Hearing aid connection system

Information

  • Patent Grant
  • 6728384
  • Patent Number
    6,728,384
  • Date Filed
    Wednesday, June 27, 2001
    23 years ago
  • Date Issued
    Tuesday, April 27, 2004
    20 years ago
Abstract
A cable incorporates at least one flexible conductor and a non-conductive, elongated, strain relieving member bound mechanically to the conductor. The strain relieving member is mechanically attached between two relatively movable components. The electrical conductor is in turn electrically attached to contacts on the components. Movement of the components relative to one another will be limited by the strain relieving member thereby protecting a somewhat longer electrical conductor extending therebetween. Alternately, a plurality of conductors can be integrally combined with the elongated strain relieving member, by braiding or twisting, to form a unitary cable which incorporates the strain relieving member. In this configuration, all of the conductors in the cable are mechanically protected by the strain relieving element.
Description




FIELD OF THE INVENTION




The invention pertains to electrical units which incorporate a plurality of interconnected electrical components. More particularly, the invention pertains to electrical connection systems usable in deformable hearing aids.




BACKGROUND OF THE INVENTION




Historically, hearing aids have been manufactured with a substantially rigid, non-deformable, body which incorporated a battery, an audio input transducer, a microphone, audio processing circuitry and an audio output transducer, a receiver. Conventional hearing aids of the described type have become smaller and smaller such that they are now available to be almost completely inserted into a user's ear canal.




Interconnecting wiring in such hearing aids is very delicate given the small size of such units. The conventional types of wire known as litz wire, or magnet wire, have been chosen to reduce transmission of vibrations, mechanical energy, through the hearing aid. The transmission of mechanical vibrations within a hearing aid adds to the likelihood that the unit will oscillate and become unstable.




Hearing aids which incorporate rigid plastic housings provide physical protection for the internal wiring. That wiring does not need to be able to survive tensile loading due to deformation of the hearing aid.




As an alternate to individual wires, flex-circuits or flexible cables have been used in smaller hearing aids such as completely in-the-canal aids. The results of using flex-circuits or flexible cable have not been very satisfactory.




It has been found that vibrations will be transmitted along the circuits causing instability of performance of the respective unit. In addition, flex-circuits or flexible cables are usually designed with very specific lengths and shapes. This, as a result, is not a practical approach for custom hearing aid applications where the varying ear canal shapes which are encountered make these parameters unpredictable.




More recent technologies have focused upon compliant or deformable hearing aids. For example, elastomeric hearing aids are known which have been designed in the shape of a deformable plug. In such hearing aids, components move in different directions relative to one another. This imposes stresses on the connections. Another approach has been illustrated in Geib U.S. Pat. No. 3,527,901. Geib illustrates a resilient hearing aid housing where individual looped wires extend between processing circuitry and an output audio transducer. The looped wiring is intended to tolerate deformation of the housing wherein the output transducer moves relative to the processing circuitry. There appears to be no stress protection for the wiring.




There continues to be a need for interconnection system solutions particularly usable in deformable or compressible hearing aids. Preferably, the solution will provide increased tensile strength while not significantly increasing the mass of the respective wires. The resultant wires or cables will preferably be flexible and limp. These characteristics are especially desirable with deformable or compressible hearing aids. Such cables or wires will preferably also resist the transmission of vibrations within the respective hearing aid. Preferably such cable will protect the electronic connections in the presence of relative motion of attached electronic components.




In addition, the wiring system must be very flexible to allow the hearing aid to move or change shape in accordance with the changes in the ear canal. Stiff strain members may protect the overall hearing aid from stretching or flexing in a manner that breaks conventional wiring systems. The disadvantage of this approach is a loss in the ability of a deformable hearing aid to easily change shape. Such strain relief systems reduce the advantage of compliant hearing aids by preventing changes in the shape of the hearing aid structure.




SUMMARY OF THE INVENTION




A non-vibration transmitting wiring system incorporates a light-weight, elongated, low-mass, small cross section non-conductive and high strength strain relieving member such as a non-stretchable thread or a wire in combination with very flexible electrical wires. This strain relief member does not transmit vibrations. This member in disclosed embodiments is twisted or braided into the respective multi-conductor cable assembly.




In one embodiment, a high strength aramid-type fiber, or thread, such as KEVLAR-brand fiber, is twisted or braided with fine litz wires to create a multi-conductor cable. This cable is relatively light weight and limp enough such that it does not transmit vibrations throughout the respective hearing aid. The mechanical braiding or twisting locks the conductors and strain relief member together substantially blocking any relative movement therebetween.




Other organic fibers in the aromatic polyamide family can be used. Strong inorganic fibers can also be used.




This invention protects the wires that extend between components. Thus, components can be located in more stress prone locations (that is, in locations where more changes in shape take place).




In accordance with the invention, the elongated strain relieving members absorb the mechanical loads between respective electrical units. Light weight flexible wires such as those normally used in hearing aids provide electrical paths between the components of the respective aid but do not provide mechanical stability relative thereto. The mechanical stability is provided by the elongated strain relieving member.




In one aspect of the invention, twisted, insulated, electrical conductors and an elongated plastic strain relieving member are optionally processed so as to form a single unitary electrical cable. One form of processing is to expose or to dip the cable into a solvent, such as alcohol, which softens the external non-conductive coverings of the various conductive wires. These in turn bond to one another, and to the elongated strain relieving element, thereby creating a unitary cable. As an alternate heat, UV or RF can be used to soften the non-conductive coverings, the insulating plastic, to produce bonding between conductors. The individual wires can be coated with an adhesive, or, a UV curable plastic, which can be activated or cured after the conductors have been combined with the strain relieving member.




In yet another embodiment, the strain relief element can carry a bonding coating or adhesive. The coating or adhesive could be activated after the conductors have been combined with the strain relief member such as by ultraviolet, heat or radio frequency signals. When cured, a unitary cable structure results.




In a disclosed embodiment, the cable is subjected to five to forty twists per inch. Alternately, the wires and the elongated strain relieving member can be braided together.




The elongated strain relieving member is mechanically attached between the respective components thereby limiting movement therebetween. The conducting elements of the electrical cable can then be attached to respective contacts of the components.




The elongated strain relieving members can be attached to the respective components by adhesive, tying, trapping, or any other way that transfers the mechanical loads to the respective components. The electrical conductors themselves when attached can be longer than the length of the respective strain relieving member to permit relatively free motion between the respective components, subject to the length of the strain relieving member.




Benefits of the system of the present invention include the fact that the individual wires as well as the cables are protected from damage due to bending, and tensile forces when used in deformable or compressible hearing aids. The various disclosed cable embodiments do not contribute to vibration transmission within the respective hearing aid. Additionally, the cable subassemblies are very compatible with high quality, low defect manufacturing processes.




The invention provides wires with protection from relative movement of one component relative to another. The applied forces can be independent. The invention does not require judging from which way the force will be applied. It does not require the technician building the aid to make judgments as to which direction the components may be moving.




Numerous other advantages and feature of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A and 1B

illustrate initial steps of producing a unitary cable in accordance with the present invention;





FIG. 2

illustrates an exemplary apparatus for practicing the method;





FIG. 3

illustrates another apparatus for practicing the method;





FIG. 4

illustrates yet another step in practicing the method;





FIGS. 5A-5C

illustrate alternate forms of cable in accordance with the present invention;





FIGS. 6A

,


6


B are different views of a system in accordance with the present invention;





FIG. 7

is a block diagram of a hearing aid which embodies the present invention; and





FIG. 8

is a block diagram of another hearing aid which embodies the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




While this invention is susceptible of embodiment in many different forms, there are shown in the drawing and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.





FIGS. 1-5C

illustrate multi-conductor cables and methods of making same. With reference to

FIG. 1A

, B, one or more of insulated conductors


10




a, b, c


is combined with an insulating, low mass non-stretching strain relief member


12


, such as a glass or aramid-type thread or fiber, so that they all extend generally parallel to one another. A preferred form of the thread or fiber is KEVLAR brand aramid fiber or its equivalent.




The insulated conductors, in accordance with the invention, are not movable relative to the strain relief member. The locking of the strain relief member to the insulated wires can be accomplished by coating at least the strain relief member


12


with an activatable adhesive or other activatable bonding agent. Activation can be accomplished with a chemical, such as a solvent, or by heat, ultraviolet radiation or radio frequency radiation all without limitation. Other methods of forming unitary cable which incorporates an elongated strain relief member follow.





FIG. 2

illustrates an exemplary winding fixture


14


for the purpose of twisting conductors


10




a, b, c


and strain relief member


12


together to form a cable


16


. It will be understood that the apparatus of

FIG. 2

is schematic and exemplary only. The exact details of an apparatus to twist the wires with the strain relief member are not limitations of the present invention.





FIG. 3

illustrates an alternate apparatus


18


for twisting the wires


10




a, b, c


and the strain relief member


12


together to a specified number of twists per foot. The apparatus


18


includes reels


10




a


-


1


,


10




b


-


1


,


10




c


-


1


of the respective conductors


10




a, b, c


. The reels are mounted on a rotating platform


18




a.






The conductors


10




a, b, c


and strain relief member


12


(fed from reel


12




a


) are drawn through and twisted together in fixture


18




b


, as platform


18




a


rotates. Twisted cable


16


′ is wound onto take-up reel


18




c


. In cable


16


′, conductors


10




a, b, c


are twisted around thread or fiber


12


.




The preferred number of twists per foot falls in a range generally on the order of 5 to 40 twists per inch. The result of the twisting process is a multi-conductor cable with an integral elongated strain relief member which, as described subsequently, can be used to protect connections with the conductors.




In

FIG. 4

the twisted cable


16


′ from

FIG. 3

is optionally dipped into or coated with a selected solvent, for example alcohol. In this step, once the solvent evaporates or is neutralized, the insulation of the conductors fuses together. The twisted composite


16


′ of conductors and strain relief member is, as a result, converted into a unitary mechanical structure. The strain relief member


12


is mechanically attached to the adjacent twisted wires


10




a, b, c


. No relative motion is possible between the member and the twisted wires. Bonding can alternately be achieved using heat or radiant energy, use as ultraviolet-type light or radio frequency signals.





FIG. 5A

illustrates another form of a cable


16


-


1


in accordance with the present invention. In the cable of

FIG. 5A

, fine wires, for example litz wires


10




a, b, c


, are braided with a strain relief thread or fiber


12


. After braiding, the composite


16


-


1


can be exposed to an appropriate solvent or activating radiation to fuse the insulation of the various conductors together to create a unitary structure.





FIG. 5B

illustrates an alternate cable


16


-


2


wherein conductors


10




a, b, c


and strain relief element


12


are twisted together about a common central axis. These elements can be treated by heat, radiant energy or solvent to cause them to bond together to form a unitary structure.





FIG. 5C

illustrates yet another cable


16


-


3


in accordance with the present invention. A plurality of insulated conductors


10




a, b, c


is wrapped around a central strain relieving thread or string


12


, of the general type discussed above, and then wrapped with plastic


10




d


. The resulting composite


16


-


3


can then be exposed to a selected solvent or activating radiation to create a unitary structure.




It will be understood that other configurations of unitary cables and methods of making same are possible. All such variations come within the spirit and scope of the present invention.




Cables as described above can be constructed with various numbers of conductors as needed. In all instances, the elongated, non-conducting strain relieving thread or string will not be able to move relative to the conductors. Similarly, none of the conductors in the cable will be able to move relative to one another. As discussed below, the thread or string can be used as a strain relief between electrical components. Where the components are movable relative to one another, the strain relief member will protect the conductors and connections, for example solder joints, thereto.





FIGS. 6A

,


6


B illustrate a two component electrical system


40


. In the system


40


, a unitary cable


42


of the type described above interconnects electrical components C


1


and C


2


which are movable relative to one another. It will be understood that cables of the type described above could be advantageously used in a variety of electrical/electronic systems where the electrical interconnections need to be protected from relative motion between components.




The cable


42


includes an integral, elongated strain relieving member or thread


42




a


. The member


42




a


is mechanically attached to each of the components C


1


,


2


at respective joints


44




a,b


. Any type of mechanical attachment between the components C


1


,


2


and the member


42


comes within the spirit and scope of the present invention. For example, ends


42




a


-


1


,-


2


could be attached using adhesive or any type of mechanical clamp.




Once a secure mechanical bond has been established between member


42




a


and the components C


1


,


2


the ability of the components to move, relative to one another such as motions M


1


, M


2


, M


3


, M


4


is limited by the distance that the member


42




a


extends between the joints


44




a,b.






The cable


42


also includes conductors


42




b,c


which are bonded to member


42




a


in the cable


42


. The length of the conductors


42




b,c


is longer than is the length of the member


42




a


. As a result, when ends of the conductors


42




b,c


are electrically coupled, soldered for example, at terminals C


1


-


1


,


2


and C


2


-


1


,


2


to components C


1


,


2


the electrical conductors are protected from mechanical shock and strain, by the elongated, non-stretchable strain relief member


42




a


. Cables in accordance with the present invention, such as cable


42


, can be manufactured in advance and combined with components C


1


,


2


in accordance with cost-effective manufacturing practices. It will be understood that the conductors


42




b,c


could be implemented as individual, insulated wires or as preformed ribbon cable which can be used in automatic assembly machines.





FIG. 7

illustrates a hearing aid


50


which incorporates a cable


52


in accordance with the present invention. The aid


50


includes a preassembled electronic module


54




a


and an audio output transducer, receiver,


54




b


. The cable


52


interconnects the two modules. The modules are to be inserted into a flexible housing


50




a.






Once the modules have been inserted into housing


50




a


, region


50




b


, the inner ear end


50




a


-


1


will be deflected, relative to outer ear end


50




a


-


2


when the aid is being inserted into or removed from a user's ear canal. In addition, as the ear canal changes shape, due to jaw movement, the ends


50




a


-


1


,-


2


move relative to one another.




The integrally formed cable


52


improves long term reliability and functionality of the aid


50


due to its structure and performance characteristics. Cable


52


includes an elongated strain relief member


52




a


, formed of one or more glass or aramid-type fibers, such as a KEVLAR brand fiber. As described above, the member


52




a


is bonded to insulated conductors


52




b,c,d


. Other materials, comparable to KEVLAR-brand fiber, including substantially non-stretching plastics, or fiberglass could also be used without departing from the spirit and scope of the present invention.




The conductors


52




b,c,d


are electrically coupled to the modules


54




a,b


by solder as will be understood by those of skill in the art at regions


56




a,b


. The member


52




a


is mechanically attached, for example by adhesive, to the components


54




a,b


as indicated in regions


52




a


-


1


,-


2


. It will be understood that other forms of connection, such as mechanical, could be used without departing form the spirit and scope of the present invention.




Any mechanical shocks due to movement of the ends


50




a


-


1


,-


2


will be taken by the member


52




a


thereby protecting the connections


56




a,b


and the conductors


52




b,c,d


. In addition, once the member is mechanically attached to the components


54




a,b


it will protect the connections


56




a,b


during subsequent manufacturing steps prior to insertion into the housing


50




a


. Hence, the operation of the components


54




a,b


can more easily be evaluated in test fixtures as the assemblage need not be treated as gently as heretofore required for earlier, similar assemblages which did not include the unitary strain absorbing cable


52


.




When the assemblage


52


,


54




a, b


is being inserted into the housing


50




a


, the member


52




a


will continue to protect the connections


56




a,b


. This can be expected to reduce manufacturing reworks due to wiring failures.





FIG. 8

illustrates a system


60


which includes a plurality of cables


62




a,b,c


in accordance with the present invention. The cables interconnect components


64




a,b,c,d


. In each instance, each pair of components, such as


64




a,b


is mechanically interconnected with a respective elongated strain relieving member, such as member


62




a


-


1


, also


62




b


-


1


, and


62




c


-


1


. As described above, these members protect the respective electrical connections at each component such as connections


64




a


-


1


and


64




b


-


1


,


64




b


-


2


,


64




c


-


1


,


64




d


-


1


.




In the case of system


60


, the use of multiple cables


62


facilitates electrical assembly and testing prior to installation into a hearing aid. The existence of these benefits is independent of the type of housing of the respective hearing aid into which the system


60


is inserted.




It will be understood that while

FIGS. 7

,


8


illustrate the use of the present unitary cables in hearing aids, such illustrations are exemplary only. Cables in accordance with the present invention can be used in a variety of electrical units without departing from the spirit and scope of the present invention. The manufacturing and testing benefits discussed above are also independent of the type of units with which the cables are to be used.




From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims.



Claims
  • 1. A hearing aid comprising:a housing shaped for insertion into an ear canal of a wearer; at least two spaced apart electrical components carried in the housing wherein the at least two components are interconnected with at least one elongated stain relieving member in the housing wherein the member is mechanically attached to each of the at least two components; and, at least one electrical conductor coupled to the strain relieving member and electrically connected to each of the components whereby movement of the components, relative to one another, is limited by the member thereby isolating the electrical conductor from relative movement induced forces.
  • 2. A hearing aid as in claim 1 wherein a plurality of litz wires are axially joined with the strain relieving member, wherein at least two members of the plurality are electrically connected between the components.
  • 3. A hearing aid as in claim 2 wherein the effective distance between the components, as limited by the strain relieving member, is less than conductor length.
  • 4. A hearing aid as in claim 3 wherein the housing is deformable.
  • 5. A hearing aid as in claim 4 wherein one of the components comprises a microphone, another comprises signal processing circuitry and a third comprises an audio output transducer wherein one elongated strain relieving member extends between the microphone and the circuitry and a second elongated strain relieving member extends between the circuitry and the output transducer.
  • 6. A hearing aid as in claim 3 wherein one of the components comprises a microphone, another comprises signal processing circuitry and a third comprises an audio output transducer wherein one elongated strain relieving member extends between the microphone and the circuitry and a second elongated strain relieving member extends between the circuitry and the output transducer.
  • 7. A hearing aid as in claim 2 wherein the housing is deformable.
  • 8. A hearing aid as in claim 1 wherein the effective distance between the components, as limited by the strain relieving member, is less than conductor length.
  • 9. A hearing aid as in claim 8 wherein the housing is deformable.
  • 10. A hearing aid as in claim 1 wherein the housing is deformable.
  • 11. A hearing aid as in claim 1 wherein the conductor is at least intermittently locked axially to the strain relieving member by one of winding or braiding.
  • 12. A hearing aid as in claim 1 which includes a plurality of elongated conductors combined by one of winding or braiding with the strain relieving member.
  • 13. A hearing aid as in claim 12 wherein the conductors are insulated from one another and the insulation is, at least intermittently, bonded together.
  • 14. A hearing aid as in claim 13 wherein the conductors and the strain relieving member are bonded together.
  • 15. A hearing aid as in claim 13 wherein the conductors are combined with at least a second strain relieving member wherein the strain relieving member extends between a first pair of conductor ends and the second member extends between a second pair of conductor ends.
  • 16. A hearing aid as in claim 15 wherein the first electrical component is attached to one end of the strain relieving member, the second electrical component is attached to another end of the member and to one end of the second member and, a third electrical component is attached to another end of the second member.
  • 17. A hearing aid as in claim 16 wherein at least one conductor is coupled between each pair of electrical components.
  • 18. A hearing aid as in claim 16 wherein one component comprises an amplifier, the second comprises a microphone and the third comprises a receiver.
  • 19. A hearing aid as in claim 1 wherein the strain relieving member comprises one of non-stretching polymer, glass fiber, or aramid-type fiber.
  • 20. A hearing aid as in claim 1 wherein the member is selected from a class which includes an aromatic polyamide fiber, or a non-stretching inorganic fiber.
  • 21. A hearing aid comprising:at least three spaced apart electrical units; a first flexible mechanical connection element attached to and extending between first and second units; a second flexible, mechanical connection element attached to and extending between second and third electrical units, the first and second connection elements limiting respective ranges of motion between the first and second units and second and third units to respective maximum first and second distances therebetween; at least one electrical wire coupled between the first and second units, at least a second electrical wire coupled between the second and third units, with the mechanical connections protecting the wires from stresses produced by movement of the units relative to one another.
  • 22. A hearing aid as in claim 21 which includes a first plurality of wires extending between the first and second units and second plurality of wires extending between third and fourth units with the respective mechanical connection elements protecting the wires from stresses produced by movement of the units relative to one another.
  • 23. A hearing aid as in claim 21 wherein the wires are mechanical coupled to the respective connection elements to substantially preclude relative axial motion therebetween.
  • 24. A hearing aid as in claim 22 wherein the pluralities of wires are intertwined with respective mechanical connection elements to substantially preclude relative axial motion therebetween.
  • 25. A hearing aid as in claim 23 wherein the mechanical connection elements comprise one of non-stretching polymer, glass fiber, or aramid-type fiber.
Parent Case Info

This application is a utility application claiming the benefit of the earlier filing date of provisional application Serial No. 60/215,326 filed Jun. 30, 2000.

US Referenced Citations (13)
Number Name Date Kind
1521275 Carpenter et al. Dec 1924 A
1606165 Glenn Nov 1926 A
2444302 Lybarger Jun 1948 A
3433890 Gabriel et al. Mar 1969 A
3527901 Geib Sep 1970 A
4326094 Hunn Apr 1982 A
4546210 Akiba et al. Oct 1985 A
5359150 Ikeuchi Oct 1994 A
5478304 Webster Dec 1995 A
5627932 Kiel et al. May 1997 A
5808239 Olsson Sep 1998 A
5920635 Lenz Jul 1999 A
6522765 Towle Feb 2003 B1
Foreign Referenced Citations (1)
Number Date Country
WO 0141497 Jun 2001 WO
Non-Patent Literature Citations (2)
Entry
Molecuwire, Innovative solutions using specialty wire and ribbon; brochure, Farmingdale, New Jersey, before Jun. 27, 2001
New England Electric wire corporation, Litz Wire Types & Construction Lisbon NH, before Jun. 27, 2001.
Provisional Applications (1)
Number Date Country
60/215326 Jun 2000 US