is oriented in a direction that a user is facing, when the hearing aid housing is worn by the user.
  • 22. The hearing aid system of claim 21 wherein the plurality of rods are comprised of monofilament fishing line.
  • 23. The hearing aid system of claim 21 further comprising a hearing aid housing, and wherein the directional microphone cartridge and front inlet tube are mounted externally to the hearing aid housing.
  • 24. A hearing aid system comprising:a hearing aid housing having at least one internal component; a directional microphone mounted externally to the hearing aid housing; an earmold; a first link operatively coupling the directional microphone to the at least one internal component; and a second link for acoustically coupling the directional microphone to the earmold; said directional microphone being located outside the ear canal passage and between the helix and tragus portions of the ear when the hearing aid system is worn by a user.
  • 25. The hearing aid system of claim 24 wherein the directional microphone comprises one of a single directional microphone cartridge, an array microphone or a dual omnidirectional microphone.
  • 26. The hearing aid system of claim 24 wherein the directional microphone comprises one of a first order or a higher order directional microphone.
  • 27. The hearing aid system of claim 24 wherein the first link is configured to mechanically mount the directional microphone to an external surface of the hearing aid housing.
  • 28. The hearing aid system of claim 24 wherein the first link comprises a mounting arm.
  • 29. The hearing aid system of claim 28 wherein the mounting arm mounts the directional microphone to an external surface of the hearing aid housing.
  • 30. The hearing aid system of claim 24 wherein the second link comprises a tube.
  • 31. The hearing aid system of claim 24 wherein the hearing aid housing is configured for mounting behind the ear of a wearer.
  • 32. A hearing aid system comprising:a hearing aid housing having at least one internal component; a directional microphone mounted externally to the hearing aid housing, the directional microphone being located outside the ear canal passage and between the helix land the tragus portions of the ear and is oriented in a direction that a user is facing, when the hearing aid housing is worn by the user; and a link operatively coupling the directional microphone to the at least one internal component.
  • 33. A hearing aid system comprising:a hearing aid housing having at least one internal component; a directional microphone mounted externally to the hearing aid housing, the directional microphone being located outside the ear canal passage and between the helix and tragus portions of the ear and is oriented in a direction that a user is facing, when the hearing aid housing is worn by the user; and a link operatively coupling the directional microphone to the at least one internal component, wherein the link is configured to mechanically mount the directional microphone to an external surface of the hearing aid housing.
  • 34. A hearing aid system comprising:a hearing aid housing having at least one internal component; a directional microphone mounted externally to the hearing aid housing, the directional microphone being located outside the ear canal passage and between the helix and tragus portions of the ear and is oriented in a direction that a user is facing, when the hearing aid housing is worn by the user; and a link operatively coupling the directional microphone to the at least one internal component wherein the link comprises a mounting arm.
  • 35. The hearing aid system of claim 34 wherein the mounting arm mounts the directional microphone to an external surface of the hearing aid housing.
  • 36. The hearing aid system of claim 35 wherein the external surface of the hearing aid housing comprises a hearing aid faceplate.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application makes reference to, and claims priority to, United States provisional application Ser. No. 60/173,427 filed Dec. 29, 1999.

US Referenced Citations (23)
Number Name Date Kind
607994 Howell Jul 1898 A
2262146 Massa Nov 1941 A
2616985 Levy Sep 1950 A
4291203 Bellafiore Sep 1981 A
4456795 Saito Jun 1984 A
4489442 Anderson et al. Dec 1984 A
4539440 Sciarra Sep 1985 A
5046580 Barton Sep 1991 A
5048090 Geers Sep 1991 A
5208867 Stites, III May 1993 A
5226076 Baumhauer, Jr. et al. Jul 1993 A
5381484 Claes et al. Jan 1995 A
5606621 Reiter et al. Feb 1997 A
5703957 McAteer Dec 1997 A
5828757 Michalsen et al. Oct 1998 A
5835606 Marie et al. Nov 1998 A
5875254 Hanright Feb 1999 A
6009183 Taenzer et al. Dec 1999 A
6134334 Killion et al. Oct 2000 A
6151399 Killion et al. Nov 2000 A
6285771 Killion et al. Sep 2001 B1
6292572 Yoest et al. Sep 2001 B1
6473513 Shennib et al. Oct 2002 B1
Foreign Referenced Citations (2)
Number Date Country
57106299 Jul 1982 JP
04245800 Sep 1992 JP
Provisional Applications (1)
Number Date Country
60/173427 Dec 1999 US