The present invention is related to a replaceable eartip tip for use in hearing aids and, more particularly, to a replaceable light tip for use in contact hearing aids hearing aids.
In hearing aids, external processors, otherwise known as behind the ear components or BTEs, are connected to internal components, also known as eartips or light tips, by an electrical cable which plugs into the BTE. At the opposite end of the electrical cable is a transmission element which fits into the ear of a user. The transmission element then transmits information to the user in the form of, for example, audible sound, light, radio frequency transmissions, or magnetic transmissions. In some designs, the transmission element may be placed in a custom ear tip which is designed to conform to the user's ear canal.
In the present invention, a custom ear tip is designed to be removable and replicable. In particular, the custom ear tip is designed such that it can be easily attached to and removed from a transmission element at the end of an electrical cable which is connected to a BTE. A health care professional may use the ability to quickly and easily replace the ear tip to provide the user with a selection of ear tips in order to, for example, select the most comfortable ear tip for the individual user.
The foregoing and other objects, features and advantages of embodiments of the present inventive concepts will be apparent from the more particular description of preferred embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same or like elements. The drawings are not necessarily to scale; emphasis instead being placed upon illustrating the principles of the preferred embodiments.
In embodiments of the invention an electromagnetic transmitter may be substituted for emitter 290 and an electromagnetic receiver may be substituted for photodetector 430 such that the signal transmitted may be a signal such as, a radio frequency or magnetically coupled signal.
In one embodiment of the invention, as the internal assembly 14 slides into guide channels 40, pogo pin electrodes 60 are displaced upward but springs (not shown) in the pogo pin electrodes force the pogo pin electrodes into contact with the surface of the LT connector (which includes LT electrodes 30) as latch hook 72 moves toward and contacts locking pin 50. Guide pins 45 facilitate the proper alignment of the LT housing 10 with the BTE housing 100, ensuring proper alignment of the LT connector 12 with the BTE 18 as they are connected together. As latch hook 72 moves up and over locking pin 50, the contact tips 120 of pogo pin electrodes 60 move into place against LT electrodes 30. Once LT connector 12 is attached to BTE 18, pogo pin electrodes 60 are positioned such that contact tips 120 are in electrical contact with LT electrodes 30, with contact tips 120 of pogo pin electrodes 60 pressed against LT electrodes 30 by their internal spring mechanisms to ensure good electrical contact. The present invention may be optimized to ensure retention of the connection by, for example, increasing the rigidity and/or spring constant of latch 70. In some embodiments of the invention, the force required to separate the LT connector 12 from the BTE 18 may be as high as 18 Newtons. A connector according to the present invention may be readily be adapted to incorporate more than 2 pogo pins, for example; a 4-pin or 6-pin connector.
In embodiments of the invention, system connection (both electrically and mechanically) is achieved by inserting the LT connector 12 into internal assembly 14 in BTE 18. Guide channels 40 and guide pins 45 in LT connector 12 mate with corresponding mating features in internal assembly 14 (e.g., channel guides 42). As LT connector 12 and BTE 18 come together guide channels 40 and guide pins 45 provide alignment and ensure that LT connector 12 mates properly with internal assembly 14. Latch 70 in internal assembly 14 articulates (bends) up and over locking pin 50 in LT connector 12 to secure the two assemblies together. After LT connector 12 is fully inserted, latch 70 returns to its normal position, latching LT connector 12 to internal assembly 14 and BTE 18. The material, shape, and thickness of the material used in latch 70 may be adjusted to provide optimal latching/retention force between LT connector 14 and BTE 18. In one embodiment of the invention, a flex circuit (not shown) or discreet wires 90 may be employed to connect Pogo-Pin electrodes 60 to a PCB on BTE 18.
The BTE/LT connector sub-assembly illustrated in
The current design is advantageous because the arrangement of the pogo pin electrodes and the latching mechanism provide a connector that reduces the length of the overall connector, creating a more compact connector, while maintaining the connection strength and improving resistance to the ingress of water into the BTE. In addition, the use of a latch and pin mechanism removes any strain on the electrodes or electrode connection resulting from strains on the connector/BTE interface. The latch and pin assume all the strain of making, maintaining and releasing the connection, reducing or eliminating any strain on the electrical connections and increasing the life of the connector, even when the LT connector is removed from and replaced on the BTE multiple times. In this arrangement, the electrical connections are orthogonal to the latching direction and do not act as components of the latching mechanism or provide any latching function. The current design is further advantageous because it provides a hermetically sealed connection, with only wires 90 passing through the walls of BTE housing 100. All internal electronics are protected from bodily fluids and other fluids, including sweat and rain. In a further advantage, in the present invention the direction of the pogo pin actuation is at a right angle (perpendicular or orthogonal) to the locking direction of the Connector Assembly to the BTE Housing Connector Assembly. This minimizes the potential of the pogo pins to dislodge the Light tip Connector Assembly from the BTE Housing Connector Assembly.
It will be apparent to those of skill in the art that, in embodiments of the present invention, elements of the preferred embodiment may be included on components other than the components described herein. For example, internal assembly 14 may include one or more of guide pins 45, guide channels 40 or electrodes 40, with their associated mating parts being included on LT connector 14. Alternatively, in embodiments of the present invention, LT connector 12 may include one or more of channel guides 40 or pogo pin electrodes 60.
Embodiments of the present invention include a compact connector comprising a light tip connector including a light tip cable connected thereto. In this embodiment, the light tip connector may comprise: a receiving cavity including side walls and a bottom wall; guide channels formed in the side walls of the receiving cavity; a locking pin at a medial end of the guide channel; and one or more light tip electrodes positioned on a bottom wall of the receiving cavity. A compact connector according to the present invention may further comprise a BTE connector comprising: a latch adapted to engage the locking pin to hold the BTE connector in the receiving cavity when the BTE connector is attached to the light tip connector; and a plurality of pogo pin electrodes arranged to contact the light tip electrodes when the BTE connector is attached to the light tip connector. A compact connector according to the present invention may further comprise springs positioned to bias the pogo pin electrodes toward the light tip electrodes when the BTE connector is attached to the light tip connector. A compact connector according to the present invention may further comprising connection wires contacting the light tip electrodes to connect the light tip electrodes to the light tip cable. A compact connector according to the present invention may further comprise guide pins on the light tip housing, the guide pins being positioned to engage the BTE housing when the BTE connector is attached to the light tip connector. A compact connector according to the present invention further comprising wires connected to electrodes on a lateral end of the pogo pin electrodes. A compact connector according to the present invention further comprises a compact connector wherein the latch comprises a hook at a medial end thereof. A compact connector according to the present invention further comprises a compact connector wherein the latch is a spring latch.
Embodiments of the present invention include a light tip connector including a light tip cable connected thereto, wherein the light tip connector comprises: a receiving cavity including side walls and a bottom wall; guide channels formed in the side walls of the receiving cavity; a locking pin at a medial end of the guide channel; and one or more light tip electrodes positioned on a bottom wall of the receiving cavity.
Embodiments of the present invention include a BTE connector comprising: a latch adapted to engage the locking pin to hold the BTE connector in the receiving cavity when the BTE connector is attached to the light tip connector; and a plurality of pogo pin electrodes arranged to contact the light tip electrodes when the BTE connector is attached to the light tip connector.
Embodiments of the present invention include a method of connecting a BTE to a light tip, using a light tip connector, the method comprising the steps of: aligning the light tip connector to the BTE using guide pins located on either the light tip connector or the BTE; engaging channel guides located on either the BTE or the light tip connector with channels formed in either the light tip connector or the BTE; engaging a latch hook positioned on either the BTE or the light tip connector with a locking pin arranged on either the BTE or the light tip connector such that the latch hook rides up and over the locking pin as the BTE and light tip are connected; and engaging pogo pin electrodes arranged such that the direction of motion of the pogo pin electrodes is substantially orthogonal to the direction of motion of the BTE and light tip connector, wherein contact tips on the pogo pin electrodes are in electrical contact with electrodes when the BTE is connected to the light tip connector.
In embodiments of the invention, the light tip (also referred to as an ear tip) may include a detachable outer shell, allowing the outer shell to be replaced if it is no longer acceptable to the user (e.g. it tears or becomes worn). Replaceable light tips are also advantageous because it allows the manufacturer to ship more than one outer shell and the health care professional to select the shell which is the best fit (e.g., most comfortable) for the user. Alternatively, a replaceable light tip is also advantageous because it enables the health care professional to swap out emitters and cables while keeping a light tip which is the best fit for the user (e.g., where an emitter has failed or a cable is too long or too short). In embodiments of the invention, ear tip 222 may comprise an emitter 290 attached to one end of LT cable 20, along with a light tip shell 505, which is detachable from LT cable 20, allowing either LT cable 20 or ear tip shell 505 to be replaced.
In attaching light tip shell 505 to cartridge assembly 501, three characteristics of the combined device are extremely important. In particular, the strength of the connection is important to prevent light tip shell 505 from separating from cartridge assembly 501 when a user takes light tip shell 505 out of their ear by, for example, grabbing LT cable 20 and pulling. In addition, because each light tip shell is customized to ensure the proper placement and alignment of emitter 290 when light tip 222 is in a user's ear, it is very important to ensure that, when light tip shell 505 is combined with cartridge assembly 501, including emitter 290, the positioning and alignment of emitter 290 is correct. Finally, it is important that the attachment and removal of light tip shell 505 from cartridge assembly 501 be simple and easy to accomplish.
In operation, the replaceable light tip shell 505 illustrated in
In one embodiment of the invention, an insertion-removal tool 515 is used to aid the insertion and removal of cartridge assembly 501 into light tip shell 505. Tool 515 has a tool groove 516 and counter-bored feature 517 allowing cartridge assembly 501 to nest in tool 515 before tool 515 is used to insert cartridge assembly 501 and LT cable 20 into light tip shell 505. A light tip shell 505 and cartridge assembly 501 according to the present invention may have an interference fit between tool groove 516 and an outside diameter of LT cable 20 allowing tool groove 516 to grip LT cable 20 during insertion and removal.
In embodiments of the invention, a two-step process may be used to insert cartridge assembly 501 into light tip shell 505 using insertion-removal tool 515. Step One: with cartridge assembly 501 seated in tool groove 516, the tool-cartridge combination is used to aid insertion of cartridge assembly 501 through continuous slot 513. Cartridge assembly 501 may then be removed from tool groove 516, leaving cartridge assembly 501, including emitter 290, on the inferior side of continuous slot 512 and LT cable 20 extending from the superior side of continuous slot 513 to cartridge assembly 501. Step Two: cartridge assembly 501 is reinserted into tool groove 516. The tool-cartridge combination may then be used to aid insertion of cartridge assembly 501 through tear-drop feature 514 from the inferior side of tear drop feature 514. In embodiments of the invention, cartridge assembly 501 may be removed from a light tip shell 505 by reversing the preceding steps.
As illustrated in
In embodiments of the invention, cartridge assembly retention ring 712 has a diameter greater than the diameter of emitter retention ring 730 thus, emitter cavity 756 may have a smaller diameter than shell lateral retention groove 754. In these embodiments, cartridge assembly retention ring 712 will not fit into emitter cavity 756, preventing cartridge assembly 501 from being inserted too deep into cartridge cavity 750.
In embodiments of the invention, cartridge assembly 501 may be removed from a light tip shell 505 by reversing the prior steps. In embodiments of the invention, it may be preferable to design a system such that the force required to remove light tip shell 505 from cartridge assembly 501 is greater than the force required attach light tip shell 505 to cartridge assembly 501. In practice, the higher removal force is desirable because, when a user wants to remove light tip shell 505 from their ear, they may do so by pulling on LT cable 20, creating significant stress and exerting forces which might result in cartridge assembly 501 separating from light tip shell 505 if the force required to separate those two parts was too low. Lower assembly forces are desirable because lower forces ease the manufacture of light tip assembly 752, reducing the manufacture time and reducing damage done during the manufacture process. Thus, in embodiments of the invention, elements of the invention increase the force needed to remove cartridge assembly 501 from light tip shell 505 once cartridge assembly 501 is fully positioned in light tip shell 505. In particular, with cartridge assembly 501 fully inserted into light tip shell 505, medial shell retention ring 732 is positioned in medial retention groove 714 and lateral shell retention ring 734 is positioned in lateral retention groove 726 as illustrated in
In contrast to the insertion of cartridge assembly 501 into cartridge cavity 750, the removal of cartridge assembly 501 from cartridge cavity 750 requires sufficient force to compress and move both lateral shell retention ring 734 and medial shell retention ring 732 out of the way simultaneously. As illustrated in
In embodiments of the invention, the cartridge assembly jacket may be made of, for example, a silicon material, such as, for example Biopor. In embodiments of the invention, LT cable 20 may be a low durometer material. The use of a low durometer material facilitates the use of a replacement cable in either ear of a user, without requiring a specific cable for the left or right ear as would be the case for a high durometer or formed cable. The use of a low durometer LT cable thus enables the health care professional to maintain a single set of replacement cables, rather than a set for the right ear and a separate set for the left ear.
In embodiments of the invention, the insertion tool orients the cartridge assembly 501, including emitter 290 and light tip shell 505 to obtain an optimal insertion angle (note that LT cable 20 is universally adaptable but LT shells 505 are designed to be either right or left). The angle of insertion is important to minimize the stress of insertion and the angle is controlled by the insertion tool. Blue dots and red dots help with orientation. The medial end of insertion tool 515 may conform to the geometry of the lateral end of the cartridge assembly jacket to minimize stresses on the cartridge assembly jacket by distributing forces evenly.
In embodiments of the invention with cartridge assembly 501 positioned in the medial end of tool groove 516, LT cable 20 may be properly positioned for insertion by using either left guide marker 800 to align LT cable 20 along left alignment path 804 or right guide marker 802 to align LT cable 20 along right alignment path 806.
In embodiments of the invention, LT cable 20 may include integrated stiffener 808 to increase the durometer (stiffness) of LT cable 20 at a medial end, close to BTE connector 16. Integrated stiffener 808 may be used to decouple gravitational forces acting on BTE 18 from forces acting on light tip assembly 752. In embodiments of the invention, LT cable 20 is a dual durometer cable having a first durometer at an end adjacent light tip assembly 752 and a second, higher durometer at a second end adjacent BTE connector 16.
In embodiments of the invention, emitter 290 may be replaced with a conventional hearing aid receiver, allowing emitter 290 to be swapped with a conventional receiver in the eartip. The ability to swap out the emitter for a conventional receiver would provide a health care provider with an alternative to the emitter for situations where a conventional receiver would be beneficial. For example, where there was a failure in a light activated component of the hearing aid, enabling the health care professional to provide the user with a working hearing aid until the failed light activated component could be repaired.
In embodiments of the invention, the invention comprises a replaceable ear tip including a medial opening, a lateral opening, a central opening, a spine at a superior side of the central opening and a cable channel running from the medial opening to the lateral opening through the spine. In embodiments of the invention, the cable channel includes a cylindrical bore at a medial end of the cable channel, a lobe shaped opening connected to the cylindrical bore and a cable groove extending from the lobe shaped opening to the lateral opening through the spine. In embodiments of the invention, a superior slot extends from a superior surface of the ear tip to the cable groove and from the lateral opening of the light tip to a central point of the ear tip. In embodiments of the invention, an inferior slot extends from the cable grove to an inferior surface of the ear tip spine.
In embodiments of the invention, the invention comprises a replaceable ear tip including a cartridge cavity including an emitter cavity and at least one retention groove lateral to the cartridge cavity. In embodiments of the invention, a first compressible retention ring is positioned between the emitter cavity and a first retention groove. In embodiments of the invention, the replaceable eartip includes a second compressible retention ring lateral to the first retention groove. In embodiments of the invention, the replaceable ear tip further includes an acoustic vent extending from a lateral to a medial end of the replaceable ear tip. In embodiments of the invention, the replaceable ear tip further includes a stabilizer ring attached at a lateral face of the second compression ring. In embodiments of the invention, the replaceable ear tip further includes at least one catch ring on a medial surface of the first or second compression ring. In embodiments of the invention, the replaceable ear tip further includes a first catch ring on a medial surface of the first compression ring and a second catch ring on a medial surface of the second compression ring. In embodiments of the invention, the replaceable ear tip further includes at least one bevel on a lateral surface of the first or second compression ring. In embodiments of the invention, the replaceable ear tip further includes a first bevel on a lateral surface of the first compression ring and a second bevel on a lateral surface of the second compression ring.
In embodiments of the invention, the invention comprises a light tip cable including a cartridge assembly affixed to a medial end of the cable, the cartridge assembly including an emitter housing where the emitter housing includes an opening at a medial end of the housing and a flange at a lateral end of the housing. In embodiments of the invention, the cartridge assembly includes a light emitting element in the housing extending to the opening, retention features covering at least a portion of the housing, including the flange, the retention features comprising a lateral face and a lobe and at least one load bearing strand extending from the cable to the emitter; and electrical connectors extending from the cable to the light emitting element. In embodiments of the invention, the cartridge assembly includes an emitter housing wherein the emitter housing includes an emitter opening at a medial end of the housing and a jacket extending from the emitter opening to a cable opening at a lateral end of the jacket. In embodiments of the invention, an emitter is positioned at a medial end of the emitter housing, a first retention ring surrounds the emitter, a second retention ring is positioned lateral to the first retention ring and a retention groove between the first and second retention rings. In embodiments of the invention, the cartridge assembly further includes at least one catch ring on the first or second retention rings. In embodiments of the invention, the cartridge assembly further includes a first catch ring on the first retention ring and a second catch ring on the second retention ring. In embodiments of the invention, the cartridge assembly further includes at least one bevel on a medial surface of the first or second retention rings. In embodiments of the invention, the cartridge assembly further includes a first bevel on a medial surface of the first retention ring and a second bevel on a medial surface of the second retention ring.
While the preferred embodiments of the devices and methods have been described in reference to the environment in which they were developed, they are merely illustrative of the principles of the present inventive concepts. Modification or combinations of the above-described assemblies, other embodiments, configurations, and methods for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims. In addition, where this application has listed the steps of a method or procedure in a specific order, it may be possible, or even expedient in certain circumstances, to change the order in which some steps are performed, and it is intended that the particular steps of the method or procedure claim set forth hereinbelow not be construed as being order-specific unless such order specificity is expressly stated in the claim.
This application is a continuation of PCT Application No. PCT/US17/46748, filed Aug. 14, 2017, which claims priority to U.S. Provisional Application No. 62/375,284, filed Aug. 15, 2016, and U.S. Provisional Application No. 62/466,634, filed Mar. 3, 2017, which are incorporated herein by reference in its entirety and to which priority is claimed under 35 U.S.C. § 120.
Number | Name | Date | Kind |
---|---|---|---|
4375016 | Harada | Feb 1983 | A |
4747656 | Miyahara et al. | May 1988 | A |
4870688 | Voroba | Sep 1989 | A |
4962537 | Basel | Oct 1990 | A |
5259032 | Perkins et al. | Nov 1993 | A |
5572594 | Devoe | Nov 1996 | A |
5624376 | Ball et al. | Apr 1997 | A |
5804109 | Perkins | Sep 1998 | A |
6068589 | Neukermans | May 2000 | A |
6137889 | Shennib et al. | Oct 2000 | A |
6190305 | Ball et al. | Feb 2001 | B1 |
6473512 | Juneau et al. | Oct 2002 | B1 |
6491644 | Vujanic et al. | Dec 2002 | B1 |
6724902 | Shennib et al. | Apr 2004 | B1 |
6931231 | Griffin | Aug 2005 | B1 |
6940989 | Shennib et al. | Sep 2005 | B1 |
7095981 | Voroba et al. | Aug 2006 | B1 |
7289639 | Abel et al. | Oct 2007 | B2 |
7627131 | Nielsen et al. | Dec 2009 | B2 |
7630646 | Anderson et al. | Dec 2009 | B2 |
7867160 | Pluvinage et al. | Jan 2011 | B2 |
7983435 | Moses | Jul 2011 | B2 |
8116494 | Rass | Feb 2012 | B2 |
8157730 | Leboeuf et al. | Apr 2012 | B2 |
8194911 | Dyer et al. | Jun 2012 | B2 |
8204786 | Leboeuf et al. | Jun 2012 | B2 |
8251903 | Leboeuf et al. | Aug 2012 | B2 |
8320982 | Leboeuf et al. | Nov 2012 | B2 |
8396239 | Fay et al. | Mar 2013 | B2 |
8512242 | Leboeuf et al. | Aug 2013 | B2 |
8545383 | Wenzel et al. | Oct 2013 | B2 |
8600089 | Wenzel et al. | Dec 2013 | B2 |
8647270 | Leboeuf et al. | Feb 2014 | B2 |
8652040 | Leboeuf et al. | Feb 2014 | B2 |
8700111 | Leboeuf et al. | Apr 2014 | B2 |
8702607 | Leboeuf et al. | Apr 2014 | B2 |
8715152 | Puria et al. | May 2014 | B2 |
8761423 | Wagner et al. | Jun 2014 | B2 |
8788002 | Leboeuf et al. | Jul 2014 | B2 |
8885860 | Djalilian et al. | Nov 2014 | B2 |
8886269 | Leboeuf et al. | Nov 2014 | B2 |
8888701 | Leboeuf et al. | Nov 2014 | B2 |
8923941 | Leboeuf et al. | Dec 2014 | B2 |
8929965 | Leboeuf et al. | Jan 2015 | B2 |
8929966 | Leboeuf et al. | Jan 2015 | B2 |
8934952 | Leboeuf et al. | Jan 2015 | B2 |
8942776 | Leboeuf et al. | Jan 2015 | B2 |
8961415 | Leboeuf et al. | Feb 2015 | B2 |
8989830 | Leboeuf et al. | Mar 2015 | B2 |
9044180 | Leboeuf et al. | Jun 2015 | B2 |
9131312 | Leboeuf et al. | Sep 2015 | B2 |
9289135 | Leboeuf et al. | Mar 2016 | B2 |
9289175 | Leboeuf et al. | Mar 2016 | B2 |
9301696 | Leboeuf et al. | Apr 2016 | B2 |
9314167 | Leboeuf et al. | Apr 2016 | B2 |
9392377 | Olsen et al. | Jul 2016 | B2 |
9427191 | Leboeuf et al. | Aug 2016 | B2 |
9521962 | Leboeuf | Dec 2016 | B2 |
9538921 | Leboeuf et al. | Jan 2017 | B2 |
9750462 | Leboeuf et al. | Sep 2017 | B2 |
9788785 | Leboeuf | Oct 2017 | B2 |
9788794 | Leboeuf et al. | Oct 2017 | B2 |
9791639 | Zhao et al. | Oct 2017 | B2 |
9794653 | Aumer et al. | Oct 2017 | B2 |
9801552 | Romesburg et al. | Oct 2017 | B2 |
9808204 | Leboeuf et al. | Nov 2017 | B2 |
10306381 | Sandhu et al. | May 2019 | B2 |
10440485 | Kral | Oct 2019 | B2 |
20060161255 | Zarowski et al. | Jul 2006 | A1 |
20060189841 | Pluvinage et al. | Aug 2006 | A1 |
20090052706 | Gottschalk et al. | Feb 2009 | A1 |
20090304216 | Hansen et al. | Dec 2009 | A1 |
20100034409 | Fay et al. | Feb 2010 | A1 |
20100048982 | Puria et al. | Feb 2010 | A1 |
20100166241 | Sabio | Jul 2010 | A1 |
20110268308 | Vasquez | Nov 2011 | A1 |
20110295331 | Wells et al. | Dec 2011 | A1 |
20120051578 | Parkins et al. | Mar 2012 | A1 |
20120097475 | Schumaier | Apr 2012 | A1 |
20120099823 | Wu et al. | Apr 2012 | A1 |
20130016861 | Kaempf | Jan 2013 | A1 |
20130023962 | Stafford et al. | Jan 2013 | A1 |
20130034258 | Lin | Feb 2013 | A1 |
20130161119 | Mulvey | Jun 2013 | A1 |
20130294630 | Matsuo et al. | Nov 2013 | A1 |
20140153768 | Hagen et al. | Jun 2014 | A1 |
20150146900 | Vonlanthen et al. | May 2015 | A1 |
20150222978 | Murozaki | Aug 2015 | A1 |
20150245131 | Facteau et al. | Aug 2015 | A1 |
20150358749 | Karamuk et al. | Dec 2015 | A1 |
20160066110 | Shennib et al. | Mar 2016 | A1 |
20160173971 | Lott et al. | Jun 2016 | A1 |
20160330555 | Vonlanthen et al. | Nov 2016 | A1 |
20180048970 | Demartini et al. | Feb 2018 | A1 |
20190166438 | Perkins et al. | May 2019 | A1 |
20200137503 | Demartini et al. | Apr 2020 | A1 |
20200267485 | Perkins et al. | Aug 2020 | A1 |
20200351600 | Shaquer et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
3508830 | Sep 1986 | DE |
100624445 | Sep 2006 | KR |
WO-2018035036 | Feb 2018 | WO |
WO-2019143702 | Jul 2019 | WO |
Entry |
---|
Dundas et al. The Earlens Light-Driven Hearing Aid: Top 10 questions and answers. Hearing Review. 2018;25(2):36-39. |
Fay, et al. Preliminary evaluation of a light-based contact hearing device for the hearing impaired. Otol Neurotol. Jul. 2013;34(5):912-21. doi: 10.1097/MAO.0b013e31827de4b1. |
Fritsch, et al. EarLens transducer behavior in high-field strength MRI scanners. Otolaryngol Head NeckSurg. Mar. 2009;140(3):426-8. doi: 10.1016/j.otohns.2008.10.016. |
Gantz, et al. Broad Spectrum Amplification with a Light Driven Hearing System. Combined Otolaryngology Spring Meetings, 2016 (Chicago). |
Gantz, et al. Light Driven Hearing Aid: A Multi-Center Clinical Study. Association for Research in Otolaryngology Annual Meeting, 2016 (San Diego). |
Gantz, et al. Light-Driven Contact Hearing Aid for Broad Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology Journal, 2016 (in review). |
Gantz, et al. Light-Driven Contact Hearing Aid for Broad-Spectrum Amplification: Safety and Effectiveness Pivotal Study. Otology & Neurotology. Copyright 2016. 7 pages. |
International Search Report and Written Opinion dated Dec. 22, 2017 for International PCT Patent Application No. PCT/US2017/046748. |
Jian, et al. A 0.6 V, 1.66 mW energy harvester and audio driver for tympanic membrane transducer with wirelessly optical signal and power transfer. InCircuits and Systems (ISCAS), 2014 IEEE International Symposium on Jun. 1, 2014. 874-7. IEEE. |
Khaleghi, et al. Attenuating the ear canal feedback pressure of a laser-driven hearing aid. J Acoust Soc Am. Mar. 2017;141(3):1683. |
Khaleghi et al. Attenuating the feedback pressure of a light-activated hearing device to allows microphone placement at the ear canal entrance. IHCON 2016, International Hearing Aid Research Conference, Tahoe City, CA, Aug. 2016. |
Khaleghi, et al. Characterization of Ear-Canal Feedback Pressure due to Umbo-Drive Forces: Finite-Element vs. Circuit Models. ARO Midwinter Meeting 2016, (San Diego). |
Khaleghi et al. Mechano-Electro-Magnetic Finite Element Model of a Balanced Armature Transducer for a Contact Hearing Aid. Proc. MoH 2017, Mechanics of Hearing workshop, Brock University, Jun. 2017. |
Khaleghi et al. Multiphysics Finite Element Model of a Balanced Armature Transducer used in a Contact Hearing Device. ARO 2017, 40th ARO MidWinter Meeting, Baltimore, MD, Feb. 2017. |
Lee, et al. A Novel Opto-Electromagnetic Actuator Coupled to the tympanic Membrane. J Biomech. Dec. 5, 2008;41(16):3515-8. Epub Nov. 7, 2008. |
Lee, et al. The optimal magnetic force for a novel actuator coupled to the tympanic membrane: a finite element analysis. Biomedical engineering: applications, basis and communications. 2007; 19(3):171-177. |
Levy, et al. Characterization of the available feedback gain margin at two device microphone locations, in the fossa triangularis and Behind the Ear, for the light-based contact hearing device. Acoustical Society of America (ASA) meeting, 2013 (San Francisco). |
Levy, et al. Extended High-Frequency Bandwidth Improves Speech Reception in the Presence of Spatially Separated Masking Speech. Ear Hear. Sep.-Oct. 2015;36(5):e214-24. doi: 10.1097/AUD.0000000000000161. |
Levy et al. Light-driven contact hearing aid: a removable direct-drive hearing device option for mild to severe sensorineural hearing impairment. Conference on Implantable Auditory Prostheses, Tahoe City, CA, Jul. 2017. 4 pages. |
McElveen et al. Overcoming High-Frequency Limitations of Air Conduction Hearing Devices Using a Light-Driven Contact Hearing Aid. Poster presentation at the Triological Society, 120th Annual Meeting at COSM, Apr. 28, 2017; San Diego, CA. |
Moore, et al. Spectro-temporal characteristics of speech at high frequencies, and the potential for restoration of audibility to people with mild-to-moderate hearing loss. Ear Hear. Dec. 2008;29(6):907-22. doi: 10.1097/AUD.0b013e31818246f6. |
Perkins, et al. Light-based Contact Hearing Device: Characterization of available Feedback Gain Margin at two device microphone locations. Presented at AAO-HNSF Annual Meeting, 2013 (Vancouver). |
Perkins, et al. The EarLens Photonic Transducer: Extended bandwidth. Presented at AAO-HNSF Annual Meeting, 2011 (San Francisco). |
Perkins, et al. The EarLens System: New sound transduction methods. Hear Res. Feb. 2, 2010; 10 pages total. |
Perkins, R. Earlens tympanic contact transducer: a new method of sound transduction to the human ear. Otolaryngol Head Neck Surg. Jun. 1996;114(6):720-8. |
Puria, et al. Cues above 4 kilohertz can improve spatially separated speech recognition. The Journal of the Acoustical Society of America, 2011, 129, 2384. |
Puria, et al. Extending bandwidth above 4 kHz improves speech understanding in the presence of masking speech. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego). |
Puria, et al. Extending bandwidth provides the brain what it needs to improve hearing in noise. First international conference on cognitive hearing science for communication, 2011 (Linkoping, Sweden). |
Puria, et al. Hearing Restoration: Improved Multi-talker Speech Understanding. 5th International Symposium on Middle Ear Mechanics in Research and Otology (MEMRO), Jun. 2009 (Stanford University). |
Puria, et al. Imaging, Physiology and Biomechanics of the middle ear: Towards understating the functional consequences of anatomy. Stanford Mechanics and Computation Symposium, 2005, ed Fong J. |
Puria, et al. Sound-Pressure Measurements in the Cochlear Vestibule of Human-Cadaver Ears. Journal of the Acoustical Society of America. 1997; 101 (5-1): 2754-2770. |
Puria, et al. Temporal-Bone Measurements of the Maximum Equivalent Pressure Output and Maximum Stable Gain of a Light-Driven Hearing System That Mechanically Stimulates the Umbo. Otol Neurotol. Feb. 2016;37(2):160-6. doi: 10.1097/MA0.0000000000000941. |
Puria, et al. The EarLens Photonic Hearing Aid. Association for Research in Otolaryngology Annual Meeting, 2012 (San Diego). |
Puria, et al. The Effects of bandwidth and microphone location on understanding of masked speech by normal-hearing and hearing-impaired listeners. International Conference for Hearing Aid Research (IHCON) meeting, 2012 (Tahoe City). |
Puria. Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am. May 2003;113(5):2773-89. |
Puria, S. Middle Ear Hearing Devices. Chapter 10. Part of the series Springer Handbook of Auditory Research pp. 273-308. Date: Feb. 9, 2013. |
Song, et al. The development of a non-surgical direct drive hearing device with a wireless actuator coupled to the tympanic membrane. Applied Acoustics. Dec. 31, 2013;74(12):1511-8. |
Struck, et al. Comparison of Real-world Bandwidth in Hearing Aids vs Earlens Light-driven Hearing Aid System. The Hearing Review. TechTopic: EarLens. Hearingreview.com. Mar. 14, 2017. pp. 24-28. |
Folkeard, et al. Detection, Speech Recognition, Loudness, and Preference Outcomes With a Direct Drive Hearing Aid: Effects of Bandwidth. Trends Hear. Jan.-Dec. 2021; 25: 1-17. doi: 10.1177/2331216521999139. |
Number | Date | Country | |
---|---|---|---|
20190174240 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62466634 | Mar 2017 | US | |
62375284 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2017/046748 | Aug 2017 | US |
Child | 16272677 | US |